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Abstract

Although the planet Mars shows no global magnetic field today, the amplitude of the
crustal magnetization excludes any external origin (Acuña et al. 1999). Therefore Mars
must have had a period of generating actively an intrinsic magnetic field. Hydrody-
namic instabilities, such as convection due to thermal or compositional buoyancy, are
thought to drive complex flows of the liquid iron inside the planetary core which allow
for self-sustained induction of a magnetic field. Studies on the thermal evolution of Mars
(Morschhauser et al. 2011) suggest that only during the first 500 Myrs of the planetary
evolution the cooling rate of the core was sufficiently high to enforce a dynamo process
driven by thermal convection. Ferromagnetic minerals such as magnetite, formed and
cooled under the Curie temperature during this dynamo period, will preserve the strength
and orientation of the ambient magnetic field. From the year 1997, the Mars Global Sur-
veyor (MGS) spacecraft delivered the pattern and amplitude of the crustal magnetization.
One of the surprising results is the strong equatorial asymmetric (or more specific ’hemi-
spherical’) distribution, where most of the magnetic anomalies are located south of the
Martian equator. However, the amplitude of the magnetic moment of the crustal magneti-
zation was measured to be comparable to the one of Earth (Acuña et al. 1999), what can
be explained by either a thicker layer of magnetized crust (Langlais et al. 2004), a higher
density of magnetic carriers or a much stronger internal magnetic field.

The simplest end-member scenarios for the origin of such a magnetization pattern
might be either an internal one due to a hemispherical magnetizing field or an external
characterized by heterogeneous demagnetization of the crust in the northern hemisphere.
The latter scenario assumes an ancient field of strong dipolar morphology, which will
magnetize the crust more or less homogeneously. After the global magnetization was
acquired and the dynamo ceased impacts, volcanoes, plate tectonics and any other kind
of resurfacing event need then to appear in a heterogeneous way such that the remaining
crustal magnetization matches it’s present day hemispherical pattern. However, it remains
unclear how to justify a hemispherical preference of these quite statistical resurfacing
processes.

Dynamo models for planetary interiors describe the conducting, rotating and convect-
ing liquid iron with the MHD (Magnetohydrodynamics) approach. Researchers investi-
gating the first (internal) magnetization scenario adopt their numerical MHD models to
the characteristics of the early Martian interior (Stanley et al. 2008, Amit et al. 2011).
Within the limitations of today’s knowledge about the ancient Mars, a non-homogeneous
core mantle boundary (CMB) heat flux pattern and core convection driven exclusively by
thermal buoyancy are the expected key features. Since Mars is substantially smaller than
the Earth, the mantle convection is thought to be dominated by very few or only a single
hot upwelling (Keller and Tackley 2009), its large scale thermal footpoint can be trans-
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lated into a heat flux anomaly at the CMB. The convection in the Earth’s core is supported
by strong buoyancy contributions due to chemical convection, where the iron of the core
melt freezes at the surface of the solid inner core and buoyant light elements are released.
The Martian core is thought to be entirely liquid, therefore only thermal convection can
power an early dynamo process (Sohl and Spohn 1997).

The magnetic field achieved from the MHD simulations needs to fulfill several cri-
teria in order to serve as proper model to the problem of a hemispherical magnetization
at the surface. Besides the appropriate hemisphericity of the surface field these are long
time stability without polarity inversions and a surface magnetic field strength matching
the suggestions for the surface field strength of ancient Mars. In this study, we test the
hypothesis of an internal origin of the dichotomy in the crustal magnetization by con-
ducting numerical experiments for a hemispherical dynamo while solving numerically
for the MHD equations and applying a setup characterizing early Mars (Amit et al. 2011).
We enforce hemispherical dynamos in a similar way as reported by Stanley et al. (2008)
and Amit et al. (2011). If they reach the appropriate hemisphericity at the surface fast
oscillations including polarity reversals set in what seems inconsistent with the required
magnetization depth and amplitude. A rough comparison between the time scales typical
for crustal cooling and magnetization and the magnetic cycle period yields the conclu-
sion, that there might be no signal detectable on the surface of Mars. As the main result,
we suggest that a reversing hemispherical dynamo model does not fit to the observations
of strong and heterogeneous crustal magnetization. Furthermore we suggest a simplified
scaling law evaluating the possibility of such a boundary driven hemispherical dynamo in
a realistic planetary core.

As one of the key features of the hemispherical dynamos studied here, the convec-
tion and magnetic field induction, show a special symmetric behavior making the model
applicable to the mean field theory. The mean field theory successfully explained the 22-
year magnetic cycle of the sun where plane dynamo waves evolve in its convection zone.
We adopt and apply this theory to our model and compare the oscillation frequencies of
the hemispherical dynamo to the predictions from mean field theory, where we find a
surprisingly good agreement.
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1 Introduction

The investigation of global planetary magnetic fields generated from a prosperous dy-
namo process bares an approach to infer the present and past state of the interior. As we
will see, the induction of a self-sustained magnetic field in the interior of a planet yields
constraints on the thermal evolution, composition and the planets interior structure. It is
thought that the induction of a magnetic field is caused by complex motions of conducting
liquids, e.g. the liquid iron in the core of terrestrial planets. For the Earth, it was proposed
that such a dynamic process can explain the variation of the geomagnetic field on time
scales from several hundreds of years for the secular variation up to reversal time scales
of several hundreds of millions years (Glatzmaier and Coe 2007, Jones 2007). In this
study we focus on the historical dynamo process on the planet Mars. Even though, Mars
has today no global magnetic field, crustal magnetization might attest an active dynamo
during the time of generating the crust (Acuña et al. 1999). If the crustal magnetization
pattern can be interpreted as the fingerprint of the ancient Martian dynamo, it might show
some remarkable differences to the present day magnetic field of Earth. For example, it is
reasonable (Sohl and Spohn 1997) that the Martian dynamo was powered exclusively by
thermal convection and thus might mimic as well the dynamo process on Earth roughly
2 billion years ago, before the solid inner core of the Earth nucleated. Therefore under-
standing the dynamics and the induction process of the ancient Martian dynamo might
not only explain the acquisition of a hemispherical crustal magnetization pattern, but also
yield information about the early evolution of the Earth and its dynamo process.

1.1 Planetary Magnetism
A recent review of the scientific history of magnetism and its application to the Earth is
discussed extensively by Stern (2002) or Kono (2007). Here we overview the main steps
of the historical evolution of magnetism and its origin. It was already known to the an-
cient Greek, that special stones (loadstones) attract iron dust (Kono 2007), but the nature
of the responsible attraction remained enigmatic. The more systematic investigation of
magnetism on Earth dates back roughly 1000 years, when the Chinese noted that pivoted
loadstones are subject to a preferred north-south alignment. This can be seen as the first
technical application of Earth’s magnetic field. Loadstone are a remanently magnetized
pieces of magnetite, thus contain iron oxides and therefore can carry a permanent mag-
netic moment. During the 12th century (Stern 2002) it was also known, that a compass
needle as an instrument for navigation on sea and land, typically shows an inclination
and deviations from the exact north-south direction (declination), but the origin of the
magnetic force field itself remain unclear. In the year 1600, William Gilbert proposed
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1 Introduction

the Earth itself being a big magnet and as such being responsible for the force applied
to compass needles (Gilbert 1600). It was thought that the interior of the Earth is rema-
nently magnetized and thus forms a huge bar magnet. But in 1634, Henry Gellibrand
noted the time dependence of the declination (Stern 2002), today known as secular vari-
ation, what contradicts the remanent magnetization theory. Gellibrand explained that the
Earth interior is built up by several concentric shells hosting magnetization and with a
motion relative to each other (Busse and Simitev 2007). It was Gauss in 1828 developing
a method to measure the magnetic field intensity, not only the direction. Later (1834)
he derived the spherical harmonics analysis in describing the magnetic field as a scalar
potential field originated from inside the Earth. Once it was known, that the temperature
inside the Earth increases with depth such fast, that the Curie depth as the natural border
for remanent magnetization is reached at 30 km, the idea of a permanent and deep mag-
netization of the Earth’s interior was ruled out (Busse and Simitev 2007). In 1919 Joseph
Larmor devised the idea, that rotating bodies such as Sun and Earth can become magnets
due to self-sustained dynamo action caused by convective motions of a conducting fluid
(Larmor 1919). As the next step theories of coupling magnetic induction and rotating
convection start to develop. The full physical description is rather complex, therefore
the first successful mathematical treatment dealed with the simplified kinematic dynamo
problem (only solving the induction equation) and dates back to Braginsky (1964). The
first numerical model of the full dynamo problem including the Navier-Stokes equation
and the conservation of thermal energy, was given by Glatzmaier and Roberts (1997).
Since then a vast amount of numerical studies adressed various aspects of planetary and
stellar dynamos and enlighted the details of the induction mechanism.

The magnetic properties of other solar system planets and the Earth moon was discov-
ered by space missions. The Apollo missions 15 and 16 found crustal magnetization on
the Earth’s Moon in 1971 and 1972, Jupiter’s magnetosphere was crossed by Pioneer 10
in 1973, Mariner 10 observed the magnetic field of Mercury in 1974, Pioneer 11 passed
the magnetosphere of Saturn in 1979 and Voyager 2 found magnetospheres on Uranus
(1986) and Neptune (1989) (Stern 2002). Although Mars was visited by a series of space
crafts before, no global magnetic field was detected. But from 1997 the Mars Global
Surveyor spacecraft found a magnetic field due to crustal magnetization and mapped its
surprisingly heterogeneous pattern (Acuña et al. 2001).

Today it seems an exception that a solar system planet lacks a global magnetic field
of internal origin. Probably all of the solar system planets have or had, as inferred from
magnetized rocks on the surface, an evolutionary period with an intrinsic magnetic field
generation. It is thought, that a magneto-hydrodynamical dynamo process in the interiors
is responsible for the generation of a global magnetic field. Today active dynamos can be
found in Mercury, Earth, Jupiter, Saturn, Neptune and Uranus, additionally in the Jovian
Moon Ganymede. A special case is the planet Venus, which is quite similar to Earth in size
and chemistry. But Venus probably lacks plate tectonics and the mantle cools slower under
the stagnant lid crust (Spohn 2007). So the planetary cooling process might not be fast
enough to drive a dynamo. Besides that, any crustal magnetization as the fingerprint of
a hypothetical early Venusian dynamo might have been removed at surface temperatures
of roughly 450 ◦C exceeding the Curie temperature of some ferromagnetic minerals and
the extreme conditions due to the large atmospheric pressure and acidity. Interestingly,
each of the solar system planets hosting a dynamo today reveals some distinctions from a
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1.2 Dynamos in Terrestrial Planets

hypothetical standard dynamo model of a stationary dipole dominated field elongated with
the axis of rotation. For example Mercury has a peculiar weak but actively generated field,
Mars’ field was probably quite confined to the southern hemisphere, Saturn’s is extremely
axisymmetric, whereas the dynamos of Uranus and Neptune show exceptional strong
dipole tilting angles. For the time dependence of the dynamo of the Earth, statistical
reversals of the field on time scales of several hundreds of millions of years are also a
possible state of a planetary dynamo process (Glatzmaier and Coe 2007). The magnetic
field of the sun has a strong time dependence too, but with remarkable differences. A
magnetic cycle of the solar dynamo takes as long as 22 years, and the oscillations are
strongly periodic (Rüdiger and Hollerbach 2004).

In this study we focus on the dynamo process in terrestrial planets. The four terrestrial
planet Mercury, Venus, Earth and Mars, are structured roughly in the same way. On the
surface of the planet a brittle crust of low-density material like basalts or silicates form
the upper solid boundary of the planet. Under this so called lithosphere (solid) with a
thickness of tens of km a convecting or non convecting mantle reaches typically down to
a large fraction of the total planetary radius (Schubert et al. 2001). Underneath resides
the planet’s core. It mainly consists of iron, but usually also a lighter element such as
sulphur or oxygen is part of the core melt. Temperature and pressure increase with depth
and are such high in the core, that the core material can be fully or partially liquid. In
some planets there is also a solid inner core of pure iron, which nucleates when the iron
in the core melt solidifies at the center of the planet.

All the geophysical activity, such as mantle convection and a possible core dynamo is
controlled by the thermal evolution of the planet. The initial thermal structure of a planet
depends on the accretional heat during the planetary formation and distribution and con-
centration of radioactive elements. Temperature and pressure increase with depth inside
the planetary interior and thus there is (to first order) radial outward directed temperature
gradient. The simplest mechanism to transport heat towards the planetary surface is heat
conduction. If the temperature contrast across the mantle or the core exceeds a critical
value (adiabatic temperature gradient), it becomes energetically more efficient to support
the heat conduction with a convective transport of hot material towards the cool surface.
Convection in the mantle gives rise to sluggish large scale up- and downwellings, what
translates to the observable plate tectonics, sea floor spreading or other geologic activity.
The presence of a global magnetic field generated by an internal dynamo might attest
convective motions in the core.

1.2 Dynamos in Terrestrial Planets

The phrase ’dynamo process’ means the production of a self-sustained magnetic field
via continuous transformation of kinetic into magnetic energy, such that the induction
mechanism overwhelms the ohmic decay of the magnetic field. The main ingredients are
on the one hand a sufficiently complex motion driven, e.g. by the interplay of convection
and the action of the Coriolis force. And on the other hand the presence of a conducting
fluid, such as liquid iron in terrestrial or metallic hydrogen in gas planets or liquid sodium
in dynamo experiments.

The evolution of a magnetic field is described by the induction equation, which is

11



1 Introduction

Quantity symbol value Reference

planetary radius rtot 3390 km 3

planetary mass m 6.41 × 1023 kg

radius cmb ro 1550 km 3

gravitational accel. surface g0 3.25 m/s2 1

gravitational accel. CMB g0 2.5 m/s2 1

density CMB ρ0 7200 kg/m3 3

pressure CMB po 40 GPa 2

adiabatic CMB heat flux q0 5-19 mW/m2 2

heat capacity C 840 J/kgK 3

temperature CMB T0 2000 K 1

kinematic viscosity ν 5 ×10−7 m2/s 4

thermal expansivity α 2.5 ×10−5 2

thermal conductivity k 45 W/mK 2

electric conductivity σ 4 × 105 S/m 4

Table 1.1: Typical core values for the Ancient Martian core. References 1 -
(Sohl and Spohn 1997), 2 - (Nimmo and Stevenson 2000), 3 - (Morschhauser
et al. 2011) and 4 - Jones (2007)

function of the magnetic field B and the velocity of the conducting fluid u. Here we
anticipate the induction equation, whereas the derivation and deeper discussion can be
found in section 2.5:

∂B
∂t

= ∇ × (u × B) + λ∇2B . (1.1)

Here λ = 1/σµ0 is the magnetic diffusivity, given by the conductivity σ and the vac-
uum permeability µ0. The first term on the right hand side is the dynamo term convert-
ing kinetic energy into magnetic energy, the second term is the ohmic decay dissipating
magnetic energy. A small magnetic seed field will amplify, if the first term exceeds the
second one (Roberts 2007) in amplitude. The ratio between both is given by the magnetic
Reynolds number Rm:

Rm =

∣∣∣∣∣∇ × (u × B)
λ∇2B

∣∣∣∣∣ ≈ UB/L
λB/L2 =

UL
λ

= U Lσµ0 . (1.2)

Therefore Rm needs to be larger than unity, to allow for dynamo action. A typical value
for the velocities u in the core are of the order of 10−3 m/s (Jones 2007), the electrical
conductivity of the core melt is nearly metallic (σ = 4 × 105 S/m). The other parameters
can be taken from the table 1.1. Then we find for the core of a terrestrial planet such as
Mars, Rm ≈ 800, therefore a dynamo is possible.

12



1.2 Dynamos in Terrestrial Planets

The metallic conductivity σ is given by the large contribution of iron in the core melt.
A terrestrial planet needs be chemically differentiated, thus heavy iron has accumulated in
the center of the planet forming an iron core. For such a process a significant fraction of
the planet volume needs to be molten (Weiss et al. 2010). Planets of sufficient radius (more
than 2000 km) gain enough gravitational energy during formation to melt the planet body
completely (Wetherill 1990, Weiss et al. 2010). Then the heavy iron migrates to the center
of the planet thus forming a core enriched in iron. There might be minor contributions
of light elements. Given the large cosmochemical abundance, sulphur is the most likely
candidate (Schubert and Spohn 1990). Depending on size, composition and pressure of
the core melt, the large iron fraction can remain entirely or partially liquid for several
billions of years.

The characteristic velocity used for calculating the magnetic Reynolds number Rm
(eq. 1.2), is thought to represent a typical amplitude of convective motions in the core,
therefore core convection might be needed to enforce a core dynamo. However, there
are also other sources of hydrodynamic instabilities possible, such as precession (Tilgner
2007) or superrotation (Guervilly and Cardin 2010). For thermal convection the amount
of heat escaping from the core into the mantle is the crucial quantity. If this heat flux
exceeds the so called adiabatic temperature gradient, convective motions support the heat
conduction. We will later derive and calculate this adiabatic gradient (see section 2.3).
Besides the thermal driving, also compositional convection can occur in terrestrial cores
(Jones 2007), since the core melt contains minor contributions from lighter elements.
During cooling of the core, the melt can cross the core solidus, thus iron freezes out and
form a solid inner core of pure iron. The release of light elements at the CMB additionally
drives then chemical or compositional convection, while the solid inner core grows. This
flux of light elements serves as an additional buoyancy source. An excellent review of
the theory of chemical and thermal convection can be found in Jones (2007). To sustain
a convective dynamo process, the core material thus needs to be at least partially liquid
and the buoyancy gradients must be steep enough. If the core is entirely solidified due to
runaway inner core solidification or the CMB heat flux drops under the adiabatic gradient,
the dynamo process can not be maintained again the ohmic losses and thus the magnetic
field ceases.

Planets are fast rotating objects, they spin around their figure axis and additionally
around the central star. The typical time scales τrot of the daily rotation τrot = 1/Ω,
where Ω is the rotation rate. For Mars τrot = 2.8 × 10−3 yr. We want to relate this
time with the time scale of viscous diffusion. The dynamic viscosity η = νρ of the core
melt η ≈ 7 × 10−3 kgm−1s−1 (Jones 2007) and thus comparable to the viscosity of liquid
water (η ≈ 1.5 × 10−3 kgm−1s−1). The density of the core melt is ρ ≈ 7 × 103 kg/m3.
The appropriate viscous diffusion time scale is given by D2/ν. When assuming a core
thickness of 1550 km, this yields τvis = 1.8 × 1011 yr. Therefore the rotational time scale
is by far shorter than the viscous diffusion, thus the rotation of the planet dominates the
evolution of the flow and viscous effects play only a minor role. On the other hand, such
a small viscosity is needed to reach sufficiently high core flow velocities. The ratio of
the two time scales is named Ekman number, and we will re-find this number during the
discussion of the MHD equations.

The theoretical investigation of fast rotating and convecting fluids in spherical shells
is well established (Busse 1970, Jones 2007). We define a coordinate system such that the
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1 Introduction

rotation vector points toΩ = Ωez. The large Coriolis force (2ρΩ×u) breaks the spherical
symmetric properties of the core and thus defines an preferred axis (z-direction here).
If the large Coriolis force would not be balanced in some way, very fast variations of the
core flow would occur and thus the magnetic field would vary on similar short time scales,
what does not seem to be the case (Jones 2007). In the absence of buoyancy and Lorentz
force, the main force balance is between the Coriolis force and the pressure gradient
(Jones 2007). Albeit, we discuss the force balance or the conservation of momentum
(Navier-Stokes equation) and its simplifications extensively in section 2.1, we anticipate
the force balance given by only the two terms of the Navier-Stokes equation representing
pressure gradient and Coriolis force:

0 = −∇p + 2ρΩ × u . (1.3)

The pressure gradient term ∇p is a conservative term, since it can be describe as the
gradient of a scalar potential (the pressure). The Coriolis force is in general not a conser-
vative force, since it does not vanish when applying a curl operator. If now the main force
balance is supposed to be established between pressure gradient and Coriolis force, the
velocity field has to organize in way such that the curl of the Coriolis force vanishes or at
least becomes small:

∇ × (Ω × u) = 0 if
∂u
∂z

= 0 (1.4)

This is known as the Taylor-Proudman theorem and will lead to so called ’geostrophic
flows’. Core flows have then the requirement for not changing along any axis parallel
to the rotation axis. The buoyancy introduced by thermal or compositional convection
is directed radially outward, and might then counteract the Taylor-Proudman theorem,
which tries to constraint motions to be independent of z-direction. Close to the onset of
convection, Busse (1970) showed that the convection sets in a geometry of convective
columns. The convective columns are parallel to the rotation axis, and therefore do not
violate the Taylor-Proudman constraint. Close to the inclined outer boundaries and (if
present) inner boundaries, the Taylor-Proudman theorem will be not valid anymore and
the other forces such as viscosity play a large role there.

If the flow is also subject to a Lorentz force, introduced by the magnetic field, the
main force balances will be altered. The ratio of the Coriolis and Lorentz force, known
as the Elsasser number Λ, is of order unity (Christensen and Wicht 2007) and therefore
the Lorentz force is significant for the ’magnetostrophic’ force balance. The convective
columns elongated with the axis of rotation host the main induction effect, therefore the
magnetic field also has the preferred direction along the rotation axis.

1.3 Thermal Evolution of Mars
The planet Mars is the fourth planet of our solar system and accompanied by two moons,
Phobos and Deimos. Planetary radius and mass are significantly smaller than for the
Earth (see table 1.1 for details), but the chemical composition is very similar (Spohn et al.
2001). Together with Mercury, Venus and Earth Mars forms the group of the terrestrial
planets. But there are major differences between Mars and Earth, such as the absence of
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a global magnetic field or the thin atmosphere. Today, the atmosphere has an extremely
low pressure of only a few millibars (Zolotov 2007), containing mainly carbon dioxide
CO2. Mars might have lost most of its volatile atmosphere constituents during its history,
most probably due to the lack of a planetary magnetosphere protecting the atmosphere
from erosion (Barabash et al. 2007). Observed from Earth or space, Mars shows a distinct
reddish or brown color. This color is due to more abundant iron oxides on the surface
(Spohn et al. 2001). A closer look reveals the remarkable geological features, such as
the huge volcanic area of the Tharsis bulge, the crustal dichotomy or the Hellas basin.
Especially the Tharsis region was found to be geological active in terms of volcanism
during the very recent past, maybe even today (Hartmann et al. 1999).

One of the striking features of Mars is the hemispherical dichotomy in the crust. It
was found that the northern crust is relatively thin (roughly 10 km), whereas the south-
ern crust is thick (roughly 60 km) and old (Zuber et al. 2000). As one of the findings of
the MGS (Mars Global Surveyor) mission, the two hemispheres also differ in the type of
crustal rocks there are covered with (Bandfield et al. 2000). Crustal rocks on the northern
hemisphere are mainly silica-rich, whereas in the southern hemisphere the rocks are more
basaltic and therefore of volcanic origin. Laser altimetry from MGS space craft yields
an elevation level of several thousands of meters (on average) of the southern highlands,
where as the northern plains are below the zero line (Smith et al. 1999). The ticker south-
ern crust is so more massive than the northern, the center of mass deviates by 3 km south-
wards from the center of figure (Smith et al. 2001). The origin of the crustal dichotomy
is still under great debate (Breuer and Moore 2007), and may have been formed either
externally by one mega-impact (Marinova et al. 2008), series of large impacts (Frey and
Schultz 1988) or internally by low degree mantle convection (Keller and Tackley 2009)
an thus dichotomous crustal growth.

All of these features and findings are the consequenceses of several billions of years
of planetary evolution. As a first step, we adopt the partition of the Martian evolution into
three main epochs. The methods of crater chronology yields a division of the history of
Mars into geochrons (or better areochrons). Details for the geochronology can be found
in Tanaka (1986) and Hartmann and Neukum (2001).

• Noachian : 4.5 - 3.7 Gyrs of age

• Hesperian : 3.7 - 3.0 Gyrs of age

• Amazonian : 3.0 - present

The border between Noachian and Hesperian is given by the end of Late Heavy Bom-
bardement (Hartmann and Neukum 2001). Noachis, Hesperia Planitia and Amazonia
Planitia are geologic features showing a typical terrain created during that epoch. During
the noachian epoch, thus in the first several hundred million years after accretion, Mars
was a geophysically very active planet hosting mantle convection, volcanism and (most
probably) the generation of a strong internal magnetic field.

The crustal magnetization observed by the MGS space craft reflects the dichotomy
in the crust to a large extend. Therefore it is an interesting question when and how the
crustal dichotomy was formed. The precise age of the crustal dichotomy is still under
debate. In older studies, it was assumed, that the northern plains created during the end
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of Hesperian are significantly younger than the southern highlands formed during the
Noachian (Banerdt et al. 1992). Then the northern crust was formed without the presence
of a global magnetic field. However the more recent studies contradict this conjecture.
Breuer and Moore (2007) pointed out that the dichotomy is probably one of the oldest
features on Mars, whereas Nimmo and Tanaka (2005) suggest an age of 3.9 Gyrs (late
Noachian) thus coinciding with the end of the Martian dynamo. Frey et al. (2002) con-
cluded from Laser Altimeter data, that the Martian northern lowlands have been stable
throughout the entire history of Mars. The numerous detection of impact craters buried
by a thin and plain layer (northern plains), gives rise the conclusion that the bulk of the
northern crust is much older than the plains covering them (Frey et al. 2002). In any case
a precise dating of the dynamo period can yield some constraints on the crustal evolution.

After the accretion Mars was entirely molten, the iron migrate towards the center of the
planet and form an iron core (Spohn et al. 2001). The differentiation into crust, mantle and
core might not have taken longer than 20 Myrs, as suggested by Lee and Halliday (1997).
The fraction of light elements in the core is thought to be roughly 15% of (most probably)
sulphur. The fact that the crust is (compared to Earth) more enriched in iron oxides, the
larger light element abundance in the core and studies on isotopic measurements of SNC
meteorites suggest the differentiation process and mixing by mantle convection through-
out the Martian evolution was much less efficient or incomplete (Spohn et al. 2001). Here
our specific interest is on the evolution of the mantle convection. Mantle convection con-
trols the thermal evolution and the amount of heat extracted from the underlying core.
A significantly high CMB heat flux is a crucial ingredient for a magnetic dynamo driven
exclusively by thermal convection. In opposite to the Earth there is no observation of the
total heat flux emerging from the surface of Mars. Knowledge of today’s surface heat flux
might not be sufficient to decide about the supercriticality of a possible ancient dynamo.
Radiogenic heating in the mantle typically exceeds the heat flux originated from the sec-
ular cooling of the core by an order of magnitude (Spohn et al. 2001, Breuer and Moore
2007). The core mantle boundary heat flux is basically given as the sum of the adiabatic
secular cooling, the convective cooling and a possible, but minor, contribution from ra-
diactive decay. Since the Martian core did likely not start to nucleate an inner iron core
the additional solidificational heat is zero. We will discuss the state of the Martian core
in greater detail in section 1.7. One hint for the timing of the dynamo comes from mag-
netized and unmagnetizd impact craters and their ages, where the magnetized ones are
formed during the presence of an ambient magnetic field. Lillis et al. (2008b) proposed
a strong decay of the magnetic field strength during the Noachian at roughly 4.1 Gyrs
ago due to unmagnetized large craters, such as the Hellas basin. Langlais et al. (2012)
analyzed impact basins and volcanoes for setting the end of the Martian dynamo at 3.77
Gyrs, so between late Noachian and Early Hesperian. Besides this approach the analy-
sis of rock samples from Martian meteorites (if magnetized) can also yield contraints on
the timing and magnetic field strength. Further details on the SNC meteorites and their
magnetic properties are discussed in section 1.4.2.

The magnetic history of Mars is closely related to its thermal evolution. Estimates
from modeling of the thermal evolution of the planet suggests an active dynamo only
during the Noachian period (Breuer and Spohn 2003), where the CMB heat flux was su-
peradiabatic. Most probably the crustal rocks showing thermoremanent magnetization
today, were generated during this early phase of the planetary evolution. Although the
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mixing efficiency of the mantle was not very strong as mentioned above, mantle convec-
tion was most probably active during the entire history of the Martian evolution (Spohn
et al. 2001). Satisfying the argument of an incomplete mixing of the mantle and the per-
manent mantle convective motions, it was suggested that the mantle convection develops
with only a few or even one single upwelling (Breuer and Moore 2007). There have been
several attempts to apply mantle convection models to the characteristic setup of early
Mars, such as phase transitions (Harder and Christensen 1996, Roberts and Zhong 2006)
introducing a viscosity jump, different rheology (Yoshida and Kageyama 2006) or initial
temperatures to achieve a low-degree mantle convection, see Breuer and Spohn (2003),
Roberts and Zhong (2006), Spohn et al. (2001), or Morschhauser et al. (2011) for the most
recent study. Also the relation to the crustal thickness dichotomy was used to link a prob-
able single plume mantle convection to the different crustal production rates in the two
hemispheres (Breuer et al. 1993). We will make use of the single plume convection, when
assuming that the thermal footpoint of such a large scale upwelling will dehomogenize
the lateral CMB heat flux pattern.

Plate tectonics as present on Earth are one of the states of mantle convection. It is
very likely (Breuer and Spohn 2003), that during an early phase in the Martian history
plate tectonics was present and mantle convection was much more energetic (Spohn et al.
2001). As a consequence, the mantle cooled more efficiently and the heat flow through the
CMB exceeded the critical value necessary to drive a dynamo. On today’s Mars, the entire
crust forms one single plate which significantly limits the vigor of mantle convection
and thus the heat transport through the mantle. An hypothetical early phase of tectonic
activity (Breuer and Spohn 2003) during the Early Noachian, requires a change in the style
of the mantle convection from plate tectonics to the (now present) stagnant lid regime.
Morschhauser et al. (2011) pointed out that besides a phase of plate tectonics alternatively
an initially superheated core is possible to allow for a thermally driven dynamo process
in the core.

1.4 Crustal Magnetization

The bulk of the Martian crust (100 km depth) is thought to be formed during the Noachian
(Breuer and Spohn 2003), what coincides the active dynamo period. Albeit a phase of
early plate tectonics allows for an efficient cooling of the mantle and thus a core dynamo
to operate, the (magnetized) crust will remain thin due to the fast recycling. As a compar-
ison, the subductable oceanic crust of the Earth has an average thickness of only 8 km.
Morschhauser et al. (2011) found a crustal thickness of 50 km for the now present stag-
nant lid regime. Magnetized crust needs to be created during the period of an active core
dynamo, where a magnetization depth of at least 20 km (Langlais et al. 2004) is required
to match the measurements of the magnetic moment. It therefore remain an open question
to what extend early plate tectonics on Mars are compatible with the crustal magnetization
pattern and amplitude.

Crustal magnetization is a magnetic fingerprint acquired during one or several periods
of active dynamo action during the evolution of the planet. Rocks formed and cooled un-
der the Curie temperature conserve the ambient field orientation and (to some extent) the
magnetic field strength. If no altering or reheating process occurs, this Thermoremanent
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Magnetization (TRM) can survive for billions of years. The oldest magnetized rock sam-
ples on Earth date back to 3.5 Gyrs (Hulot et al. 2010) and are located in unsubductable
continental crust. Oceanic crust on the other hand is permanently created and recycled
into the mantle, therefore it can only reaches ages of several hundred million years. It is
created in crustal spreading zones at divergent plate boundaries, where it then moves out-
wards due to the mantle convective motions. In the presence of an ambient magnetic field,
ferromagnetic minerals allow to imprint the actual direction and strength of this field. If
the magnetic field changes polarity the typical stripe pattern of crustal magnetization, e.g.
starting at the mid-atlantic ridge, emerges. The width of one individual stripe then gives
the time of a stable polarity assuming knowledge about the plate divergence speed. These
measurements were the first hint for the reversing nature of Earth’s magnetic field. Crustal
magnetization was also found in rocks on the lunar surface during the Apollo 11 missions
and interpreted being of thermoremanent origin (Runcorn et al. 1970). However, the fa-
mous ’Runcorn Theorem’ appeared in the course of the discussion of an ancient lunar
dynamo. Runcorn (1975a) calculated, that a homogeneously magnetized spherical shell
will not show any external field outside the shell, if the magnetizing field was of dipolar
morphology. Therefore all magnetic anomalies measured in the crust are only deviations
from a homogeneously magnetized crust (Runcorn 1975b). In a more recent study by
Leweling and Spohn (1997) this ideas were applied to Martian crustal magnetization as
well. That means it is indeed possible that besides the detectable anomalies, as measured
by the MGS space craft (Acuña et al. 1999), a homogeneous crustal magnetization of un-
known magnetic moment is present in the crust. Of course, it might be rather unlikely to
magnetize crust homogeneously because magnetization events appear more statistically
and the magnetization depth is in general strongly inhomogeneous.

1.4.1 Crustal Genesis and Chemistry

A crustal rock conserving magnetic signals needs to be ferromagnetic. In such materi-
als the microscopic magnetic moments rearrange to a macroscopic magnetization in the
direction of the ambient field. In opposite to paramagnetic materials, the magnetization
remains after the removal of the ambient field. To first order, the relation of induced mag-
netization and the ambient field is parallel and linear, given by the magnetic susceptibility
χ (Langlais et al. 2010). Ferromagnetic rocks gain this ability from the iron, cobalt or
nickel contribution (Langlais et al. 2010), where on Mars iron is by far the most abundant
of them. In its ferromagnetic phase it can be found in minerals such as magnetite Fe3O4 or
hematite Fe2O3 or in combination with sulphur in iron sulfides FeS or oxyhydroxides such
as goethite FeO(OH). The iron is sometimes replaced by titanium. Once a rock is formed
and reaches the Curie temperature while cooling, it imprints the direction and strength
of the ambient field. This critical temperature defines the point, from which the thermal
fluctuations of the individual magnetic spins are exceeded by the ordering force due to
ferromagnetism. The Curie temperature ranges from 700◦C for magnetite and hematite
down to 150◦C for minerals with strong titanium abundance (Langlais et al. 2010). Note,
that most of the upper mantle and crustal rocks are silicates (Mg,FeSiO4), not oxides.
Silicates do not contribute to the crustal magnetization even if they contain iron, because
the iron atoms in the crystal lattice are spatially not close enough for a ferromagnetic
interaction. Another source of magnetization in rocks is the process of serpentinization
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or hydrothermal alteration of iron bearing silicates, where they are transformed in the
presence of water into magnetite Fe3O4 (Langlais et al. 2010). Since magnetite is ferro-
magnetic, it will imprint the direction and strength of the ambient field at the moment this
process takes place. Hood et al. (2005) suggested that hydrothermal alteration of silicates
are the main source of the strong magnetic anomalies. However, the composition and
mineralogy of the crustal rocks remains an open question, and it is unclear to what extend
different rocks serve as carriers of the crustal magnetic field.

1.4.2 Measurements and Satellite Data

A very successful way to study the early evolution of the solar system and its planets, is
the analysis of meteorites as witnesses of early solar system composition or paleomag-
netic data. A detailed discussion of this subject is beyond the scope of this work, but
an excellent review can be found in Weiss et al. (2010). There are roughly 50 mete-
orite samples, which have been identified sampling the crust of Mars (Weiss et al. 2008).
They are called SNC1 meteorites, and only a few of them carry magnetic signals (Ro-
chette et al. 2001). There is only one meteorite sample containing both, thermoremanent
magnetization and an age old enough to be magnetized during the period of an active dy-
namo (Noachian), namely the meteorite ALH84001 (Weiss et al. 2002). This meteorite
shows strong natural remanent magnetization acquired during cooling under the Curie
temperature in an ambient planetary magnetic field. Analysis of bulk grains suggested
an ambient field strength ranging from 5 − 50 µT (Weiss et al. 2002), whereas studies on
much smaller samples suggest stronger fields of 38 − 64 µT (Weiss et al. 2008). It should
be mentioned that this estimate only reflects the local field strength at a given spot in
space and time when this piece of rock was formed. Analysis of this meteorite brought
up the major finding that comparing to Earth’s concentration of ferromagnetic minerals,
a 10 times larger ferromagnetic density is needed to achieve the global magnetic moment
of the crustal magnetization on Mars (Weiss et al. 2008). Or as another possibility, the
volume of magnetized material needs to much larger. However, Langlais et al. (2010)
argued that the maximal magnetization depth of the Martian crust during the Noachian
period is restricted in depth by the Curie temperature and might not exceed 40 km.

Meteorites found on Earth allow for analysis in the lab, but the in situ measurements
can only be conducted by space crafts or rovers. There have been 24 missions to Mars,
where 14 of them were successful (Ness 2010). The search for the present or past ex-
istence of liquid water as a possible potential habitat of extraterrestrial life made Mars
the most studied planet of the solar system besides Earth. A few space crafts studied
the magnetic properties of Mars as well. It was known that solar wind and an internal
magnetic field do not form a large magnetosphere as on Earth (Balogh 2010), but the
thin ionosphere of Mars being an obstacle for the solar wind. It lasted until the Mars
Global Surveyor orbiting phase in 1997 to map the magnetic field of the Martian crust
(Ness et al. 1999). A combination of fluxgate magnetometer and electron reflectometer
was used to measure the magnetic vector field during the aerobreaking phases. These
phases are used to slow down the space craft using the friction of the atmosphere and cir-
cularize the space crafts orbit. After the initially highly elliptical aerobraking phase, the

1SNC stands for Shergottite, Nakhlatite, Chassignytite
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scientific measurements began at an altitude of 400 km, whereas MGS approaches Mars
during the aerobraking as close as 100 km Langlais et al. (2010). The further away the
space craft is from the surface of the planet, the more the magnetic signal is biased by the
solar wind-ionospheric interaction. The aerobraking phase revealed for the first time the
crustal magnetization (Acuña et al. 1999), because MGS reaches altitudes smaller than
the bow shock of the ionosphere.

The MGS conducted map of crustal anomalies (figure 1.1) shows several distinct fea-
tures, the most surprising is the strong equatorial asymmetry. Most of the magnetized
rocks are south of the equator in the old and heavily cratered terrain. There is also a sig-
nificant dependence on azimuthal direction. The strength of the NRM (natural remanent
magnetization) excludes any external origin Acuña et al. (1999). The magnetic lineations
observed in the patterns of the crustal magnetization were interpreted as the fingerprint of
a reversing magnetic field magnetizing fresh crustal rocks in a divergent crustal spreading
zone (Connerney et al. 1999). During the Noachian period (4.4 – 3.9 Gyrs ago) most
probably the Martian crust was formed and magnetized in the presence of an ambient
magnetic field of internal origin. The end of the active dynamo period is inferred from
the ages of unmagnetized impacts basins in the southern hemisphere. We will discuss the
possible magnetization and demagnetization scenarios in section 1.4.3.

The magnetic moment of some sources are of the order of 1016−1017 Am2 (Acuña et al.
1999), (Connerney 2007), requiring a very large magnetization volume (3.6 × 1015 m3,
Langlais et al. (2004)). The thickness of the magnetized layer is thereby a crucial in-
formation needed to infer the remanent magnetization density of the crustal rocks, since
only the product of magnetization density and magnetized volume is constrained. An
upper limit of the crustal magnetization thickness is given by the depth of the Curie tem-
perature. Assuming a temperature gradient of roughly 10 K/km in the crust of ancient
Mars leading to a maximum Curie depth of 50 km. Since the Curie temperature of fer-
romagnetic rocks depend strongly on the content of titanium, thinner layers are usually
assumed. Langlais et al. (2004) obtained a magnetization of ±12 A/m and ±25 A/m, for a
40 km and 20 km magnetized crust, respectively. An even thinner magnetized crust would
require a much higher magnetization, what is unlikely.

There are basically two methods how to translate a magnetic vector field measurement
from a space craft at different altitudes to a map of crustal magnetism. Either an expansion
in spherical harmonics (Cain et al. 2003) or a carpet of equivalent dipole sources (Langlais
et al. 2004) are used to reconstruct the observed field at space craft altitude. The expansion
in spherical harmonics is intensively used to describe the large scale magnetic field of the
Earth, but brings mathematical difficulties if the anomalies are rather small scale and of
crustal origin or if the data coverage is non-homogeneous or sparse (Langlais et al. 2004).
The amplitudes of the magnetic anomalies needed are up to ±200 nT at 400 km to match
the observation. The anomalies at the surface (or within the first tens of km crust) reach
1500 nT (Connerney et al. 1999) or even exceed 5000 nT (Langlais et al. 2004). It will
need then a substantial amount of spherical harmonics modes (Cain et al. (2003) used
n = 90 modes), to properly describe the field. Therefore the equivalent dipole source is
the better approach.
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Figure 1.1: Map of the radial magnetic anomalies measured by the MGS
space craft (Acuña et al. 1999). The green line denotes the ’border’ between
the chemically distinct hemispheres.

1.4.3 Magnetization and Demagnetization
Different magnetization scenarios were discussed as alternatives to explain the dichotomy
in crustal magnetization. The distinct hemisphericity in the crustal magnetization, puts
some constraints on the magnetizing and demagnetizing history. The simplest model
would assume a stable dipole dominated magnetic field, what would magnetize all rocks
reaching (cooling) the curie temperature as long as the dynamo runs. This will lead to a
more or less homogeneous distribution of magnetized sites. Then after the cessation of
the dynamo the demagnetization process needs to be of sufficient equatorial asymmetry.
Large impacts, e.g. in the northern hemisphere then have to demagnetize the crust due
to shock demagnetization and supercurie thermal heating (Lillis et al. 2008a, Mohit and
Arkani-Hamed 2004). Other geological activity such as volcanoes, would need to demag-
netize and heat up the underlying crust in sufficient depth and width. However it remains
statistically quite unlikely, only to demagnetize the northern hemisphere by impacts or
other resurfacing events. Several work has been done to relate the absence of magnetic
signatures and the crustal dichotomy (Marinova et al. 2008, Keller and Tackley 2009). We
discussed already the possibilities of the different ages of the crust in both hemispheres,
where the more recent work suggested that both crustal hemispheres are older than the
end of the dynamo (Breuer and Moore 2007).

Note, that today’s magnetization pattern might not reflect the original positions of the
magnetizations. A source of bias are plate tectonics which would rearrange the magne-
tized sites around the globe. Of course it might be also possible, that the rotation axis
of planet in its orientation today differs strongly from the orientation when the crust was
magnetized. Different studies tried to fit a simple dipolar magnetic mode to the observed
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magnetization, where the typical outcome of these studies suggest a true polar wander
event (Hood et al. 2005, Sprenke and Baker 2000). There it assumed that the magnetic
field consists only of a dipolar mode, which is elongated with the rotation axis. The rise
of the Tharsis bulge is thought to lead into such a global reorientation of the spin axis
(Melosh 1980).

Here the possibility of a magnetizing field is investigated, which has already intrin-
sically the same equatorial asymmetry as the measurements of the crustal magnetization
pattern. An admissible model for such a dynamo should be able to recover the strong
crustal magnetization (or at least exceed the magnitude of the thermal remanent magne-
tization), and persist over time long enough to magnetize several tens of kilometers of
crust. In section 5 the translating step from time scales typical of the dynamo towards a
magnetization time is discussed in detail. It is shown there that the crustal field will in any
case reflect the time averaged dynamo field. Dynamo solutions with fast polarity reversals
are then ruled out, since they can not provide a stationary field over the time scales typical
for the magnetization process. Such a hemispherical dynamo model does not need any
hemispherical demagnetizing resurfacing or a true polar wander event in order to explain
the hemispherical magnetization on the Martian crust.

1.5 Core Mantle Interactions

For our purposes the thermal interaction between mantle and core is crucial. Between
mantle and core a layer boundary (CMB) controls the outward transport of heat. It is
assumed, the this heat transport is only via heat conduction thus there is no material ex-
change between mantle and core. The thermal properties of the CMB are determined by
the convection in the mantle and by the convection in the core. In comparison, convec-
tive motions in the mantle are rather sluggish and large scale, whereas core convection is
much faster and vigorous. A typical convective time scale is the convective turn over time
τcon given by the ratio of a typical length to a typical velocity. Assuming 5 × 10−4 m/s
(Bloxham and Gubbins 1987), and 5 × 10−7 m/s (Schubert et al. 2001) as typical convec-
tive velocities for core and mantle, yields a factor of 103 between the two when assuming
comparable convective length scales in the core and the mantle. Due to this faster con-
vective stirring in the core, the CMB will provide an isothermal boundary for the mantle.
Bloxham and Gubbins (1987) estimated the temperature anomaly introduced by core con-
vection at the bottom of the mantle to be as small as 5 × 10−4 K as seen from the mantle.
But for the core, the large lateral heterogeneities at the bottom of the mantle due to hot
upwellings, cold downwellings or subducted (and cold) slabs (Schubert et al. 2001) will
affect the amount of heat conducted through the CMB. As a consequence the CMB trans-
late the thermal variations introduced by mantle structures into a heterogeneous pattern
defining the upper thermal boundary for the core. The appropriate thermal CMB bound-
ary condition for the core is then a heat flux condition, whereas the core provides an
isothermal lower boundary for the mantle (Bloxham and Gubbins 1987).

Several studies investigated the effect of non-homogeneous core mantle boundary heat
flux on core convection and dynamo action. Since most of the studies are related to the
Earth, the typical shape of the anomaly is the sectorial Y2

2 -pattern. Ym
l is the spherical

harmonic of degree l and order m. This pattern is determined by the analysis of seismic
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velocity anomalies. The PREM model, as a seismic reference model (e.g. in Dziewonski
and Anderson (1981)), suggests seismic anomalies at the base of the mantle shaped to first
order like a spherical harmonic mode of degree and order l = m = 2. Assuming a linear
relationship between seismic velocity and temperature yields the same pattern for a CMB
heat flux map. It has been shown, that such a pattern may affect dynamo secular variation
(Christensen and Olson 2003), the reversal rate (Glatzmaier et al. 1999, Olson et al. 2010),
the amplitude (Olson and Christensen 2002) or morphology of the core field (Takahashi
et al. 2008, Bloxham and Gubbins 1987, Bloxham 2000), Earth’s inner core boundary
(Sreenivasan and Gubbins 2011) and inner core anisotropy (Aubert et al. 2008a).

Also for the ancient Mars during the period of an active dynamo process, the mantle
will have the control over the core convection. Whilst the thermal structure of the mantle
of Earth was measured using seismic tomography and revealed the dominant Y2

2 pattern,
the pattern for Mars remained unconstrained. However, since Mars is significantly smaller
than the Earth, it is expected that the mantle convection planform develops in large scales.
Numerical modeling of the Martian mantle convections typically show a few or even only
one single plume (Keller and Tackley 2009, Harder and Christensen 1996, Roberts and
Zhong 2006, Yoshida and Kageyama 2006). Besides the thermal impact at the CMB of
such a mantle plume, also the crustal production rate will be enhanced, therefore a thicker
crust is expected (Keller and Tackley 2009). Also the geologically active Tharsis region
is thought to be heated from an equatorial giant mantle plume. Probably even the same
plume, if there was a true polar wander event. Here some contradictions appear. The
study of Keller and Tackley (2009) locate a single mantle plume underneath the southern
crust since it enhanced the crustal production rate, whereas strong volcanic activity of
the Tharsis region coincides with an equatorial plume (Breuer and Moore 2007). Other
studies see the position of this hot mantle upwelling located in the northern hemisphere,
where it creates basaltic crust in the northern hemisphere (Bandfield et al. 2000). It re-
mains an open question if and when a global reorientation of the planetary rotation axis
(true polar wander) had happened during the evolution of the planet.

Besides the large scale mantle convection, also impacts of sufficient size will deho-
mogenize the CMB heat flux. However, the effect of large impacts on planets is currently
under great debate. Roberts et al. (2008) argued that impacts can dehomogenize the CMB
heat flux since they create temperature anomalies in the underlying mantle. Furthermore,
upwelling or hot plumes will arise under the impact region and, as a consequence, also
lower the CMB heat flux underneath the impact site. Recently it was reported that glob-
ally distributed temperature anomalies due to the dissipation of shock waves triggered by
the impact, as reported by Arkani-Hamed and Olson (2010), can effect mantle and core.
Note, that large impacts are also thought to cease dynamos due to subcriticality (Roberts
et al. 2009) or shock heating (Arkani-Hamed and Olson 2010). If the iron content of the
impactor is large enough, impacts can also trigger a dynamo (Reese and Solomatov 2010).

We will simplify the effect of the impacts such that only the effect of a laterally varying
CMB heat flux is taken into account. Therefore both, single-plume mantle convection
and giant impacts lead to first order into a spherical harmonic degree-1 CMB heat flux
anomaly.
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1.6 CMB Heat Flux and Amplitude of Anomalies

Studies on planetary thermal evolution provide estimates of the amount of heat evacuated
from the core into the mantle (Sohl and Spohn 1997, Morschhauser et al. 2011) during
the evolution of the planet. The recent study by Morschhauser et al. (2011) addressed the
thermal evolution of Mars and found a CMB heat flux decreasing from 140 to 10 mW/m2

during the first 500 Myrs of planetary evolution. The adiabatic gradient is estimated by
Nimmo and Stevenson (2000) to be between 5 and 19 mW/m2 thus defining the amount of
heat conducted down the adiabate. Since the excess over the adiabatic heat flux is rather
large, thermal core convection and thus a thermally driven dynamo might be present dur-
ing that time. As an example, a CMB heat flux of 100 mW/m2 translates into a tempera-
ture gradient of 2.2× 10−3 K/m, when using a thermal conductivity k of 45 W/mK (Jones
2007). The adiabatic temperature gradient in the core is then less than one Millikelvin per
meter. A hot mantle plume or convective upwelling will decrease, at least locally, the heat
flux from the core, since the temperature difference between mantle and core shrinks. On
the other hand a cooler mantle downwelling can increase the core heat flux. As a rough
estimate, that total temperature anomaly of mantle convective features might be 80% of
the heat flux, as suggested by Elkins-Tanton et al. (2005). The authors investigate the dy-
namics and thermal properties of convective magma ocean overturns and the foot points
of thermal up- and downwellings. Assuming a mean qcmb = 50 mW/m2 the local heat flux
density then varies maximal between 10 and 90 mW/m2. When the adiabatic temperature
gradient is 10 mW/m2, the relative change on the superadiabatic heat flux seen by the core
can raise up to several 100%. Note, if an anomaly of the superadiabatic CMB heat flux
has an relative amplitude of larger than 100%, the anomaly exceeds the mean superadi-
abatic heat flux. This might introduce some shortcomings, what we will discuss further
in the conclusion section. Giant impacts can introduced temperature anomaly of several
100 to 1000 K at the core mantle boundary and will thus cause CMB heat flux anomalies
of even larger scale and amplitude. The main problem for our numerical model is that the
quantity we perturb with anomalies is the superadiabatic temperature or its gradient. This
temperature is defined as the excess over the adiabatic temperature, which characterizes
heat conduction along the adiabate. But, of course also the adiabate will be affected by
thermal disturbances. This is not covered by the frequently used Boussinesq models.

1.7 Status of the Martian Core

Another debated point is the thermal state of the ancient Martian core in the stage of dy-
namo action (Breuer and Moore 2007). Here we are following the arguments of Schubert
and Spohn (1990), where the authors used thermal evolution models to predict or exclude
from the sulphur content in the Martian core a possible solidification of an inner core, thus
driving compositional convection. Sulphur does have strong impact on the melting tem-
perature of the core iron/light element mixture (Dehant et al. 2003). The amount of sul-
phur critical for chemical convection depends strongly on the viscosity of the mantle and
the size of the inner core (Schubert and Spohn 1990). Williams and Nimmo (2004) found
in a similar study, that a sulphur content of at least 5 wt% allows for an entirely molton
core, whereas Schubert and Spohn (1990) and Dehant et al. (2003) provide 15 wt% of sul-
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phur. However studies on SNC meteorites, as reported by Longhi et al. (1992), suggest an
core sulphur content of around 14 wt% of sulphur, what is quite at the border of the max-
imum estimates for the critical sulphur content. It might then be reasonable, that the core
has no solid inner part and thus no compositional convection has contributed to the buoy-
ancy. Since this value is fairly close to the critical sulphur content, chemical convection
could start at some point in the future. When the core was driven by thermal convection
only, then it might have stopped during an early stage of planetary evolution (Schubert and
Spohn 1990) once the CMB heat flux dropped under the adiabatic gradient, what seems
to be consistent with the age of of unmagnetized impact basins (Lillis et al. 2008b). If on
the other hand, chemical convection would have set in and thus an inner core would have
grown, an additional and long-lived convective driving mechanism could have sustained
the Martian dynamo for a far longer period (Breuer and Moore 2007). Other evidence
for a liquid core even today might come from investigations of core nutations and other
normal modes of the planet Mars (Dehant et al. 2003); seismic measurements would also
help. Due to the lack of such data, the best way to infer the state of the Martian core are
still the SNC meteorites. In our study we assume an entirely liquid core hosting thermal
convection only.

1.8 Related Studies

There are several studies addressing the challenge of how to enforce and sustain a mag-
netic field of appropriate equatorial field asymmetry and field strength to match the mag-
netization measurements in the Martian crust.

Stanley et al. (2008) firstly introduced the model of a boundary modulated dynamo
in the interior of the ancient Mars. In that study a fairly strong degree-1 CMB heat flux
anomaly amplitude of three times the superadiabatic heat flow was used to successfully
turn a dipolar into a hemispherical dynamo. The anomaly was orientated at the axis of
rotation, such that the largest heat flux is at the southern pole. The flow structure showed
the emergence of strong azimuthal zonal flows and the confinement of the convective mo-
tions close to the southern pole. Stable hemispherical dynamos were found, which are
compatible with the requirements for the crustal magnetization. Mechanical and ther-
mal boundary conditions are taken as free slip and fixed flux at the inner and outer core
boundary.

Amit et al. (2011) improved the model using rigid walls and internal heating find-
ing that, much smaller amplitudes of thermal boundary forcing are sufficient to drive a
hemispherical dynamo. The authors directly relate the numerical results to the crustal
magnetization and its acquisition, while using different time averages to bridge the short
dynamo time scales to the much longer time scales of crustal genesis. Amit et al. (2011)
also investigated orientations other than axial for the boundary anomaly. They report
stronger hemispherical fields, when applying a north/south aligned anomaly than apply-
ing an east/west aligned anomaly. The influence of the passive inner core size, the relative
amplitude of the anomaly and other nondimensional parameters reflecting the rotation
rate (Ekman number) or the vigor of the convection (Rayleigh number) are studied as
well. The temporal stability of the hemispherical fields is only given for lower (and more
realistic) Ekman number cases. Cases with higher Ekman number showed polarity inver-
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sions.
Landeau and Aubert (2011) more closely examined the axisymmetric and equatori-

ally antisymmetric (EAA) convection responsible for hemispherical dynamo action. The
convective mode consists of an equatorial antisymmetric zonal flow and a dichotomy for
radial flows regarding southern and northern hemisphere. We will discuss the convective
properties, symmetries and the difference to the more classical columnar convection ex-
tensively in section 3. In their model, internal heating, a homogeneous CMB heat flux
and a negligible size of the inner core was used. Investigating pure hydrodynamical and
dynamo cases as well, lead to the conclusion that EAA convection can occur without
forcing through boundary anomalies of the heat flux. They showed the natural occurrence
of the hemispherical mode when increasing the vigor of the convection, thus leading to a
superposition of both, the columnar and EAA convection. Additionally the induction of
hemispherical dynamos was linked to the enforced convective mode and arises as a natural
consequence of the convection. Landeau and Aubert (2011) also predicted scaling laws
for the relative strength of EAA convection as function Rayleigh and Ekman number. In-
creasing the Rayleigh number leads to a transformation of the magnetic field from a dipole
dominated towards a hemispherical field, where in between them a regime with strongly
varying magnetic energy is reported (Landeau and Aubert 2011). We propose an expla-
nation for this behavior in section 3.4.1. This model does not need a heat flux anomaly to
enforce hemispherical dynamos, but they can also emerge on both hemispheres.

Aurnou and Aubert (2011) tested the convective dynamics and induction of purely
boundary driven flows in the absence of an underlying thermal convection. Here anoma-
lies of different spherical harmonic modes, such as Y10,Y20,Y22 were tested. For the Mars-
equivalent degree-1 anomaly, they report the induction of hemispherical fields, which in-
volve polarity reversals and estimated the time scales of the oscillations to be roughly
15 kyrs. The authors already suggest the incompatibility of the oscillating solutions and
the crustal magnetization of Mars (Aurnou and Aubert 2011).

Our study tries to create a more complete picture of the hemispherical dynamos and its
applicability for the ancient Mars. We use the same heating mode as Amit et al. (2011),
but provide much broader coverage of the relative amplitude of the heat flux anomaly,
its tilting angles and the important model parameter such as Ekman E, Rayleigh Ra and
magnetic Prandtl number Pm. We are suggesting that the emergence and typical sym-
metries of the hemispherical convection are due to (ageostrophic) thermal winds, where
the thermal wind balance seems to hold for all tested cases. Also the mechanical and
thermal boundary conditions are tested for affecting the emergence and time variability of
the hemispherical solution. We investigate the induction mechanism in much more detail,
finding a very strong contribution of shear induced magnetic field and relate the results to
a mean field dynamo model. We link the appearance of dynamo waves, which are quite
similar to the Parker waves (Parker 1955), with the strong shear in the zonal flow. Due
to the broad data coverage, we can quite conclusively rule out a hemispherical dynamo
for the ancient Mars. We can not support the approach of Amit et al. (2011) of different
time averages to relate the dynamo results to crustal magnetization. Either the equatorial
asymmetry of the surface field does not match the measurements (Langlais et al. 2004),
or the dynamo shows fast and regular polarity reversal thus not allowing a thick magne-
tized crust to serve as a magnetic carrier of the crustal magnetization anomaly. For further
details the reader is referred to the discussion and conclusion in chapter 6.
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Magnetohydrodynamics (MHD) describe the dynamic evolution of a liquid or a gas,
whose constituents are subject to the electromagnetic Lorentz force (plasma). These con-
stituents are charges or charge currents, where we investigate their continuum counter-
parts. However, it might be an adventurous task, to describe the motion of each individual
charged particle in a planetary core of a volume of roughly 2×1010 km3. Therefore MHD
describes the mean of the individual flows of each particle as vector field of ensemble flow
velocity and the sum of the individual electromagnetic effects as an ensemble magnetic
field. MHD can not provide information of how a single particle evolves, but the major
aim is a description of flow and magnetic field on time and length scales much larger than
the gyro radius and time as characteristic scales for the single charged particle evolution.
Shortly, MHD is the continuum description of kinetic plasma theory.

The theory of plasma physics in general with application to fusion and space plasmas
is described in the book of Piel (2010), whereas the application to astrophysical plasmas
including the single particle and fluid picture of plasma can be found in Kulsrud (2005). A
detailed introduction the theory of Magnetohydrodynamics (MHD) is given in Goedbloed
and Poedts (2004). Whereas Rüdiger and Hollerbach (2004) concentrated on dynamo
theory for planets and stars as a special application of the MHD, the specific application
to planetary dynamos is reviewed in, e.g. Roberts (2007), Jones (2007) or Jones (2011).

2.1 Hydrodynamics
The melt in the core of a terrestrial planet can be described as a convecting, rotating and
conducting fluid, what allows for self-sustained magnetic induction. We first discuss the
hydrodynamical evolution equations and the applied simplifications. The confinement of
the core does not allow for mass to escape from the core. Therefore the mass density ρ is
conserved, what is described by the continuity equation:

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.1)

∂ρ

∂t
+ ρ∇ · u + u · ∇ρ = 0 (2.2)

dρ
dt

+ ρ∇ · u = 0 . (2.3)

Here we introduced the convective derivative: d/dt = (∂/∂t + u · ∇). The second term
in equation 2.2 describes the compressibility, where the third is the advection of mass
density. The density then changes locally if there are sources or sinks of mass density if
the fluid is advected to concentrate or dispersed.
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The conservation of momentum ρu is given in general by the Navier-Stokes equation

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇P − ρg + f (2.4)

= −∇p + η∇2u +
η

3
∇(∇ · u) − ρg + f , (2.5)

where u is the vector field of the fluid velocity, ρ the density, ∇P the gradient of the pres-
sure tensor (or sometimes called momentum flux density tensor), µ the dynamic viscosity,
−ρg the gravitational force and f are other forces, which will be introduced later. The
gradient of pressure tensor P be written as ∇P = ∇p + η∇2u +

η

3∇(∇ · u) when assuming
a Newtonian fluid, thus a linear relation between stress and strain rate. Here we introduce
the scalar pressure p as the diagonal elements of P. Details on this point can be found
in the fluid mechanics book of Landau and Lifshitz (1959). In the equation 2.5 the term
ρu · ∇u describes the advection of momentum, η∇2u the diffusion or viscous drag and
η/3∇(∇ · u) is the compressibility. This equation describes the evolution of the velocity
field of a viscous fluid being subject to different forces.

One of the key properties of planetary dynamos is the presence of convection. For
Mars it might be a valid approximation to restrict the discussion to thermal convection.
Therefore an equation for the conservation of (thermal) energy is needed. As we will see,
the energy budget of the core dynamo powered by thermal convection is exclusively given
by the thermal energy. There are many books and review articles regarding the conserva-
tion of energy in MHD, e.g. Desjardins and Dormy (2007), Jones (2007), Braginsky and
Roberts (1995). The conservation of internal energy E is described by the second law of
thermodynamics

dE = δQ + δW = TdS − pdV , (2.6)

hence the internal energy can be affected by change of heat δQ or work δW = −pdV .
The change of heat δQ can be reformulated in terms of entropy S , thus δQ = TdS .
The entropy for thermal convection is a function of temperature T and pressure p, hence
expanding yields

δQ = TdS (T, p) = T
(
∂S
∂T

)
p

dT + T
(
∂S
∂p

)
T

dp . (2.7)

The first term (T (∂S/∂T )pdT ) on the right hand side can be rewritten introducing the heat
capacity cp at constant pressure

cp = T
(
∂S
∂T

)
p
. (2.8)

The second term can be rewritten using one of the thermodynamic Maxwell relations and
make use of the relation between the volume V and the density ρ, such that dV = −dρ/ρ2

when using a unit mass m = 1:(
∂S
∂p

)
T

=

(
∂V
∂T

)
p

= −
1
ρ2

(
∂ρ

∂T

)
p
. (2.9)
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2.1 Hydrodynamics

We find the definition of the thermal expansion coefficient α

α = −
1
ρ

(
∂ρ

∂T

)
p
. (2.10)

Hence we find for the entropy

TdS (T, p) = cpdT −
αT
ρ

dp . (2.11)

Applying the time derivative and the multiplying with the density to reach specific quan-
tities yields

ρT
dS
dt

= ρcp
dT
dt
− αT

dp
dt

. (2.12)

The heat budget δQ/dt = TdS/dt is affected by either heat flux −∇q or heat sources
H. The heat flux is proportional to temperature differences, where the proportionality
constant is the thermal conductivity, k as stated by Fourier’s law of heat conduction q =

−k∇T . For simplicity we assume the thermal conductivity being constant. Inserting this
yields

ρT
dS
dt

= ρcp
dT
dt
− Tα

dp
dt

= k∇2T + H , (2.13)

where H contains all heat sources. These might be H = Hi + Hvis + Hohm + Hcom, where

• Hi are internal heat sources due to radioactivity or simple secular cooling. If the
core is cooling through thermal convection, this is a homogeneously distributed
and positive heat source (Jones 2007).

• Hvis = η∇ · (u · ∇u) is the heating due to viscous friction.

• Hohm = ηµ0(∇ × B)2 is the ohmic heating. µ is the kinematic viscosity and µ0 the
vacuum permeability. This term is thought to be of minor importance in the here
studies Boussinesq systems (Anufriev et al. 2005).

• Hcom = 2
3η(∇ · u)2 is the square of stress tensor and creates heat due to compression

and expansion.

If one considers also chemical convection to occur in the core, the heat budget becomes
more complicated. Discussion of the full heat equation can be found in Jones (2007) or
Nimmo (2007).

To close the system of equations an equation of state is needed. The dependence of
the density on its natural variables such as pressure and temperature gives the equation of
state. This equation will have the general form

ρ = ρ(T, p) (2.14)
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and will be examined while discussing the onset of convection and the Boussinesq ap-
proximation. We collect the conservation equations for mass density ρ, momentum u and
entropy S :

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.15)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + η∇2u +
η

3
∇(∇ · u) − ρg + f (2.16)

ρT
dS
dt

= ρcp
dT
dt
−
αT
ρ

dp
dt

= k∇2T −
2
3
η(∇ · u)2 + H (2.17)

ρ = ρ(T, p) . (2.18)

2.2 Boussinesq Approximation and the Adiabatic Back-
ground State

The Boussinesq approximation is one of the major simplifications to the above intro-
duced system of equations. The systematic investigation of this approximation can be
found in Spiegel and Veronis (1960). To obtain and justify this approximation we first
need to distinguish between the stationary adiabatic background state and the convective
perturbations. The background state is given by the large fraction of the thermal energy
transported via heat conduction, where no convective motions are involved. It is useful to
further separate the background state into a mean background (index m) and the variation
due to the adiabatic heat conduction (index ad). The perturbations (primed quantities) re-
fer to variations on top of the adiabatic state due to the convective instability. We separate
density ρ, temperature T and pressure p into the mean background, another part related
to the heat conduction and a part to the additional thermal convection. Thus we write

ρ(r, t) = ρm
0 + ρad

0 (r) + ρ′(r, t) (2.19)

T (r, t) = T m
0 + T ad

0 (r) + T ′(r, t) (2.20)

p(r, t) = pm
0 + pad

0 (r) + p′(r, t) . (2.21)

The background state as the value averaged over the core shell is independent of space
and time. The adiabatic variation changes with radius but is time independent, whereas
the convective contributions can vary with both, space and time. We firstly concentrate
on the two contributions of the background state. Solving the equations in the absence of
motion (u = 0) and thus all convective perturbations are zero, yields the definition of the
background state.

−∇pad
0 − ρ

m
0 g − ρad

0 g = 0 (2.22)

k∇2T ad = Had
0 (2.23)

This describes a state of heat conduction, where the pressure is due to hydrostatic layering,
the density is constant and the temperature profile is given by heat conduction feed from
either a heat source Had

0 within the core shell or from the boundaries. As a next step,
we want to estimate the size of the variations of the mean background state due to the
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2.2 Boussinesq Approximation and the Adiabatic Background State

adiabatic heat transport, since the major claim of the Boussinesq approximation is that
all quantities vary on much larger length scales than the thickness of the core. This is
sometimes called the ’thin-shell-approximation’ (Spiegel and Veronis 1960). To evaluate
this, we calculate the scale heights D f for density, temperature and pressure, Dρ, DT , Dp,
respectively. We name the core thickness as d.

D f = f m
0

d
f ad
0

(2.24)

The scale height defines the thickness of an hypothetical layer, in which the quantity f
varies from zero to its maximal value. Table 2.1 shows the scale heights of temperature
T , pressure p and density ρ, where we take the values at the center of the Martian core
(ri) and the core mantle boundary (rcmb) for the calculating the resulting scale heights. We
approximate f m

0 and f ad
0 such that,

f m
0 =

f (ri) + f (rcmb)
2

(2.25)

f ad
0 = f (ri) − f (rcmb) . (2.26)

Additionally, we calculate D∗ = D/d as the normalization to the thickness of the core
(1700 km). In general, table 2.1 shows that all scale heights exceed the thickness of the
core, therefore the thin-shell-approximation is (at least marginally) satisfied.

However, the scale height for the density and temperature are much larger than for the
pressure. This yields the conclusion, that the density variations are due to variations in the
temperature and the influence of the pressure fluctuations is minor, and therefore effects
of compressibility are negligible. Otherwise the density should change on length scales
of the pressure. However, it can be seen that ρm

0 >> ρad
0 , T m

0 >> T ad
0 and pm

0 >> pad
0 , thus

the adiabatic variations are small compared the values of the mean background state.
Now we add perturbations of the adiabatic state according to the convective motions.

Table 2.1 also lists the size of the convective perturbations, where it can be seen that they
are very small compared to the adiabatic variation. King et al. (2010) estimated the rel-
ative density change introduced by core convection to be as small as ρ′/ρad

0 = 10−7 and
Jones (2007) stated for the temperature perturbations T ′/T ad

0 = 10−7. A density change
of ρ′ = 10−4 kg/m3 is seismically not detectable (King et al. 2010), the same is true for
temperature anomaly like 10−4 K. We define a small quantity ε, such that ε := f ad

0 / f m
0 .

Note, that the convective perturbations are much smaller ( f ′/ f m
0 << ε) for core convec-

tion. In general the relative size of f ′/ f ad
0 can only by evaluated experimentally (Spiegel

and Veronis 1960), where we show in table 2.1 that f ad
0 indeed exceeds f ′. We state that

the size of convective perturbations are maximal equal to the adiabatic variations, thus

O( f ′/ f m
0 ) ≤ O( f ad

0 / f m
0 ) . (2.27)

The density and the other material properties such as thermal diffusivity are assumed
to be constant in the Boussinesq approximation, where only the temperature dependence
of the density is taken into account. Using the separation ρ = ρm

0 + ρad
0 + ρ′ yields a
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f f (i) f (o) f m
0 f ad

0 f ′ D D∗

ρ 7200 kg/m3 6800 kg/m3 400 kg/m3 7000 kg/m3 10−4 kg/m3 2.98 · 107 m 17.5

T 2000 K 1800 K 200 K 1900 K 10−4 K 1.65 · 107 m 9.5

p 40 GPa 25 GPa 15 GPa 32.5 GPa ? 3.66 · 106 m 2.17

Table 2.1: Scale heights for density ρ, temperature T and pressure p. All
values are taken from Sohl and Spohn (1997). Instead of calculating the scale
height for the pressure, one could also use the hydrostatic relation resulting
from the Navier-Stokes-Equation in the absence of motion. The values for the
primed quantities are suggestions from Jones (2007) and King et al. (2010).

continuity equation 2.15 like:

d(ρm
0 + ρad

0 + ρ′)
dt

+ ρ∇ · u = 0 (2.28)

∇ · u =
1
ρ

d(ρm
0 + ρad

0 + ρ′)
dt

. (2.29)

Now we make use of the time independence of the mean and adiabatic background state
and find

∇ · u =
1
ρ

dρ′

dt
= O(ε) ≈ 0 , (2.30)

thus to order ε the flow divergence vanishes and thus the fluid can be treated as incom-
pressible.

The equation of state for the density can be expanded in a Taylor series in the small
perturbations ε around the mean background state (Spiegel and Veronis 1960), where we
stop after the first term.

ρ(T, p) = ρm
0

1 +
1
ρm

0

(
∂ρ

∂T

)
p

(T − T m
0 ) +

1
ρm

0

(
∂ρ

∂p

)
T

(p − pm
0 )

 (2.31)

ρ(T, p) = ρm
0
[
1 − α(T − T m

0 ) + k(p − pm
0 )

]
, (2.32)

where we can neglect the influence of the compressibility k because the compressible
effects do not play a major role here as mentioned above and hence the fluid is incom-
pressible. This is here a quantitative argument, what might not be entirely true, we refer
to the more sophisticated work in the Boussinesq approximation by Spiegel and Veronis
(1960). Because of the time independence of the adiabatic variation of the mean back-
ground, the last equation can be further modified for the adiabatic background ρad

0 , T ad
0

and the convective perturbations ρ′, T ′ separately such that

ρad
0

ρm
0

= −αT ad
0 = O(ε) (2.33)

ρ′

ρm
0

= −αT ′ = O(ε) (2.34)

ρ′ = −ρm
0 αT ′ , (2.35)
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where both sides of the equations 2.33 and 2.34 are of the order ε, thus small. The con-
straint αT ′ = αT ad

0 = ε << 1 is usually used as the core of the Boussinesq-approximation
(Jones 2007). The thermal expansion coefficient is as small as α = 1.5 × 10−5 K−1 (Jones
2007) and temperature fluctuations due to the convection are on the order of 10−4 K, where
even the total temperature contrast associated with the adiabatic variation through the core
does not exceed 200 K (Sohl and Spohn 1997). Then the product of the two is indeed
rather small.

Secondly we want to show the implications for the momentum equation. Inserting
the separation of density and pressure into the large mean background part, the small
adiabatic variations and the small convective perturbations gives:

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇(pm
0 + pad

0 + p′) − (ρm
0 + ρad

0 + ρ′)g + η∇2u (2.36)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p′ − ρ′g + η∇2u . (2.37)

The hydrostatic pressure of the adiabatic background (∇pad
0 ) dropped out with the back-

ground gravity of mean and adiabatic state (ρm
0 g + ρad

0 g) as this is the definition of the
background state. The remaining density perturbation ρ′ = −ρm

0 αT ′ is a small (ε) quan-
tity. But it is kept since it is multiplied with the gravitational acceleration g. The typical
acceleration ∂u/∂t gives the time scale of motions in the fluid and is much smaller than
g. Or in other words, the gravitation needs to be multiplied with a small quantity, what
is represented with ε here. Otherwise large forces would occur introducing much shorter
timescales on the order of the gravitational acceleration. Using a viscous diffusion time
scale (t̂ = ρd2/η), the scale of the acceleration a is then â = ρ2d3/η2. The ratio be-
tween the scale of flow acceleration and gravity is given by G = gL3/ν2 (Lyubimov et al.
1998). There the authors pointed out, that the Boussinesq-limit is given, when G → ∞
and ε → 0, but the product remains finite (Lyubimov et al. 1998). As a consequence all
density variations besides those multiplied with the gravitation can be neglected. Note,
this is a constraint for the flow acceleration, not the amplitude of the gravity (Spiegel and
Veronis 1960).

As the last step we simplify the energy equation.

ρcp
d(T m

0 + T ad
0 + T ′)

dt
− (T m

0 + T ad
0 + T ′)

α

ρ

d(pm
0 + pad

0 + p′)
dt

= k∇2(T m
0 + T ad

0 + T ′) + Had
0 + H′ (2.38)

The term proportional to the pressure changes dp contains αT , what is to order ε equal
zero (Jones 2007). Additionally the dp/dt can be reformulated such that

dp
dt

=
dp
dρ

dρ
dt
∝ p∇ · u , (2.39)

thus this term is also proportional to the divergence of the flow, what is zero for an incom-
pressible fluid.

If the heat source H is large enough, it contributes for the convection too, therefore
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H = Had
0 + H′. Then we rewrite the equation such that,

ρcp
dT ′

dt
= k∇2T ad

0 + k∇2T ′ + Had
0 + H′ (2.40)

ρcp
dT ′

dt
= k∇2T ′ + H′ . (2.41)

Here the diffusive term of the adiabatic background temperature is exactly balanced with
the heat source contribution for the adiabatic background state, as suggested when we
derived the equations for the background state. As the major advantage of the Boussinesq
approximation, it is possible to decouple the equations for the conductive background
state and the convective perturbations and we found the incompressibility of the flow.
Therefore we can treat the velocity field same as the magnetic field, for which ∇ · B = 0
always holds. Also several terms of the heat budget, which are proportional to ∇ · u, can
be neglected.

Note, that the Boussinesq-approximation is only marginally satisfied as we had seen
when calculating the scale heights for the density, temperature and especially pressure
(see table 2.1). Anufriev et al. (2005) estimated the errors introduced by the Boussinesq-
simplification. The authors show, that the heating terms due to viscous dissipation and
ohmic dissipation entering the energy budget are not negligible. However, we restrict our
model to the simpler and intensively studied Boussinesq-system.

2.3 Adiabatic Temperature Gradient
We proposed that a sufficiently high CMB heat flux is needed to allow for thermal con-
vection. Here we want to calculate this critical heat flux. Heat can be transported either
exclusively via conduction or due to supportive convection. As we had seen, the tempera-
ture declines from the center of the core towards the CMB. The discussion of the equation
of state yielded an increase of density with decreasing temperature. Therefore the fluid is
heaviest (largest density), where the temperature is smallest thus close to the CMB and
rather light (small density), where the temperature is large deeper inside. Thus even in
the heat conducting background state heavier fluid is layered on top of lighter, what is a
potentially instable situation. The mechanical stability of such a layering is given by the
entropy, or more specific by the entropy gradient. Therefore the radial gradient of the en-
tropy controls whether convection sets in. If the temperature contrast is small, the entropy
gradient is negative and the fluid is stably stratified. Once a critical temperature contrast
is exceeded, the entropy gradient changes the sign, thus the fluid is unstable and convec-
tive motions set in. The maximum temperature contrast along which heat is exclusively
transported via heat conduction and dS/dr = 0, is the so called adiabatic gradient. From
the vast amount of literature regarding the onset of thermal convection, we refer here only
to Chandrasekhar (1961), Landau and Lifshitz (1959) or Faber (1995) for further reading
about the theoretical background. As an application besides the core convection, Schubert
et al. (2001) embeds the onset of thermal instabilities in the context of mantle motions.

As an illustration, we track a small fluid volume V of entropy S what is lifted up from
a hotter layer and is placed into a cooler (less dense) layer. It then start to buoyantly rise
up, if its density due to thermal expansion is smaller then the density of the fluid volume
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2.3 Adiabatic Temperature Gradient

it replaced. In other words, if the destabilizing buoyancy exceeds the ordering force of
the hydrostatic pressure gradient, convection sets in (Chandrasekhar 1961). The adiabatic
entropy gradient (dS/dr = 0) is a function of temperature T and the pressure p, and serves
as condition for the onset of convection:

dS
dr

=

(
∂S
∂T

)
p

dT
dr

+

(
∂S
∂p

)
T

dp
dr

= 0 . (2.42)

The pressure gradient term dp/dr is the hydrostatic pressure dp/dr = −gρ, as found from
equation 2.5 in the absence of motion. Then we find

dT
dr

= −gρ
(
∂S
∂p

)
T

(
∂S
∂T

)−1

p
. (2.43)

Using one of Maxwell relations of thermodynamics, such as

−

(
∂S
∂p

)
T

=

(
∂V
∂T

)
p

(2.44)

gives

dT
dr

= gρ
(
∂V
∂T

)
p

(
∂S
∂T

)−1

p
. (2.45)

Using the definitions of thermal expansivity α and specific heat for constant pressure cp:

α =
1
V

(
∂V
∂T

)
p

(2.46)

cp = T
(
∂S
∂T

)
p

(2.47)

yields the definition of the critical temperature gradient

dT
dz

=
gραT

cp
. (2.48)

The right hand side defines the adiabatic entropy gradient translated in terms of temper-
ature. As a consequence, once the temperature contrast exceeds this so called adiabatic
temperature gradient, convection sets in. These motions transport hot material from the
bottom or interior of the core towards the core mantle boundary. Calculating the adia-
batic temperature gradient close to the CMB using ρ = 6800 kg/m3, α = 3 · 10−5 1/m,
T = 2000 K and Cp = cp/ρ = 1000 J/kgK yields ∂T/∂z = 15 · 10−5 K/m (numbers from
Morschhauser et al. (2011), Sohl and Spohn (1997)). Assuming a core shell thickness of
1550 km leads to a adiabatic temperature contrast of roughly 230 K. This is consistent
with the findings for the total temperature contrast (see table 2.1). From such a simple
calculation, it can not be decided whether convection is present in the core or not. Because
on the one hand the material properties and the thermodynamics quantities characterizing
the core state are only poorly constrained (Jones 2007). On the other hand the convec-
tive perturbations are minor contributions of the temperature. As another source of bias,
the adiabatic temperature gradient is function of core radius (especially because of the
increasing gravity), thus it increases with radius. It might be possible, that the core is
superadiabatic only for a given fraction of its radius (Jones 2007).
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2.4 Coriolis Force
As a reminder, the Boussinesq equations describing the conservation of momentum and
thermal energy for the convective perturbations read

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇Π + η∇2u + gραT + f (2.49)

ρcp

(
∂T
∂t

+ u · ∇T
)

= −k∇2T + Hi , (2.50)

where we dropped the primes of the fluctuations and rename the nonhydrostatic pressure
as Π for consistency with the literature. As we mentioned in the section 1.2 the rotation of
the core and thus the action of the Coriolis force is an essential ingredient for prosperous
dynamo action in terrestrial planets. This force appears due to the transformation of the
Navier-Stokes-equation into a reference frame, that co-rotates with the planetary rotation
Ω. Since this is an accelerated frame of reference, additional forces emerge. Denoting the
rotating frame with a prime, the transformation equation is given by

u′ =
∂r′

∂t′
=
∂r
∂t

+Ω × r = u +Ω × r . (2.51)

Applying this rule twice yields the additional terms:

∂u′

∂t′
=
∂2r′

∂t′2
=
∂2r
∂t2 +Ω ×

∂r
∂t

+ Ω̇ × r +Ω ×
∂r
∂t

+Ω ×Ω × r . (2.52)

Since the rotation rate and axis is assumed to be constant, the Poincare force term pro-
portional to Ω̇ drops out. This force describes, e.g. the effect of precession and can serve
also as a source for hydrodynamical instabilities. A recent review can be found in Tilgner
(2007). The other terms can be rewritten such that

∂u′

∂t′
=
∂u
∂t

+ 2Ω × u +Ω ×Ω × r . (2.53)

The first term entering the Navier-Stokes-equation is the Coriolis force, the other the cen-
trifugal force, what is either added to the pressure term or to the gravitational acceleration.
This treatment is allowed since the centrifugal force can be as well expressed as a poten-
tial. The Navier-Stokes-equation for an incompressible, rotating and convecting fluid is
then given by

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇Π + 2Ω × u + gραT + η∇2u . (2.54)

2.5 Induction Equation
Since the proposal of Larmor (1919) that the sun or a planet can create an internal mag-
netic field due to a dynamo process, this idea was applied to magnetic fields and their
generation inside stars, planets and even galaxies (Rüdiger and Hollerbach 2004). The
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dynamo theory mainly concerns the induction and evolution of magnetic fields. Electro-
magnetic fields follow the description according to the Maxwell equations:

div B = 0 (2.55)

div E =
ρc

ε0
Gauss’ law (2.56)

∇ × B = µ0 j +

(
µ0ε0

∂E
∂t

)
Faraday’s law (2.57)

∇ × E = −
∂B
∂t

Ampere’s law (2.58)

with the electrical field E, the magnetic field B, the charge and current density ρc and
j, the electric vacuum permittivity ε0, the magnetic permeability of free space µ0 and
the conductivity σ. We denoted Maxwell’s correction of Faraday’s law with parenthesis,
because it is negligible here. The prefactor µ0ε0 = 1/c2, with c is the speed of light. The
time derivative of the electric field can be estimated with a typical velocity amplitude.
Then size of that term is proportional to the ratio of a typical velocity and the speed of
light. Since the velocities in the core are small (few mm/s) compared to speed of light
the displacement current term (ε0Ė = Ḋ) in Faraday’s law can be neglected. Electric
and magnetic fields are defined due to the forces they execute on electric charges ρc or
currents j. The relation between such a current density and electromagnetic fields is given
by Ohm’s law. For a conductor moving with the velocity u, Ohm’s law is given as

j = σ [E + (u × B)] . (2.59)

Using Faraday’s law (the Maxwell equation 2.57), gives

∇ × B = µ0σ [E + (u × B)] . (2.60)

Applying the curl operator (∇×) on this equation and using the relation ∇ × ∇ × B =

(∇ · ∇ − ∇2)B gives

−∇2B = µ0σ [∇ × E + ∇ × (u × B)] . (2.61)

Using Ampere’s law (equation 2.58) yields the induction equation:

∂B
∂t

= ∇ × (u × B) + λ∇2B , (2.62)

where λ = (σµ0)−1 is the magnetic diffusivity. These equation is linked to the hydrody-
namics over the velocity field, what controls the dynamo term.

As mentioned in the introduction (section 1.2), an estimate of the ratio between the
first term (induction) and the second (ohmic decay) is defined by the magnetic Reynolds
number Rm:

Rm =
∇ × (u × B)

λ∆B
≈

UB/L
λB/L2 =

UL
λ

(2.63)

A magnetic Reynolds number bigger than unity would mean, that the induction of mag-
netic field is larger than the diffusion of magnetic field, therefore offering a criterion for
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dynamo action. In planetary, numerical or experimental dynamos the critical magnetic
Reynolds number needs to be higher reflecting the additionally required complexity of
the flow. Values of Rm ≈ 50 seem to be sufficient to drive a dynamo. Note, that the in-
duction term has two contributions, the advection and the induction of the magnetic field.
Only the latter one can create (or destroy) mean magnetic field, where the first one sim-
ply transports the field. If a velocity field is given or can be parameterized, one can only
solve the induction equation and study the magnetic field. This might introduce some
shortcomings. The induction equation is a linear equation of the magnetic field. Thus a
dynamo with sufficiently high Rm would exponentially grow from a small seed field. But
the backreaction on the flow in terms of the Lorentz force, leads to a nonlinear equation
and to a saturation of the magnetic field growth.

If Rm is not sufficiently high, the magnetic field decays on the magnetic diffusion
time scale τλ = D2/λ. Say, for a magnetic field whose length scale is comparable to the
thickness of the core and the magnetic diffusivity λ = 2 m2/s (Jones 2007), the magnetic
diffusion time is roughly 50 kyrs. This estimate gives a hint for the presence of a suc-
cessful dynamo process, simply because unsuccessful dynamos diminish that fast. This
might not be true for other objects, such as the sun or galaxies hosting a dynamo since
the magnetic diffusivities are quite different. For further reading on this issue, we refer to
Rüdiger and Hollerbach (2004).

The backreaction of the induced magnetic field on the conducting fluid is given by
the Lorentz force j × B. The Maxwell equation (2.57) yields µ0 j = ∇ × B. Finally the
conservation of momentum can be expressed as

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇Π + 2Ω × u + gραT + η∇2u +
1
µ0

(∇ × B) × B . (2.64)

2.6 Nondimensionalization, Scaling
It is useful to translate the system of equations into a nondimensional form, because two
systems are ’dynamical equivalent’ if they are consistent within the nondimensional num-
bers we introduce here (Faber 1995). That means, even if two systems differ in several
length, time etc. scales, they can be equivalent as long as the nondimensional numbers
agree. Here we will show, how to translate the MHD equation from their dimensional into
the nondimensional form and introduce the important control parameters characterizing
our core model.

Here we use the nondimensionalization as given by Christensen and Wicht (2007),
others are possible. The units or scales are separated from the quantities, using a notation
like x = x′ x̂, where x is the scaled quantity, x′ the nondimensional quantity and x̂ the
scale/unit of the quantity. The choice of length and time scale is crucial. The thickness of
the spherical shell D̂ = r̂cmb − r̂icb is used as length scale, viscous diffusion time t̂ = D̂2/ν̂,

with ν̂ = η̂/ρ̂ the kinematic viscosity, as time scale, and B̂ =

√
ρ̂λ̂µ̂0Ω̂ as magnetic scale.

The source term H = H′Ĥ has the dimension of temperature per time. Then the velocity
scales as u = u′ν̂/D̂. The differentiation operator ∇ = ∇′/D̂.

The temperature contrast between the inner core and the core mantle boundary is
usually used as temperature scale. Since we apply fixed flux temperature boundary con-
ditions, the temperature at the borders is not fixed. We make use of Fourier’s law of heat
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conduction (q = −k∇T ). The mean superadiabatic heat flux serves then as a scale for the
superadiabatic temperature T̂ = q̂0D̂/k̂.

As a first application the heat transfer equation is scaled. Using the above introduced
temperature, time and velocity scales gives.

ρ̂ĉp

(
∂T ′

∂t′
q̂0D̂

k̂

ν̂

D̂2
+ u′∇′T ′

ν̂

D̂
1
D̂

q̂0D̂

k̂

)
= ∇′∇′T ′

1
D̂

1
D̂

k̂
q̂0D̂

k̂
+ H′

q̂0D̂

k̂

ν̂

D̂2
, (2.65)

where Ĥ is scale of the heat source density. When introducing the heat diffusivity κ̂ =

k̂/(ρ̂ĉp) instead of the heat conductivity k̂, this leads

∂T ′

∂t′
+ u′∇′T ′ = Pr∇′2T ′ + H∗′ , (2.66)

with the hydrodynamic Prandtl number Pr = κ̂/ν̂ measuring the ratio between the diffu-
sion of heat and momentum. For the heat source H∗′ = H′/(ρ̂ĉp).

As second step the induction equation is scaled:

∂B′

∂t′

√
ρ̂λ̂µ̂0Ω̂

ν̂

D̂2
= ∇′ × (u′ × B′)

1
D̂
ν̂

D̂

√
ρ̂λ̂µ̂0Ω̂ + ∇′2B′

1
D̂2

√
ρ̂λ̂µ̂0Ω̂λ̂ . (2.67)

Which can be simplified to

∂B′

∂t′
= ∇′ × (u′ × B′) +

1
Pm
∇
′2B′ , (2.68)

with the magnetic Prandtl number Pm = ν/λ measuring the ratio between the diffusion of
magnetic field and momentum.

As a last step the Navier-Stokes-equation is scaled. Using g = e′rĝ, Ω = e′zΩ̂, ρ = ρ̂
and α = α̂ allows to separate all scales from the quantities. The Lorentz force j × B can
be formulated as µ−1

0 (∇ × B) × B. The scale for the non-hydrostatic pressure is ∇Π =

∇′Π′D̂/ρ̂Ω̂ν̂, thus same as for the Coriolis force. Inserting delivers:

ρ̂

(
∂u′

∂t′
ν̂

D̂
ν̂

D̂2
+ u′∇′u′

ν̂

D̂
1
D̂
ν̂

D̂

)
= −∇′Π′

D̂

ρ̂Ω̂ν̂

+∇′2u′ν
1

D̂2

ν̂

D̂
+ 2e′z × u′Ω̂

ν̂

D̂
− e′rT

′α̂
q̂0D̂
κ̂
ρ̂ĝ + ∇′ × B′ × B′

1
µ̂0

1
D̂
ρ̂µ̂0λ̂Ω̂ (2.69)

Multiplying the whole equation with D̂/ρ̂Ω̂ν̂ leads to:

∂u′

∂t′
ν̂

Ω̂D̂2
+ u′∇′u′

ν̂

Ω̂D̂2
= −∇′Π′ + ∇′2u′ν

ν̂

Ω̂D̂2
+ 2Ω′ × u′

− e′r
q̂0α̂ĝD̂2

ν̂κ̂Ω̂
+ ∇′ × B′ × B′

λ̂

ν̂
(2.70)

The first remaining factor ν̂/Ω̂D̂2 is the ratio between the time scale of viscous diffusion
and the rotation, which has been named Ekman number E = ν̂/Ω̂D̂2. It measures the
ratio between viscous drag (momentum diffusion) and the Coriolis force. Its planetary
value is as small as E = 10−15. Therefore viscous diffusion does not play a major role in
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the dynamics of planetary cores. Core dynamics are dominated by the Coriolis force. We
discussed that issue in the section 1.2. The second factor is the modified Rayleigh number
Ra∗ = α̂q̂0ĝD̂2/ν̂κ̂Ω̂. It relates to the more general flux based Rayleigh number Ra as

Ra∗ =
RaE
Pr

=
α̂ĝq̂0D̂4

ν̂κ̂2

ν̂

Ω̂D̂2

κ̂

ν̂
. (2.71)

The Rayleigh number measures the vigor of the convection. The higher Ra the faster
and more turbulent is the convection. Even though we describe here fluctuations on top of
adiabatic state, the Rayleigh number still needs to be sufficiently high for convection to set
in. The critical Rayleigh number is, depending on Ekman number, much larger than unity
since the buoyancy also has to overwhelm the viscosity or/and the Coriolis force. The
last factor in front of the Lorentz force is again the inverse magnetic Prandtl number Pm.
The table 2.2 gives an overview over all the nondimensional input and output parameters.
Each of the nondimensional numbers defines the ratio of two time scales. Due to the
limitations in computational power, most of the parameters can not be modeled with their
realistic values. A realistic value of the Ekman number is roughly 10−15 for a terrestrial
planet. This means the time scale introduced by the rotation (≈ 1 day) is 15 orders of
magnitude faster than the viscous time scale assuming a viscosity as given in table 1.1.

The magnetic Prandtl number Pm gives the ratio between the viscous and magnetic
diffusivity. As shown in table 2.2, the realistic value is much smaller then unity. This
means in our numerical dynamo model the magnetic diffusion is substantially weakened,
otherwise no self-sustained magnetic field could be maintained against magnetic diffusion
(ohmic decay). The time scale for magnetic diffusion is of the order fifty thousand years
and thus much faster then the viscous time scale (≈ 1011 yrs). The magnetic Reynolds
number Rm, as the ratio between inertia and magnetic diffusion and the crucial condition
for dynamo action provides realistic values (Christensen and Wicht 2007). As strong we
overestimate the Pm, as strong we underestimate the hydrodynamical Reynolds number
Re leading to a realistic Rm = Re Pm = UD/λ, where U is a typical flow velocity and D
a typical length scale. The smaller Pm is chosen, the more vigorously the flow needs to
be driven for providing a sufficiently high flow amplitude.
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Table 2.2: Nondimensional numbers and control parameters

Symbol forces time scales model range realistic value

Input

Ekman E viscous diff.
coriolis τrot/τvis 10−3 . . . 10−5 3 × 10−15

Rayleigh Ra buoyancy
viscous diff. τ2

visτ
T
di f f /τgra 105 . . . 108 1028

Prandtl Pr viscous diff.
thermal diff. τT

di f f /τvis 1 1

magn Prandtl Pm viscous diff.
magnetic diff. τm

di f f /τvis 2 . . . 10 10−6

Output

Rossby Ro inertia
coriolis τrot/τine 10−2 10−5 . . . 10−6

Elsasser Λ Lorentz
coriolis τrot/τ

2
al f 0.5 . . . 12 ≈ 1

Reynolds Re inertia
viscous diff. τvis/τine 50 . . . 300 108 . . . 109

magn. Reynolds Rm inertia
magnetic diff. τm

di f f /τine 50 . . . 1500 100 . . . 1000

Table 2.3: The time scales are given by: rotation τrot = 1/Ω, viscous diffusion
τvis = D2/ν, magnetic diffusion τm

diff = D2/λ, thermal diffusion τT
diff = D2/κ, con-

vective turnover τine = D/U, alfvenic τalf = B−1√ρµ0λ and the gravitational time
scale τgra = D2/αgq. Compare also Christensen and Tilgner (2002).

2.7 Numerical Method
For simplicity we drop the again the primes for the nondimensional quantities, and the
rename H∗ = H as the heat source density. The MHD equations in their nondimensional
form are:

E
(
∂u
∂t

+ u · ∇u
)

= −∇Π + E∇2u − 2ez × u + RaerT +
1

Pm
(∇ × B) × B (2.72)

∂T
∂t

+ u · ∇T =
1
Pr
∇2T + H (2.73)

∂B
∂t

= ∇ × (u × B) +
1

Pm
∇2B (2.74)

∇ · u = 0 (2.75)
∇ · B = 0 (2.76)

This set of equations of MHD is solved within a 3D numerical implementation. There
numerous codes, which solve for the MHD equations. In the application for planetary
dynamos, spectral or pseudo-spectral methods are widely used today (Christensen and
Wicht 2007). As a comparison for a fraction of the codes available for this special MHD
problem, the study by Christensen et al. (2001) conducted a benchmark including the
most prominent of today’s codes. Here we focus on the pseudo-spectral code MagIC3
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(Wicht 2002), which is exclusively used and slightly modified for this project. A detailed
description of the numerical method can be found in Christensen and Wicht (2007), Wicht
(2002). This code is a further development of an older code by Glatzmaier and Roberts
(1995), which is based on a solar model (Glatzmaier 1984).

The governing equations will provide nine equations for the eight unknown fields,
namely three components of magnetic field (Br, Bϑ, Bφ) and flow (ur, uϑ, uφ), the tem-
perature T and the pressure Π. The components of magnetic field and flow are linked
to each other by vanishing of their divergence. Therefore a further simplification can be
made. Both, the flow u and the magnetic field B, can be described by two scalar fields,
namely the poloidal g(r, ϑ, φ) and toroidal field h(r, ϑ, φ) contribution of the magnetic
field. Analogously v and w are the poloidal and toroidal flow potentials, respectively.

B(r, ϑ, φ) = ∇ × ∇ × [erg(r, ϑ, φ)] + ∇ × [erh(r, ϑ, φ)] (2.77)
u(r, ϑ, φ) = ∇ × ∇ × [erv(r, ϑ, φ)] + ∇ × [erw(r, ϑ, φ)] . (2.78)

This decomposition automatically fulfills the incompressibility condition and ∇ · B = 0,
thus reduces the number of unknown independent fields from originally eight (B, u, T ,
Π) to six (g, h, v, w, T , Π).

The MagIC code is a pseudospectral code, thus solves the nonlinear terms on a spher-
ical grid (r, ϑ, φ) and the remaining components in spectral space. For the spectral repre-
sentation each of these six fields is represented by a series of spherical harmonics Ylm(ϑ, φ)
for the horizontal and series of Chebyshev polynomials Cn(r) for the radial direction.
Therefore a single scalar field (v here) depending on the radius r, latitude ϑ and azimuth
φ can be expanded as:

v(r, ϑ, φ) =

L∑
l=0

l∑
m=−l

N∑
n=0

vlmnCn(r)Ylm(ϑ, φ) , (2.79)

where

Cn(x) = cos(n arccos(x)) (2.80)

are the Chebyshev polynomials. This choice of radial representation is motivated by
denser radial grid point distribution at the inner and outer boundaries (Christensen and
Wicht 2007). The spherical harmonics Ylm in complex notation are defined by

Ylm(ϑ, φ) = Plm(cosϑ) exp (i m φ) , (2.81)

with Plm being the associated Legendre polynomials of degree l and order m. A major
advantage of the spherical representation is the simple treatment of the horizontal part
of the Laplacian operator since ∆hYlm = −l(l + 1)Ylm/r2, and derivatives in general. Six
equations are needed to solve for the six unknown scalar fields (glmn, hlmn, vlmn, wlmn, Tlmn,
Πlmn) in the spectral representation. They are derived by taking the radial component
(poloidal component) and the radial component of the curl (toroidal) of the Navier-Stokes
equation (flow potentials) and the induction equation (magnetic potentials). The equation
for the pressure is obtained when taking the horizontal divergence of the Navier-Stokes
equation. Thus the pressure is treated as an additional unknown in the Navier-Stokes
equation.
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The full spectral equations and their detailed discussion can be found in Glatzmaier
(1984), Christensen and Wicht (2007), Wicht (2002). The nonlinear terms are not treated
in spectral space due their ability to couple several spectral modes. Thus a forward and
back transformation between spectral and grid space is needed. Here a Fast Fourier Trans-
form is applied to transform the azimuthal and radial direction (v(r, φ, ϑ) to v(n,m, ϑ)) and
a Gauss-Legendre transformation for the longitudinal direction (v(n,m, ϑ) to v(n,m, l)).
The terms mixing spectral modes, namely the Coriolis force, Lorentz force, induction
term and temperature advection are calculated on the grid and forwarded in time using
an explicit second-order Adams-Bashfort scheme. The remaining components are time
stepped with an implicit Crank-Nicholson algorithm (Christensen and Wicht 2007). The
most severe limitation in terms of computational speed is the Gauss-Legendre-transformation.
It would be possible to solve the full equations in spectral space, but unfortunately then
different spectral modes will couple leading into larger loss in computational speed (Chris-
tensen and Wicht 2007).

While forwarding in time, the time step needs to be constrained to avoid numerical
instabilities. In terms of spherical grid representation, each field is not allowed to be
advected or diffused further than the size of a grid cell. The grid point resolution is
homogeneously distributed in azimuthal direction, but inhomogeneously in radial and
longitudinal direction. Implemented in the code is a time step controlled by a modified
Courant criterion, that also takes the alfvenic velocity as a characteristic magnetic velocity
into account.

We run the code mainly with nr = 49 radial grid points, and nφ = 288 in azimuthal
direction. The number of longitudinal grid points nϑ is then adjusted to be half of those in
φ-direction. For avoiding alias effects, we limit the maximal number of spectral degrees
l and orders m lmax = mmax = 2nϑ/3, giving 96 for the above mentioned resolution. The
code is parallelized in the radial direction to work on shared memory machines, where the
maximal number of CPUs used is limited by the number of radial grid points. Thus we use
either 16 or 24 cores. Given the limitations of the computational resources, several 105

until few 106 time integrations translate into several till tens of magnetic diffusion times
depending on the control parameters. As we will see, we are bounded to use Pm > 1, thus
the magnetic times scales are slower than the viscous time scales. We expect relaxation to
a more or less statistical state, which is already independent of the initial condition, after
one or two magnetic time scales.

2.8 From a Method to a Model

The code is able to implement different heating modes and boundary conditions. A care-
ful choice of these parameters allow to modify the standard model to a more realistic
model for Mars. We discussed already the characteristics of the ancient Martian interior
in the introduction. The presence or absence of compositional convection will have an
important effect for the choice of the thermal boundary conditions. Shortly, the two ma-
jor characteristics are convective driving by only thermal convection in the absence of an
inner core and a lateral varying CMB heat flux.

If chemical convection is present, the additional buoyancy source due to the release
of light elements is located close the inner core boundary. An proper model approach is
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then either combining temperature and composition into one variable (co-density) or solve
two separate diffusion equations for the two buoyancy sources (Manglik et al. 2010). The
composition is fixed at the lower boundary since there pure iron freezes out there and acts
as the buoyancy source. The released light element flux is assumed to mix into the core
melt, thus the sink of the composition would be a negative homogeneous volumetric sink.

For the temperature the physically more correct fixed flux conditions at the CMB acts
as the sink, where a volumetric heat source distributed homogeneously throughout the
outer core, models best the secular cooling process. Hori et al. (2010) showed a larger
sensitivity to CMB heat flux heterogeneities if internal heating and no flux from the inner
core are used as thermal boundary conditions. The largest temperature gradients are in
such a case much closer at to CMB. In opposite to the bottom driven standard model,
a dynamo driven by internal heating should not have a solid inner core in the model
setup since it is assumed that no chemical convection powers the dynamo. Hori et al.
(2010) studied the effect of the presence of an inner core in internally heated dynamos
and found only a minor influence. Following Hori et al. (2010) we have an inner core
with ri/ro = 0.35 as a passive flow obstacle. We model the characteristic early Martian
heating mode by setting the heat flux from the solid inner core to zero, while a volumetric
heat source H is homogeneously distributed in the core shell to balance the superadiabatic
heat flux qcmb through the CMB. The total CMB heat flux integrated over the CMB area
should then be equal to the volume integrated heat source density, thus

2π∫
0

π∫
0

qcmb(φ, ϑ)r2
cmb sinϑ dϑ d φ = −Pr H

2π∫
0

π∫
0

rcmb∫
ricb

r2d r d φ sinϑ dϑ (2.82)

Additionally, the code allows to impose any heat flux variation δq(ϑ, φ) in terms of spher-
ical harmonics Ylm:

qcmb = q0 + δq(ϑ, φ) = q0 +
∑

l

m=l∑
m=−l

qlmYlm , (2.83)

where ql−m = q?lm guarantees that q remains real, the star indicating the conjugate complex
here. The heat flux anomaly and its relative strength are the crucial ingredients for our
model. Since the heat flux anomaly δq is defined as a sinusoidal variation it does not
change the mean heat balance

2π∫
0

π∫
0

δq(φ, ϑ) sinϑ dϑ dφ = 0 . (2.84)

The mean heat flux q0 is independent of colatitude ϑ and longitude φ. The integration of
the heat balance (equation 2.82) simplifies then to:

q04πr2
cmb = −Pr H

4
3
π(r3

cmb − r3
icb) (2.85)

q0 = −
r3

cmb − r3
icb

3r2
cmb

Pr H . (2.86)
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The CMB heat flux anomalies mimic giant impacts and mantle plumes. Those may have
large scales at the CMB, but arbitrary positions and orientations with respect to the ro-
tation axis. A linear combination of two spherical harmonics (l,m), a (1, 0) and a (1, 1)-
mode with total q10, q11 and relative amplitudes g10,g11:

g10 = q10/q00 (2.87)
g11 = q11/q00 , (2.88)

allows to define a tilting angle α and model arbitrary orientations of heat flux anomalies.
The angle α between the orientation of the sinusoidal perturbation and the axis of rotation
is then given by

α = arctan(g11/g10) . (2.89)

By using this relation, we can define the relative amplitude of the heat flux anomaly g,
such that

⇒ g := g10 = g11/ tanα . (2.90)

We will use g (given in percent) as one of the main study parameters where, e.g g = 100%
and α = 0 describes a sinusoidal heat flux anomaly, what reduces the superadiabatic heat
flux at the northern pole exactly to zero, and doubles it at the southern pole. Using the
relations 2.82 - 2.89 provides an expression for the heat flux at the core mantle boundary
depending on the tilting angle α and the relative perturbation amplitude g

qcmb(φ, ϑ) = q0 + q10 + q11 (2.91)
qcmb(φ, ϑ) = q0Pr H

[
1 + g(cosϑ + tanα sinϑ cos φ)

]
. (2.92)

Starting with small perturbations of the mean cmb heat flux of about g = 5% we investi-
gate a broad range up to g = 300%, which is used in Stanley et al. (2008). Note, that for
perturbations equal or bigger 100% the heat flux becomes subadiabatic in the vicinity of
the point of lowest heat flux. The tilt angle α covers the full range from α = 0◦, where
the axis of perturbation is parallel to the rotation axis, up to the equatorial perturbation of
α = 90◦.

The schematic numerical setup and the boundary conditions are clarified in figure 2.1.
The temperature boundaries are given by the radial derivative at the outer and inner core
shell boundary, and are therefore flux conditions.

∂T
∂r

= 0 for r = ricb (2.93)

∂T
∂r

= Pr (qcmb + δq(ϑ, φ)) for r = rcmb . (2.94)

The fluid flow can not penetrate into the shell boundaries, therefore the radial velocity
is set to zero at the boundaries. Additionally we model rigid walls, thus all velocity
components are forced to be zero at both boundaries.

u = 0 for r = ricb (2.95)
u = 0 for r = rcmb (2.96)
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The magnetic field is matched to a potential field at the outside of the shell under the
assumption of an electrically isolating (∇ × B = µ0 j = 0) mantle. The toroidal field has
no radial component and therefore vanishes at the boundary. The poloidal field needs to
be continuous across the boundary. The inner core is assumed to be insulating as well,
and we use the same conditions there.

[B] = 0 for r = rcmb and r = ricb , (2.97)

where the brackets denote the jump across the boundary. Wicht (2002) had shown, that
conductivity of the inner core is of minor importance for homogeneous core dynamos. We
also tested this hypothesis for the boundary forced hemispherical solution and confirm the
findings of Wicht (2002).
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Figure 2.1: Schematic picture of the model setup and the boundary condi-
tions. The left top sector names the spherical shells of Mars, the boundaries in
between and the directions of the unit vectors. The right top sector explains the
temperature equation solved in the outer core, and the appropriate boundary
conditions. The right and left bottom sector is analogously, but for the magnetic
field and the velocity field, respectively.

2.9 Symmetries

The rotation of the model system, or more specific the Coriolis force, breaks the spherical
symmetry of the nonrotating problem. The buoyancy for example does have a radial
direction, but the flow structure is more columnar due to the Coriolis force. However,
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the solutions of the MHD equations 2.72 - 2.76 for magnetic and flow vector field, B
and u, and the scalar temperature often show distinct symmetries closely related to the
rotation axis. Figure 2.2 distinguishes the most important symmetries found in rotating
convection and magnetic field induction. There two main groups of symmetries replacing
the spherical symmetry. The first group is a mirror symmetry with respect to the equatorial
plane (figure 2.2 left four plots), the second one the axial symmetry with respect to the
axis of rotation (figure 2.2 right two plots).

equatorially 
symmetric 

equatorially 
antisymmetric 

equatorially 
asymmetric 

hemispherical 

non 
axisymmetric 

axisymmetric 

Figure 2.2: Symmetries: The left four plots show a front view with the equa-
tor separating northern and southern hemisphere, the right two the equatorial
plane with inner and outer core boundary.

A symmetry operation σ is map of a general vector field f onto itself (Bronstein et al.
2005). In the spectral representation f =

∑
lm flm(r)Ylm, the symmetries are reflected as

characteristic distribution of degree l and order m of spherical harmonics Ylm. We denote
the mirror symmetry operation as σM and the symmetry operation describing a rotation
around around the axis of rotation by σR.

• Equatorial Symmetry f es is given by (figure 2.2, top left)

f es : σM( f ) = f (2.98)
all Ylm are restricted to l + m = even ,

thus a analogon of the vector field with the same amplitude and direction can be
found on either side of the equator. The radial flow in a standard columnar dy-
namo, such as the benchmark model (Christensen et al. 2001), shows for example
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an equatorial symmetry. The group of magnetic modes symmetric with respect
to the equator is named as the ’quadrupolar family’, since the quadrupolar mode
(l = 1,m = 1) has this parity.

• Equatorial Antisymmetry f ea is given by (figure 2.2, top middle)

f ea : σM( f ) = − f (2.99)
all Ylm are restricted to l + m = odd ,

thus an equivalent of the vector field with the same amplitude but opposing direction
is present in the other hemisphere. A magnetic dipolar mode (l = 1,m = 0) is a
prominent example of such a symmetry. Therefore modes having this parity belong
to the ’dipole family’.

• Equatorial Asymmetry f ne is given by (figure 2.2, bottom left)

f ne : σM( f ) = 0 , (2.100)

thus no analogon of the vector field with a matching direction is present in the other
hemisphere, although there might be some vector field of finite amplitude. Such
field contributions can be calculated by f ne = f − f es showing that any vector
field can be separated into symmetric and asymmetric parts. All of the three so far
discussed symmetry cases show equatorial symmetry when using the intensities f 2

of the vector field.

• Equatorial Hemisphericity f eh is given by (figure 2.2, bottom middle)

f eh : σM( f 2) = 0 , (2.101)

thus one hemisphere is devoid of contributions of f . This measure gives an informa-
tion about the equatorial symmetry of the intensity. As we had seen, the distribution
of the crustal magnetic field on Mars (Acuña et al. 1999) shows such a property and
it therefore might be useful to examine the magnetic field obtained from the numer-
ics with respect to this quantity. As can be seen from the figure 2.2 a combination of
equatorially symmetric and equatorially antisymmetric with equal amplitude sums
up to a stronger field in one hemisphere and weaker in the outer.

For the rotational symmetry, as shown in figure 2.2 (right plots), we only distinguish
between axisymmetry and non axisymmetry. Axisymmetry here means, the rotational
symmetry operator σR maps f on itself for any rotation angle φ. Dynamo solutions close
to the onset, such as described by Christensen et al. (2001), do have an intrinsically sym-
metry. Therefore the axial symmetry in that case is given only for a special set of rotation
angles φ. In our notation this would count as nonaxisymmetric.

• Nonaxisymmetry f na is given by (figure 2.2, top right)

f na : σR( f ) = 0 (2.102)
all Ylm are restricted to m , 0 ,
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thus if a rotation about at least on angle φ does not map f on itself. The sketch in
the figure 2.2, top right might represent the equatorial cut of convective columns.
Knowing the axial symmetric partition allows for calculating the nonaxisymmetric
contribution ( f na = f − f as)

• Axisymmetry f as is given by (figure 2.2, bottom right)

f as : σR( f ) = f (2.103)
all Ylm are restricted to m = 0 ,

thus if a rotation about about any angle φ does map f on itself. The spherical
harmonics are axisymmetric, if the order m = 0. The magnetic axial dipole (l =

1,m = 0) or zonal flows are examples for axisymmetric mode.
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3 Results I : Hemispherical
Convection and Induction

The main research highlights of the this chapter are compiled in a publication named ’A
hemispherical dynamo model: Implications for the Martian crustal magnetization’ and
re-submitted after moderate revision to the ’Physics of the Earth and Planetary Interiors’
(PEPI).

The theory of rotating convection was established during the 1960s by Roberts (1965),
Bisshopp and Niiler (1965), but their work concentrated on convective instabilities, which
where symmetric with respect to the rotation axis (Landeau and Aubert 2011). Later work
by Roberts (1968) investigated non-axisymmetric and equatorial antisymmetric convec-
tion, whereas it was (Busse 1970) to describe the well established columnar flow struc-
tures, which are non-axisymmetric, but equatorially symmetric. This result is basically
confirmed by nearly all numerical experiments at the onset of thermal convection in such
systems (see e.g. Christensen et al. (2001)). Recent numerical studies, such as Landeau
and Aubert (2011) on vigorous convection driven by internal heat sources, brought back
the attention to equatorially antisymmetric convection. There the authors found the emer-
gence of such an axisymmetric and equatorially antisymmetric convective mode, if the
convective driving in terms of the Rayleigh number is sufficiently high.

3.1 Defining a Reference Case
In order to clarify the transition from dipolar to a hemispherical dynamo due to CMB
heat flux anomalies, a well chosen reference case with homogeneous heat flux needs to
be defined. This state should have a non-reversing dipole dominated magnetic field and
the convection should be dominated by the typical columnar structures. Then the changes
in flow and field are easier to observe and might offer the chance to compare the features
of the new convection and induction to a well studied system. The choice of Rayleigh
number is a trade off between intrinsic symmetries at lower values (Christensen et al.
2001) and the natural occurrence of the hemispherical convection at higher values (Lan-
deau and Aubert 2011). Of course, the parameters like magnetic Prandtl number Pm and
Ekman number E should be taken as close as possible to real planetary values. However,
there are bounded by the numerical power accessible. The lowest Ekman number used is
E = 1.0 × 10−5, what is roughly nine orders of magnitude too large.

Christensen and Aubert (2006) introduced the concept of the local Rossby number
Rol. The Rossby number gives the ratio of inertia over the strength of the Coriolis force.
Instead of the classical definition Ro = U/DΩ, a typical inertia length scale Dini = Dπ/l̄u
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is used. The factor l̄u is the mean degree of the kinetic energy spectra. This definition
attempts to consider the real length scale of the convection which decreases with increas-
ing Rayleigh number and decreasing Ekman number. This measure was used to find a
relationship between Rol and the dipole strength. Christensen and Aubert (2006) reported
a transition from stable dipolar towards reversing multipolar magnetic field morphology,
whenever the strength of the inertia term becomes significantly more important. The rel-
ative strength of the axial dipolar magnetic mode at the CMB is defined as

dipcmb =
Bl=1,m=0(r = rcmb)∑
l
∑

m Bl,m(r = rcmb)
. (3.1)

Whenever Rol > 0.1 the dipole strength is remarkably smaller. The general effect
is thought to be independent of hydrodynamic and magnetic Prandtl numbers, Pm and
Pr and Ekman numbers E (Christensen and Aubert 2006). All dynamo cases studied
by Christensen and Aubert (2006) use fixed temperature conditions, rigid walls and no
internal heat sources. Hori et al. (2010) investigated the strength of the axial dipole in
internal heated dynamos for different thermal boundary conditions. It was found, that
for fixed temperature conditions the solutions generally tend to be non-dipolar. However,
for the combination of internal heating and fixed flux conditions the relation found by
Christensen and Aubert (2006) still holds (Hori et al. 2010). For our tested cases with
the same heating setup, figure 3.1 shows the strength of the axial dipole normalized with
the total magnetic energy as a function of the local Rossby number Rol. Obviously there
is a transition from dipole dominated towards multipolar magnetic morphologies. For
higher Ekman numbers, such as E = 10−3 (black crosses), all dynamo cases shows weaker
dipolarity. For E = 3.0 × 10−4 (black triangles down) and E = 10−4 (black squares) we
have a data coverage what is broad enough, to cross the significant border at Rol = 0.1. At
least for those the transition between dipolar dominated and multipolar is clearly visible.
As a consequence we can confirm that the proposal of Christensen and Aubert (2006) still
holds. For the dipole dominated side of Rol < 0.1, the gradual decrease of the dipolarity
might be due to the smaller length scales introduced by the more vigorous convection. For
the lower Ekman numbers (black circles and triangle up) we could not afford to increase
the Rayleigh such high, that the local Rossby number exceeds 0.1. The blue symbols in
figure 3.1 describe the situtation if a heat flux anomaly of different strength is applied to
the outer boundary. Starting from E = 10−4,Ra = 4.1 × 107, Pm = 2 (black square),
adding and increasing a heat flux heterogeneity with relative amplitude of g = 10% (first
blue symbol) up to 400% (last blue symbol) shows the cease of dipolarity by a large scale
heat flux anomaly even if the local Rossby number Rol remains smaller then 0.1. We
will further analyse this behavior when discussing the effect of the boundary anomaly in
greater detail.

The red symbols in figure 3.1 denote equivalent simulations, but using mechanical
boundary conditions of stress-free type. Here the dipolarity at high Ekman numbers, such
as E = 10−3 (red crosses) is always significantly lower than for the comparable rigid
wall cases (black crosses). The red squares describe the situation for E = 10−4, where a
bistability of dipole dominated and weakly dipolar cases can be found. This is consistent
with Gastine et al. (2012). It then depends on the initial condition whether the dynamo
settles in the dipolar dominated or in the weakly dipolar regime. Gastine et al. (2012) also
reported a spontaneous dipole break down.
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Figure 3.1: Relative strength of axial dipole mode at the CMB (dipolarity) as
function of the local Rossby number Rol. The black symbols denote cases
with rigid walls, the red symbols for the free slip boundary conditions. As
suggested by Christensen and Aubert (2006), the dipolarity at the CMB is
much weaker if Rol > 0.1. Blue symbols describe the dipolarity in the boundary
forced dynamos. Those filled in green are further described and shown in
figures 3.2 and 3.3. Different symbol types refer to different Ekman numbers
used. For further details see text.

Here we want to restrict the main analysis to the rigid walls, and try to find a mean-
ingful reference state for the study. For numerical reasons, we choose the Ekman number
E = 10−4 for the main analysis. The few symbols filled with green color in figure 3.1
represent those cases, whose convection and induction process are displayed in greater
detail in figures 3.2 and 3.3. As suggested in figure 3.1 the first, third and fourth case are
dipole dominated, what can clearly be seen in the plots of the radial field in the right plots
of figure 3.2. The magnetic field is strongly antisymmetric with respect to the equator.
In opposite to that, the second and last case are only weakly dipolar. The magnetic field
shows equatorial asymmetry and stronger time dependence in terms of irregular reversals.
Although the magnetic field changes its time dependence and equatorial symmetry when
increasing the Rayleigh number, the convection in terms of the radial flow (figure 3.2,
left plots) seems similar for all cases. It is organized in equatorial symmetric convective
columns, which are non-axisymmetric (figure 3.2), left plots. The exceptional third case
(E = 10−4 and Ra = 7.0 × 106) is very close to onset of dynamo action and therefore
shows the typical drifting symmetric (m = 2)-solution. The dynamo benchmark (Chris-
tensen et al. 2001) differs in the heating mode, but also shows a solution with an intrinsic
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(m = 4)-symmetry.
However, the zonal averages and equatorial slices shown in figure 3.3 reveals differ-

ences in the flow structure for the dipolar and non-dipolar cases. At first, the equatorial
slices of temperature and z-vorticity (5th and 6th column in figure 3.3) reflect the struc-
ture of the convective columns. For the dipolar cases (first, third and fourth row) the radial
extend of the convective cells match roughly with the thickness of the convective shell,
as can be seen in the z-vorticity (figure 3.3, right column). The z-vorticity is chosen here,
because it mimics the ability of the flow to induce magnetic field via helical flows or an
α-effect. The nondipolar cases show shorter convective length scales, and therefore larger
local Rossby numbers.

The plots of the zonal averaged quantities, such as temperature, flow and magnetic
field in figure 3.3 clearly visualizes differences in the convection and its symmetries,
when comparing dipolar and non-dipolar dynamo cases. Those solutions possessing a
stable dipolar dynamo solution (first, third and fourth) have an equatorial symmetry in the
temperature (first column in figure 3.3), the zonal flow (second column) and poloidal field
line structure (fourth column). Merely the azimuthal field (third column in figure 3.3) is
equatorially antisymmetric. This is the frequently reported structure of a stable and dipo-
lar dominated field (Christensen and Wicht 2007, Wicht and Aubert 2005). The zonal
flow shows a strong equatorially symmetric westward drift patch surrounding the equa-
tor, a weaker inside the tangent cylinder and eastward drift patches at high latitudes. The
nondipolar cases (second and last row in figure 3.3) show the emergence of an equatori-
ally asymmetric temperature anomaly (first column), which turn seems to drive thermal
winds. These thermal wind are equatorially antisymmetric, and show westward drift in
the northern hemisphere and eastward in the southern. Coinciding with the change in
azimuthal flow pattern and symmetry, the azimuthal field becomes more irregular (figure
3.3, third column) and the dipolarity decreases significantly (figure 3.1). All of the dy-
namos found with Rol > 0.1 show dynamo reversals without any clear periodicity. Even
though, the radial flow does not show strong deviations from the equatorial symmetry,
the radial field is significantly hemispherical (figure 3.2, last plots). These findings are
consistent with the results of Landeau and Aubert (2011), where it was shown that a crit-
ical Rayleigh number Rac for the natural onset of the EAA mode can be estimated such
that Rac = 21.2E−1.49 giving Rac = 2 × 107 in our nondimensionalization. Our case with
Ra = 2 × 108 is then far beyond this border and expected to show a significant EAA
contribution. For Ra = 4 × 107 the natural EAA strength is still negligible, since EAA
strength grows linearly with the distance from Rac (Landeau and Aubert 2011).

Since the temperature anomaly in the case Ra = 2 × 108 by chance emerges such that
the northern hemisphere remains hotter than the southern, the cooling in the latter one
would be more efficient and hence allow for more efficient dynamo action. Interestingly,
the hemisphere of stronger unsigned magnetic flux (here north for E = 10−4) or more
intense magnetic field, does not coincide with the cooler hemisphere. The placement of
the hemispherical magnetic field seem to be independently of the arbitrary orientation
of the temperature anomaly. Later we will see, that this does not hold for the boundary
forced dynamos anymore.

As a conclusion, we choose Ra = 4.1 × 107 (fourth plot in 3.2 and 3.3) as the base for
the bulk of the numerical analysis. It does not show intrinsic symmstries, as the case for
a lower Rayleigh number, but is still sufficiently far away from the Rol = 0.1 border the
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possess a stationary and strong dipolar magnetic field and leading equatorial symmetry in
the zonal temperature and zonal flow.
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Figure 3.2: Radial velocity at mid-depth in the left column and radial magnetic
field at the CMB in the right column. The two case on the top are calculated
for E = 3.0 × 10−4 and for two different Rayleigh numbers chosen such that
each case falls on either side of the Rol = 0.1 boundary in figure 3.1 (black
outlined/green filled triangles down). The lower three cases are calculated for
E = 10−4 and three different Rayleigh numbers. They refer to the three black
squares filled with green color in figure 3.1. All plots are snapshots, no time-
averages. The color scales are chose to maximize the visibility of symmetries
and structure and therefore do not contain information about the amplitudes.
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T uφ Bφ T wz Bp 

Figure 3.3: Shown is (from left to right) the zonal averaged temperature, the
zonal flow with meridional flow as contours, the azimuthal magnetic field, the
poloidal field lines, equatorial cut of the temperature and z-vorticity. The order-
ing is equivalent to figure 3.2.
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3.2 Dynamo Action at Ra = 4× 107, E = 10−4 and Pm = 2

The well defined reference case induces a stable magnetic field that is dominated by the
axial dipole. As a criteria for dynamo action the magnetic Reynolds number Rm needs
to be sufficiently high. Calculating Rm for this case we find Rm = 157. Obviously the
flow has enough amplitude and complexity to permanently convert kinetic into magnetic
energy. Here we want to investigate the induction mechanism in more detail. Figure 3.4
shows 3D visualizations of the flow and magnetic field lines. The upper plot mimics the
convective columns as isocontours of the vertical (z-direction) vorticity for the benchmark
dynamo, whereas the lower plot of figure 3.4 describes the situation for the reference case
with isocontours of the radial flow. Both cases show well the induction mechanism, but
differ in the details of the numerical setup. The benchmark dynamo uses fixed tempera-
ture conditions and no internal heat sources, whereas the reference case is driven by flux
conditions and uses a heat source distribution as buoyancy source. We choose the bench-
mark dynamo (Christensen et al. 2001) here, because it hosts an stationary (but drifting)
convective state with a simple m = 4 azimuthal symmetry. The reference case is by far
more time dependent and contains much smaller convective length scales. We assume
that the induction of magnetic field is based on the same convective features and thus we
describe the induction on the somewhat simpler benchmark dynamo. The convection of
the benchmark dynamo contains of four pairs of columns, where each column pair has
a retrograde rotating and a prograde rotating column. This columns are called then an-
ticyclones and cyclones, respectively. In figure 3.4 we colored the anticyclones in blue
and the cyclones in red. In each convective column a secondary flow along the column
is present. This is an effect of the boundary curvature Jones (2011) and as we will see,
an important ingredient for the dynamo. The secondary flow is directed poleward in cy-
clones and equatorwards in the anticyclones, so both are parallel to the axis of rotation.
Both flows together define vortex or a helical motion. Jones (2011) showed in detail how
individual convective columns interchange flow and field, because the secondary flows
converge at the equator and thus needs to be deflected into the next poleward pumping
column. Instead of the flow u, the vorticity w = ∇ × u is typically used to describe the
potential of induction (Wicht and Aubert 2005). Isocontours of the vertical component of
the vorticity w then visualizes the columnar structure of cyclones and anticyclones. Note,
in the lower plot of figure 3.4 for the reference case of the internal heated dynamos the
radial component of the flow velocity is used to characterize the convection. Although
not as sophisticated as the z-vorticity, the columnar structure of the convection can be
seen easily. Compared to the benchmark dynamo, the reference case has a smaller Ekman
number and larger supercritical driving. Both translate into thinner and more turbulent
convective columns (Jones 2007). Due to the different heating mode, one might expect
that the columns are expelled further out to the CMB in the internal heated case as sug-
gested by Jones (2007). The equatorial slices of the z-vorticity are shown in the fourth row
of figure 3.3. Stronger temperature gradients and thus the convection are more attached
to the CMB rather than to the inner core. This is expected from the results of Hori et al.
(2010), where it was mentioned that in internally driven dynamos the largest temperature
contrasts will be located close to the CMB.
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1) initially purely poloidal field line 
     is stretched in azimuthal direction 

2) the now toroidal field line gets  
     twisted around columns 

3) motion along the columns 
     stretches field line 

4) north and southward migration 
     until field is poloidal again. 

Figure 3.4: 3D visualization of the induction mechanism. The benchmark
(Christensen et al. 2001) dynamo with isocontours of z-vorticity is used here.
Blue (red) columns rotate retrograde (prograde) and are named anticyclones
(cyclones). The thickness of the magnetic field lines is scaled with the local
field strength, where red/blue fieldlines are directed outward/inward. Figure
based on a 3D rendering by J. Wicht.
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Figure 3.5: 3D visualization of the induction mechanism for the homogeneous
reference case with Ra = 4 × 107,E = 10−4 and Pm = 2. Red/blue isocontours
show radial outward/inward flow. Compare also figure 3.4. The 3D rendering
is made with VMagic tool by M. Meyer.
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The details on the standard induction process is reviewed in Wicht and Aubert (2005),
Aubert et al. (2008b), Christensen and Wicht (2007), Jones (2011). We start with a ini-
tially purely poloidal field line orientated along the rotation axis but placed into core shell
such that it does not touch the inner core. This vertical field line is picked up by an an-
ticyclonic column and thus advected in azimuthal direction (see figure 3.4). The field
lines has now a strong azimuthal and retrograde toroidal contribution (Wicht and Aubert
2005). Along with the motion of the anticyclone the toroidal magnetic field line gets
twisted around the column. Depending on the direction of the secondary flow in an in-
dividual convective column, the toroidal field is also advected either towards the pole or
towards the equator where it is subject to firm stretching. This stretching and advection
re-creates a stronger poloidal field line. For the cyclones the magnetic field is pushed
towards the poles. Once the magnetic field lines reaches the CMB there, the magnetic
cycle starts over again. The cyclones transport the field towards the CMB and thus should
be reflected in intense flux patches of radial field (Jones 2011) at the CMB. The horizon-
tal field is collected at the equator (see figure 3.4). For figure 3.5 denoting the reference
case of our study of the internal heated dynamo, the induction mechanism works similar.
Although the flow is far more complex, the main features such as the collection of hori-
zontal field at the equator or the advection of poloidal field into the polewards can be seen
there as well. Note, a single convective column contains both, inward (blue isocontours
of figure 3.5) and outward (red) radial flow.

We want to fix two major conclusions from that analysis. Firstly, a helical flow is
needed to enforce a prosperous dynamo process (Wicht and Aubert 2005). The helicity h
is quantified as the scalar product of flow velocity u and vorticity w, such that

h = u · w = u · (∇ × u) . (3.2)

As we will see later, this quantity is measure for the strength of the so called α-effect. Sec-
ondly, a successful dynamo permanently converts toroidal field into poloidal and poloidal
into toroidal field (Jones 2011). Therefore no pure poloidal or pure toroidal dynamo is
possible. Here in the benchmark (Christensen et al. 2001) the conversion into both direc-
tions is given by helical motions. In the boundary driven dynamos this will not be true
anymore. Shortly, a successful dynamo needs a three-dimensional helical flow to induce
a self-sustained magnetic field.
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3.3 An axial CMB Heat Flux Anomaly

We further analyze the structure and morphology the magnetic field gains during the
induction process. The reference case with homogeneous heat flux boundary conditions
and internal heating shows the typical convective structure, where the flow is mainly orga-
nized in convective columns. The dominating symmetry of these columns are equatorial
symmetry and non-axisymmetry. Figure 3.6 describes flow (upper plots) and magnetic
field (lower plots) in the spectral representation. We separate poloidal (left plots) and
toroidal (right plots) contributions of the respective fields. We combine both, degree l
(red/orange) and order m (blue/light blue) for snapshots (faint lines) and time averages
(thick lines) in the plots. Both, poloidal and toroidal spectra show a strong time depen-
dence as the snapshot spectra differ significantly from the time average energy spectra.
The poloidal kinetic energy (figure 3.6, left top plot) shows broad distribution in degree
l and order m, what reflects the typical convective length scales. The toroidal kinetic en-
ergy has a rather strong axisymmetry (m = 0) in the time average energy spectra (dark
blue line in figure 3.6, top right), corresponding to zonal flow and meridional circulation
contributions to the flow. Note, that spectra plots (figure 3.6) only show the large scale
contributions and do not cover the full spectral resolution.

The magnetic field is dominated by larger scales than the flow, as shown in figure 3.6
lower plots. The number of modes displayed in the spectra plot is limited to lmax = mmax =

50 for the kinetic energy, but only to 20 for the magnetic energy. Especially the poloidal
energy (figure 3.6, left bottom) is dominated by the stationary axial dipole (l = 1,m = 0),
with weaker contribution of the l = 5 mode. The weak time dependence is reflected in
the magnetic spectra since the time average and snapshot spectra are quite similar. In the
spectra of the toroidal field (figure 3.6, right bottom) the dipole is visible as l = 2 mode.
The toroidal field of the equatorial antisymmetric dipole mode is equatorially symmetric.

3.3 An axial CMB Heat Flux Anomaly

We had seen, that the reference case with homogeneous heat flux induces a dominantly
equatorially antisymmetric magnetic field what is created by the columnar structures of
the equatorial symmetric and nonaxisymmetric convection. As mentioned during the in-
troduction, one of the main characteristics of the early Martian interior dynamos might
be the presence of single plume mantle convection (see section 1.5). This plume mantle
plume is reflected in a CMB heat flow pattern, since it introduces large scale heat flux
anomalies on top of the core. Also giant impacts might dehomogenized the CMB heat
flow. Thus we study the influence of a simplified CMB heat anomaly, by using a sinu-
soidal perturbation pattern of spherical harmonic degree l = 1, what is simply a cosine
of colatitude. The amplitude of the CMB heat flux anomaly and the orientation angle of
the anomaly with respect to the rotation axis are study parameters here. Starting with an
axial perturbation, the anomaly amplitude relative to the mean superadiabatic heat flux
is systematically increased from g = 0% up to g = 300%, three times the mean supera-
diabatic heat flux as used in the study of Stanley et al. (2008). Because the knowledge
about realistic perturbation amplitudes is rather limited we start from weakly perturbed
dynamos and extend our models then to strongly boundary driven setups.
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3 Results I : Hemispherical Convection and Induction

3.3.1 Symmetries, Styles of Convection
We start with the parameters of the reference case, such as E = 10−4, Ra = 4 × 107,
Pm = 2 and Pr = 1, but adding a CMB heat flux anomaly of l = 1,m = 0-shape with
an amplitude of g = 100% relative to the mean heat flux. With this setup, the total heat
flux at the northern pole is exactly zero and increases with colatidude until it reaches the
double value of the mean heat flux at the southern pole. Then the heat flux at the equator
remains unchanged, and the orientation angle is α = 0◦. We compare the convection and
induction for perturbed case with the findings of the reference case with homogeneous
heat flux.

One interesting observation is the onset of an equatorially antisymmetric and axisym-
metric convective mode. This has been recently reported for models for the ancient Mar-
tian dynamo with homogeneous thermal boundaries (Landeau and Aubert 2011) and with
heat flux anomalies (Stanley et al. 2008, Amit et al. 2011). The new mode of convec-
tion was named after its symmetry properties by Landeau and Aubert (2011), equatorially
antisymmetric and axisymmetric convection (EAA). We measure the relative importance
of the EAA convective mode by the relative amount of axisymmetric and equatorially
antisymmetric kinetic energy:

EAA =
(Erms

kin )as − (Erms
kin )eqa

Erms
kin

=

∑
lodd ,m=0 Elm∑

lm Elm
, (3.3)

where as denotes the axisymmetric and ea the equatorially antisymmetric contribution of
the root-mean-square kinetic energy and Elm is the rms kinetic energy carried by a flow
mode of spherical harmonic degree l and order m. We introduced different kinds of sym-
metries and their spectral analogons in section 2.9. Therefore the spectral equivalent will
be m = 0 for the axisymmetry and all equatorial antisymmetric energy modes (l =odd).
Note, that poloidal and toroidal modes will have equatorial antisymmetric (l =odd) and
equatorial symmetric modes (l =even), respectively. The sum of the curl of toroidal and
double curl of the poloidal field defines the magnetic energy, where the curl operator
changes the equatorial symmetry. Thus the poloidal scalar field has the same equatorial
parity as the kinetic energy, whereas the toroidal scalar field is has the inverse equatorial
symmetry.

The heat flux anomaly with an amplitude of g = 100% relative to the mean superadi-
abatic heat flux, alters the pattern and symmetries of the convection significantly. In the
northern hemisphere the efficiency to cool the core is reduced due to smaller heat flux,
while the southern hemisphere is cooled more efficiently. As a consequence, the northern
hemisphere remains hot, while the southern can be cooled efficiently by more vigorous
convection. Large scale temperature differences between the northern and southern hemi-
sphere, and therefore a latitudinal temperature gradient emerges. This gradient breaks the
typical equatorial symmetry in the temperature in the reference case. Figure 3.7 shows in
left plots the axisymmetric temperature for the homogeneous reference case (top) and in
the perturbed system (bottom). Single cell meridional circulation from north to south seek
to equilibrate the temperature anomaly. Figure 3.7 shows in the middle plots the contours
of the meridional circulation. For the reference case (top) the meridional circulation does
not cross the equatorial plane and shows equatorial antisymmetry. The lower plot for the
perturbed system shows the large scale meridional transport across the equator without
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3.3 An axial CMB Heat Flux Anomaly

any clear symmetry (see figure 3.7 middle bottom). The strong coriolis force due the fast
rotation of the system will deflect the meridional flows into azimuthal direction. This so
called thermal wind is a consequence of latitudinal temperature gradients and the action
of the Coriolis force. When we derived the geostrophic force balance between pressure
gradient and Coriolis force we assumed that the buoyancy has no influence (see section
1.2). If the buoyancy is taken into account and viscous terms and the Lorentz force are
neglected, we find as force balance

−2z × u +
Ra E
Pr

êrT − ∇Π = 0 . (3.4)

If we apply a curl operator we can further neglect the conservative forces, such as the
pressure gradient

−2∇ × z × u +
Ra E
Pr
∇ × êrT = 0 . (3.5)

The buoyancy is purely radial, thus in components for the spherical coordinates we find

2∇ × z × u =
Ra E
Pr

[
1
r

1
sinϑ

∂T
∂φ

êϑ −
1
r
∂T
∂ϑ

êφ
]
, (3.6)

where the geostrophic force balance follows if the temperature has no gradients in φ or
ϑ-direction and thus can be neglected. But we had seen, that the heat flux anomaly creates
a large scale temperature gradient in latitudinal (ϑ-) direction. This will then drive a flow
in φ-direction. For the left hand side, thus the φ-component of the curl of the Coriolis
force we find

2
1
r

(
∂

∂r
(r(z × u)ϑ) −

∂

∂ϑ
(z × u)r

)
=

Ra E
Pr

1
r
∂T
∂ϑ

. (3.7)

Next, we express the cylindrical z component in spherical coordinates and examine the
(z × u)

z × u =


cosϑ

− sinϑuφ

0

 ×

ur

uϑ

uφ

 =


sinϑuφ

− cosϑuφ

cosϑuϑ − sinϑur

 . (3.8)

The left hand-side of equation 3.26 is then

2
r

[
∂

∂r

(
r(cosϑuφ)

)
−

∂

∂ϑ

(
sinϑuφ

)]
(3.9)

=
2
r

[
r cosϑ

∂uφ
∂r
− sinϑ

∂uφ
∂ϑ

]
. (3.10)

The variable z = r cosϑ and thus we can replace the partial derivatives with ∂r = (cosϑ)−1∂z

and ∂theta = −(r sinϑ)−1∂z:

2
r

[
r cos2 ϑ

∂uφ
∂z

+ r sin2 ϑ
∂uφ
∂z

]
= 2

∂uφ
∂z

. (3.11)
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3 Results I : Hemispherical Convection and Induction

Epol Etor

g total as ea eaa total as ea eaa

0 13910 96.6 2409 45.92 31210 3126 8296 248.2

100 10540 2375 6055 2076 199800 187200 178700 172400

Table 3.1: Comparison of the poloidal and toroidal kinetic energy contri-
butions, and their symmetries (as-axisymmetric, ea-equatorially antisymmet-
ric, eaa-equatorially antisymmetric and axisymmetric) for the reference case
(g = 0%) and the (g = 100%) boundary forced case.

This yields then the thermal wind balance:

2
E
∂uφ
∂z

=
Ra
Pr

1
r0

∂T
∂ϑ

, (3.12)

which shows the emergence of zonal flow gradients if there is large a latitudinal tempera-
ture gradient. Note, the thermal wind balance serves as a measure for the deviation from
a geostrophic force balance. The dynamic consequence of this effect is the onset of two
strong zonal flow cells. In the middle plot of figure 3.7 we can see the emergence of these
thermal winds, where for the perturbed case they show equatorially antisymmetric par-
ity. In the co-rotating reference frame, the northern cell rotates eastward and the southern
westward.

Although both cases show axisymmetric zonal flows, their amplitudes relative to to-
tal kinetic energy are significantly different. In table 3.1 we collected the amplitudes
of the poloidal and toroidal energy for the homogeneous reference cases (g = 0%) and
the strongly perturbed case with g = 100%. Besides the total amplitude, table 3.1 lists
also the contribution to the axisymmetry (as), equatorial antisymmetry (ea) and the com-
bined equatorial antisymmetry and axisymmetry (eaa). The table shows several distinct
effects. Concentrating on the reference case (first line) shows that the total toroidal en-
ergy is larger than the poloidal by factor two or three, whereas the axisymmetric and
equatorial antisymmetric contributions are rather minor. The zonal flow is given by the
axisymmetric contribution of the toroidal energy and the meridional circulation by the ax-
isymmetric poloidal energy. Zonal flows contribute to roughly ten percent to the toroidal
energy, whereas the meridional circulation is neglegible. This reflects the situation for the
classical columnar convection. For the boundary forced case characterized in the second
line of table 3.1, the toroidal energy exceeds the poloidal by factor of almost 20. The
change in the ratio is largely due to much stronger toroidal energy, but also the poloidal
energy is slightly weaker. The vast majority of the toroidal energy is now stored in ax-
isymmetric and equatorially antisymmetric zonal flows (compare also figure 3.7), where
even the combination of the two symmetries, thus the relative strength of the EAA con-
vective mode ranges up to 85% of the total kinetic energy. As noted above, the thermal
wind balance (equation 3.12) introduces gradients of axisymmetric zonal flows and thus
zonal flows of large amplitude. We see here, that the vast majority of the kinetic energy
is driven by ageostrophic thermal winds. Besides the strong thermal winds, also the con-
vective flows or poloidal energy will be affected by the thermal anomaly. We investigate

66



3.3 An axial CMB Heat Flux Anomaly

Figure 3.7: Zonal average of the temperature (left plots), zonal flow with merid-
ional circulation as contour (middle plots) and toroidal field with poloidal field
lines as contour (right plots) for columnar convection dominated and magnetic
dipolar reference case (left) and a typical hemispherical dynamo solution with
the strong EAA symmetry in the flow (right).

in figure 3.8 the radial flow at mid-depth (top row) and radial magnetic field at the CMB
(bottom row) for the reference cases and the pertured dynamo. For the reference case,
the equatorial symmetric convective columns extend from one hemisphere to the other.
But for the boundary forced convection they are weakened, since the spatially most ef-
ficient cooling location is then close to the southern pole (compare also the azimuthal
temperature in figure 3.7). The convection in terms of meridional circulation and radial
upwellings are predominantly located at a cusp of high heat flux (fig. 3.7). Therefore the
typical equatorial symmetry is broken as well and the convection becomes hemispherical,
thus mainly constrained to the southern hemisphere. Table 3.1 suggested already that the
poloidal flow is weaker in the heterogeneous dynamo but contains more axisymmetric
meridional circulation. To summarize, the symmetry properties of the new hemispherical
solution are fundamentaly different from the classical columnar convection. Columnar
convection is predomimantly equatorial symmetric and non-axisymmetric (at least when
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3 Results I : Hemispherical Convection and Induction

  

Figure 3.8: Radial flow (top row) at mid-depth and radial field at CMB (lower
row) for the columnar reference case (left) and the hemispherical dynamo
(right), indicates the reduction of the magnetic signature at the CMB if the
radial motions are limited to the southern polar cusp of high heat flux.

the Rayleigh number is not too large). The hemispherical convection is dominated by
equatorial antisymmetric and axisymmetric (EAA) thermal winds.

The poloidal flows are essential for the magnetic field induction process. On the one
hand they provide helical flows and thus can perform magnetic induction. On the other
hand, radial upwellings carry the magnetic field towards the CMB. Figure 3.8 relates the
radial flow at mid core shell depth with the radial CMB field. A hemispherical induc-
tion process leads to a hemispherical field. Figure 3.7 (right plots) shows the poloidal
magnetic field lines and color-coded the toroidal field for the homogeneous dynamo (top)
as well as for the heterogeneous dynamo (bottom). The poloidal field is confined to the
radial flows of the convection, thus strongly hemispherical. This translates also into hemi-
spherical radial field at the CMB, as shown in figure 3.8. Note, that the radial field is more
hemispherical than the radial flow. While the reference case has a rather stable magnetic
field that never reverses, a CMB heat flux variation of g = 100% induces strong magnetic
field oscillations that involve polarity reversals. The time dependence will be discussed
in more detail in section 3.4.2.

The differences in flow structure and symmetry is well reflected in the kinetic and
magnetic spectra. Figure 3.9 provides the same compilation of spectra for kinetic and
magnetic energy as the figure 3.6 for the unperturbed reference case. The equatorially
antisymmetry of the flow is visible in the figure 3.9, upper plots, in the toroidal flow.
Since the kinetic energy is dominated by axisymmetric, but equatorially antisymmetric
zonal flow, the dominating mode in the toroidal energy is given by (l = 2,m = 0). Note
a toroidal l = 2 modes corresponds to an equatorial antisymmetric mode of the kinetic
energy. The poloidal energy, shows a clear dominance of the axisymmetry (figure 3.9,
right top), even though it is much weaker than in the toroidal energy. This corresponds
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3.3 An axial CMB Heat Flux Anomaly

to the large scale meridional circulation cells. The sharp peaks for l = 1, 3, 5 shows
again an equatorial antisymmetry. The broad peak around l,m = 10..15 corresponds to
the remaining small convective plumes close to the southern hemisphere. These flows
are hemispherical, not equatorially antisymmetric since there is not much corresponding
convection on the northern hemisphere. For hemispherical symmetry, a superposition
of the equatorial symmetric and equatorial antisymmetric modes are needed to achieve
strong hemisphericity. Thus the spectral response of such small scale and hemispherical
convective features will be represented by a broad peak in the degrees l within the poloidal
energy without equal contributions of even and odd modes. The contributions are rather
weak in amplitude compared to zonal flows (m = 0), but they are crucial for the dynamo
to operate.

The radial magnetic field (figure 3.8) shows the same hemispherical configuration as
the radial flow, both are more or less confined to the southern hemisphere. This is reflected
in the magnetic energy spectra (figure 3.9, lower plots). The poloidal energy shows a
rather flat spectral distribution of the degrees l, leading to a hemispherical magnetic field.
The unperturbed reference case with g = 0% (figure 3.6, bottom left) is clearly dominated
by the axial dipole mode, therefore it is equatorially antisymmetric. The toroidal energy
of the hemispherical dynamo (figure 3.9, bottom right) shows the clear axisymmetry (m =

0), and also the hemisphericity is depicted in the flat l-distribution. We refer here again to
figure 3.7, for zonal averaged plots of the poloidal field lines and toroidal field.
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3.3 An axial CMB Heat Flux Anomaly

3.3.2 Variable Heat Flux Anomaly Amplitude
Here we want to address the question what is the response of the dynamo for CMB heat
flux anomalies of different amplitudes g. It is of special interest to what extent smaller
values of g effect the system. Increasing the perturbation from g = 0% up to 300% as
used in Stanley et al. (2008), shows a clear transition from the columnar towards the EAA
convective state. We had seen, that investigating the symmetries of the convection yields
a measure for the relative strength of the EAA convection.

Figure 3.10 tries to compile our findings for amplitude of the EAA convection as
function of the anomaly amplitude g. In the first plot we distinguish the symmetries of
axisymmetry (as, red), equatorial antisymmetry (eas, green) and equatorially antisym-
metric and axisymmetric parity (eaa, blue). Furthermore we test how the total kinetic
(top panel), toroidal (middle) and poloidal (bottom) energy are affected. All curves are
normalized to the total kinetic/toroidal/poloidal energy. In the g = 0%-reference state
the EAA symmetry contributes only little to the kinetic energy. Nearly all the kinetic
energy is nonaxisymmetric and equatorial symmetric, what is typical for the convective
columns. Adding the perturbation increases the equatorial antisymmetry and axisymme-
try in toroidal and total kinetic energy more or less linearly. The effect on the poloidal
energy is much weaker, even though the equatorial antisymmetry rises. At a perturbation
amplitude of around g = 60%, the system is saturated at EAA = 0.8 in the new convective
mode. The relative strength of the EAA mode can not reach one, since there is always
non-axisymmetric (convective) poloidal motions involved. The system is remarkably ax-
isymmetric due the dominance of the strong thermal winds. At higher g the axisymmetry
remains strong at 90% of the total energy, but the equatorial antisymmetry decrease and
thus the EAA contribution as well. The shear layer between the two zonal flow cells
moves southward at higher g and thus reduces the equatorial antisymmetry. The effect on
the poloidal energy is minor, although the equatorial antisymmetry reaches roughly 55%.

The absolute amplitudes of the kinetic energy (red - total, green - toroidal, blue -
poloidal) and symmetries (as in the upper plot) are shown in the lower plot of figure 3.10.
It shows the onset of very strong zonal flows (axisymmetric toroidal flows), thus most of
the energy added to the system due to boundary forcing is translated into thermal winds.
The axisymmetric toroidal kinetic energy exceeds the poloidal by far and seem not to
saturate for high g.
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Figure 3.10: Symmetries and amplitude of total kinetic energy and
toroidal/poloidal contributions as a function of g. In the upper compilation
of plots, the relative amount of axisymmetry (red), equatorial antisymmetry
(green) and the combined symmetry (EAA, blue) for the full kinetic energy
(first panel), the toroidal and poloidal contributions (second and third panel),
whereas in the lower plot the total kinetic energy (top panel, red), toroidal
(green) and poloidal (blue) and the symmetries (as in the upper plot) are given.
Details see text.
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3.4 Dynamo Mechanism

3.4 Dynamo Mechanism

The two distinct modes of convection are inducing magnetic fields of different magnetic
field strength and morphology. We defined the magnetic Reynolds number Rm = UD/λ
as the crucial quantity for dynamo action. Thus Rm = Re Pm serves as measure for the
flow amplitude and we use the Elsasser number Λ = B2/µ0λρΩ as measure for the rms
magnetic field amplitude. See section 2.6 for details on the nondimensional control and
output quantities. Figure 3.11 shows that the rise in the magnetic Reynolds number Rm,
that goes along with toroidal flow amplitude, does not necessarily lead to higher Elsasser
numbers. Hemispherical convection yields a less efficient dynamo. The rms Elsasser
number Λ increases at small perturbation amplitudes g, but decreases from Λ = 10 at
g = 25% to Λ < 1.5 at g < 200%, where the EAA convection is isolated.

The discussion of the EAA convection showed that poloidal flows, which are impor-
tant for the magnetic field induction, are confined to the southern hemisphere and thus
concentrate the poloidal magnetic field there. When we discussed the induction process
in the benchmark or reference dynamo (see section 3.2), we linked the presence of helical
flows to the induction of magnetic field. Helical flows are exclusively poloidal flows, but
also the toroidal flow can create magnetic field. Here we will compare the induction pro-
cess in the hemispherical convection, with a classical columnar dynamo from our refer-
ence case. Typically rotation dominated spherical convective flow motions are organized
in columns parallel to the rotation axis. The flow motion around and along the convective
columns leads to a helical (spiraling) flow, and is therefore the main source of magnetic
field. These helical motions twist magnetic field lines and increase the magnetic energy
due to electromagnetic induction. This process is called α-effect (Rüdiger and Holler-
bach 2004) and converts poloidal into toroidal field and vice versa. But the toroidal has
exclusively another source, that is differential rotation or shearing. A poloidal field line
is stretched into the direction of the zonal flow, where azimuthal toroidal field is created
via this so called ω-effect if there are strong gradients in the zonal flow. This is thought
to be the main driver of the toroidal magnetic field of the sun (Rüdiger and Hollerbach
2004), where strong differential rotation shears the poloidal field. For our hemispherical
convection, we found strong equatorially antisymmetric zonal flow, thus strong gradients
between them. Actually the thermal wind balance translates latitudinal temperature gra-
dients into zonal flow gradients. Therefore it is quite useful to distinguish the magnetic
field components of toroidal and poloidal field here. A successful dynamo permanently
converts poloidal into toroidal magnetic energy and vice versa. The helical flows, in terms
of the α-effect, are capable of create both field components. In systems with strong zonal
flow, the toroidal field can be additionally created in axisymmetric flow shear, known
as the ω-effect. Typically the α-effect (helical flow) dominates when the convection is
columnar (Wicht and Aubert 2005). We measure the relative importance of the ω-effect
by calculating the relative production of axisymmetric toroidal field in axisymmetric shear
layers in terms of

ω∗ =

[
(B∇)uas

φ

]rms

tor

[(B∇)u]rms
tor

. (3.13)

Parallel to the emergence of the zonal flows as the main effect of the heat flux anoma-
lies, the induction of axisymmetric toroidal field via shear is enhanced. We compiled
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Figure 3.11: Flow amplitude in terms of the magnetic Reynolds number (red)
and magnetic field strength in terms of Elsasser number (green) as function of
the CMB heat flux anomaly amplitude g, shows the difference between both
dynamo regimes in the efficiency of inducing a dynamo. The hemispherical so-
lution contains large amounts of axisymmetric zonal flows created by the Cori-
olis force, therefore the kinetic energy is drastically larger than in the columnar
regime (g = 08). The magnetic energy decreases, the more the g increases.
The error bars correspond to the standard deviation due to time variability.

figure 3.12 similar as figure 3.10, thus showing the symmetries and amplitudes of the dif-
ferent magnetic field contributions. Figure 3.12, top plot shows the relative axisymmetry
of the total (top panel) and toroidal magnetic field (2nd panel). The axisymmetry reaches
80% at an perturbation amplitude of g = 100%. Even higher perturbations introduce more
non-axisymmetric field contributions due to the enhanced small scale irregular convective
motions close to the southern pole. Like for the kinetic energy the poloidal contribution
of the magnetic energy is much less affected, but the equatorial antisymmetry neverthe-
less nearly doubles (figure 3.12 upper plot, lower panel, green). This is expected, since
the convection and thus the radial upwellings are confined to one hemisphere. Besides,
the poloidal field does not show strong axisymmetry (same plot, blue), what is again the
impact of the small scale convection in the south polar cusp. The increase of magnetic
field energy at small g is due to the supportive ω-induced toroidal field. Interestingly
the magnetic fied is dominated by axisymmetric toroidal field, in analogy to the kinetic
energy, where the main contribution are the axisymmetric thermal winds.

Since the classical (equatorial symmetric) convective columns are weakened and pushed
towards the pole of higher heat flux, the efficiency of inducing poloidal and toroidal field
via an α-effect is reduced. Therefore both magnetic field contributions decrease simulta-
neously as the perturbation amplitude g and thus the hemispherical convection increases.
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Figure 3.12: Symmetries and amplitude of total magnetic energy and
toroidal/poloidal contributions as a function of g. In the upper compilation
of plots, the relative amount of axisymmetry (red), equatorial antisymmetry
(green) and the combined symmetry (EAA, blue) for the full kinetic energy
(first panel), the toroidal and poloidal contributions (second and third panel),
whereas in the lower plot the total kinetic energy (top panel, red), toroidal
(green) and poloidal (blue) and the symmetries (as in the upper plot) are given.
Details see text.
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3 Results I : Hemispherical Convection and Induction

The supportive induction of toroidal field via shear between the two zonal flow cells helps
to promote a strong axisymmetric toroidal field. Figure 3.12 shows the dependence of the
magnetic energy contributions (top plot) as a function of g. When the hemispherical con-
vection dominates at larger g, toroidal (green) and poloidal (blue) fields are weaker than
in the columnar convection. At mild g up to 40% the coexistence of columnar and hemi-
spherical convection effects lead to a rise in magnetic energies, which is accompanied by
strong variations of the magnetic energy we further discuss below. The main effect of
the hemispherical solution is a growth of the axisymmetric toroidal magnetic energy, see
figure 3.12, as a function of g. The relative equatorial antisymmetry also increase, but to
a smaller degree. It might be a better measure to investigate the hemisphericity of radial
flow and field, instead of the equatorial antisymmetry. The latter one is dominant in the
toroidal flow and field, thus the minor contributions of poloidal flow and field do not affect
the strength of EAA convection and induction to a large extent. However, we will later
analyse the hemisphericity of the radial magnetic field in greater detail, when applying
the magnetic field solutions to the crustal magnetization of Mars.
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Figure 3.13: Toroidal (dashed) and poloidal (solid) magnetic field in nondi-
mensional units and the relative ω-effect in terms of ω∗ (dotted) as a function
of g demonstrates the transformation of induction characteristic from an α2-
dynamo at g = 0 (columnar dynamo) towards an αω-type from g = 60 (hemi-
spherical solution).

Dynamos are classified as α2 and αω type according to main induction process for
the toroidal field (Rüdiger and Hollerbach 2004). Figure 3.13 illustrates how ω-field-
induction changes with the heat flux perturbation amplitude g. To measure that effect,
we calculate the induction of toroidal magnetic field due to zonal winds and normalize it
with the total toroidal field induction (equation 3.13). This resulting relative omega effect
ω∗ is shown in figure 3.13. The figure shows, that dynamos with columnar convection
are mainly of α2-type since the ω-effect is rather small. The reference case, g = 0%,
here was chosen to be a good example of that α2 induction, as described in Olson et al.
(1999). Note, both poloidal and toroidal magnetic field are crucially dependent on each
other since the dynamo permantly converts one to the other. Figure 3.7 showed both
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3.4 Dynamo Mechanism

field contributions are closely aligned. The induced toroidal magnetic field can not grow
further even if there is such an extremely efficient induction mechanism. The growth of
the toroidal field is limited by the amount of poloidal field feed into the shear zone around
the equator. As the thermal winds increase for larger g the associated ω-effect starts to
dominate toroidal field production (see figure 3.13) and the dynamo is predominantly of
an αω-type. Since there is always toroidal field created by the supporting α-effect, some
toroidal field induced by α-effect always remains. For the further analysis it might be
useful to distinguish between αω and α2ω dynamo types. We will discuss that issue while
discussing the Parker waves (see section 4).

Figure 3.14: 3D visualization of the induction process. Blue/red isocontours
of the radial flow (inward/outward), magnetic field lines scaled by the magnetic
energy. Furthermore the radial CMB field is shown color coded on the green
spherical shell. Rendering by J. Wicht, based on the VMagic tool by M. Meyer.

Figure 3.14 clarifies the dynamo mechanism in a 3D rendering. Magnetic field lines
illustrate the magnetic field configuration, their thickness is scaled with the local magnetic
energy. Red and blue color intensities indicate the relative inward and outward radial field
contribution. Plain gray lines are purely horizontal. Red and blue transparent surfaces are
isosurfaces and show inward and outward directed radial plume-like motions. Note, how
strong axisymmetric field is produced by zonal flow shear somewhat below the equa-
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3 Results I : Hemispherical Convection and Induction

torial plane. The northern hemisphere is dominated by axisymmetric toroidal magnetic
field, while radial field is associated to plume-like up- and downwellings dominating the
southern hemisphere.

3.4.1 Influence of the Lorentz Force

In this section we will investigate the influence of the Lorentz force on the EAA convec-
tion. The saturation of the magnetic field growth is given by the action of the Lorentz
force on the convection (Roberts 2007). As the main feature of the hemispherical con-
vection and induction, the axisymmetric toroidal contribution of flow and field dominate
the energies. Hence both are mainly parallel one would expect the Lorentz force not to
have a strong influence on the dynamics. In figure 3.11 we compared the amplitude of
the kinetic energy in terms of the magnetic Reynolds number Rm and the magnetic en-
ergy in terms of the Elsasser number Λ. Additionally we added the standard deviation
as error bars reflecting the time dependence of flow and field. Interestingly, the hemi-
spherical magnetic field does show much stronger time variability. The kinetic energy is
mainly time invariant. We track the time evolution of the magnetic and kinetic energy in
figure 3.15. The top plot refers to moderately perturbed case with g = 60%, where as the
lower plot shows g = 100%. In each plot the top panel shows the relative strength of the
EAA convection (red) and relative shear induced toroidal field production ω∗ in blue. The
panels for the magnetic (2nd) and kinetic energy (3rd) give the total (red), toroidal (blue)
and poloidal (green) contribution to the respective energy. If in the upper plot of figure
3.15, the magnetic energy is low the EAA strength and ω∗ is reduced, whereas the kinetic
energy increases for both the poloidal and the toroidal contribution. The two magnetic
contributions (same figure, middle panel of upper plot) are aligned during the variation
cycle. This reflects that the total magnetic energy simply goes up and down. If the mag-
netic energy is large, the flow is more EAA dominated and ω∗ is larger. We interpret this
behavior, such that the strong (and mainly toroidal) magnetic field suppresses the convec-
tive columns. Thus a strong magnetic energy leads to weaker convection, hence to weaker
magnetic field. If the magnetic field is weak, the stronger columnar convection provides
more magnetic field. EAA strength and ω∗ increase linearly, where the systems tends to
be more in the hemispherical solution. Thus the azimuthal magnetic field is again stronger
in suppressing the radial flow in the equatorial region and cycle starts over again. For the
stronger perturbation of g = 100% (figure 3.15, lower plot) the variations in kinetic and
especially magnetic energy are not anymore visible. The EAA mode remains constant,
whereas the ω∗ varies faster. The total magnetic energy is also rather constant, therefore
the effect on the flow is minor.

To proof the hypothesis of the Lorentz force reducing the strength of the convective
columns, we compare in figure 3.16 radial flows in mid-depth for states of weak and
strong magnetic field energy to a nonmagnetic run. Figure 3.16 shows the solution at
maximal (top row) and minimal (middle row) magnetic energy. At the minimum columnar
convection is still significant, while it seems to be suppressed by the Lorentz force at the
maximum of magnetic energy. The equatorial slices of z-vorticity (2nd column of the
same figure), azimuthal field (3rd column) and axisymmetric azimuthal field show how
the Lorentz forces weakens the convective columns. By suppressing columnar convection
the Lorentz force promotes the relative importance of the hemispherical mode. Note, we
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Figure 3.15: Time evolution of the oscillatory regime. Shown is the in the top
panel the relative amount of EAA symmetry (red) and the relative amount of ω-
induced toroidal field (blue). Middle and bottom panel, show the total amount
(red), toroidal (blue) and poloidal (green) contributions for the magnetic and
kinetic energy, respectively. The first plot shows the oscillations for g = 60%
case, whereas the lower plot describes the g = 100% case.

can see here already that the toroidal field changes polarity during one of magnetic cycle.
Toroidal field of one polarity diminishes, and toroidal field of inverse polarity is created.
This effect becomes more apparently when comparing the relative importance of the EAA
mode in magnetic and non-magnetic simulations.

Figure 3.17 shows the time average of the EAA strength and illustrates that this rela-
tive importance is around 35% higher for the magnetic case (red) than in the nonmagnetic
(green). The difference reduces for perturbations stronger than g = 150%, where the
magnetic energy is anyway weaker. The fact, that these oscillations are not found in the
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3 Results I : Hemispherical Convection and Induction

Figure 3.16: Radial flow at mid-depth (first column) for a case of strong (top
row) and weak magnetic field amplitude (middle row) and the non magnetic
(bottom) case. Additionally, the z-vorticity and the azimuthal field at equator
(middle columns) and the zonal average toroidal field (right column) is plotted.

non-magnetic case highlights their magnetic origin. The variations in the flow are then
mainly due to variations in the Lorentz force. Landeau and Aubert (2011) mentioned the
emergence of magnetic energy variations for intermediate strength of EAA convection.
Note, they used no boundary forcing in terms of CMB heat flux pattern. We can confirm
their findings, even though we will interpret them differently in the next section.
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Figure 3.17: Effect of the Lorentz force on the relative strength of the axisym-
metry and equatorial antisymmetry of the kinetic energy shows a clear support
of the EAA mode if the Lorentz force is present (Pm=2, red line) in compar-
ison to a non-magnetic case (Pm=0, green). The time variability is given as
standard deviation.

3.4.2 Oscillations

We had seen in figure 3.16 that the toroidal field might change its polarity. If so, also the
poloidal field has to reverse. Therefore we track the time evolution of the amplitudes of the
axisymmetric modes of the poloidal field at the CMB. Figure 3.18 illustrates the changes
of the temporal evolution for the poloidal magnetic field when the CMB heat flux pertur-
bation is increased. The decomposition of the magnetic field is motivated by the Gauss
coefficients, since we will make further use of them while extrapolating the field radially
outwards towards the planetary surface in order to apply the hemispherical dynamo to
the crustal magnetization. The Gauss coefficients are proportional to the amplitude of
spherical harmonics mode. The derivation and discussion of the Gauss coefficients can be
found in section 5.1. We concentrate on axisymmetric Gaussian coefficients here due to
highlight the evolution of hemisphericity. The nonaxisymmetric part of the poloidal CMB
field does not show the cyclic oscillations. In the reference case (top plot of figure 3.18)
the axial dipole dominates, varies chaotically in time and never reverses. At the perturba-
tion amplitude of g = 50% (second plot) the relative importance of the axial quadrupole
component has increased significantly, which indicates the emergence of a hemispherical
magnetic field.

Another small increase of the perturbation amplitude to g = 60% (third plot), where
the hemispherical convective mode is now dominant, all magnetic field harmonics oscil-
late in time with a period of roughly half a magnetic diffusion time. Interestingly at this
perturbation amplitude the first five axisymmetric poloidal modes are equal in amplitude.
When further increasing the perturbation amplitude, the frequency of this oscillations in-
creases and the relative importance of higher harmonics increase as well. Considering the
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3 Results I : Hemispherical Convection and Induction

g = 60% case, the coefficients oscillate roughly in phase, which implies that the magnetic
energy varies significantly. Figure 3.15 demonstrates, that these oscillations correlate
with variations in the importance of the EAA mode and the magnetic energy. We now
understand why the absolute magnetic energy reaches a maximum around g = 40%. The
combination of the efficient poloidal field production by columnar convection and the
toroidal field production by zonal wind shear leads to particularly high magnetic energy
and increased time average amplitude (see figure 3.12).

At g = 60%, the production of toroidal field in the zonal wind shear dominates. The
associated Lorentz forces then suppress the columnar convection and thereby an important
contribution of poloidal field production. At higher perturbation amplitudes the magnetic
oscillation is still recognizeable but has a smaller period of roughly one eighth of the
magnetic diffusion time and is blurred by other time dependencies. The variation in mag-
netic energy, in kinetic energy and relative EAA importance are less affected than for the
moderate g = 60% case, as shown in figure 3.15, bottom plot.

To sum up, the stationary dipole dominated dynamo turned into a regularly reversing
hemispherical dynamo if a CMB heat flux anomaly of sufficient amplitude is applied.
Dynamos with strong ω-effect tend to be oscillatory (Rüdiger and Hollerbach 2004), so
it might be expected that the increasing importance of a shear induced toroidal field leads
into a oscillatory dynamo with regular magnetic polarity inversions.
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Figure 3.18: Time evolution of the first axisymmetric Gauss coefficients taken
at the CMB for the dipole dominated (g = 0%, 50%) (first two plot in upper row),
the oscillatory (g = 60%, bottom left) and the reversing hemispherical regime
(g = 100% bottom right). The more hemispherical the dynamo becomes, the
more equal are the amplitudes of the higher modes with respect to the weak-
ened dipole mode. This is a typical spectral behavior for a hemispherical dy-
namo. Surprisingly all coefficients do oscillate with a slight phase shift in the
hemisperical regime. Red - l = 1, green - l = 2, blue - l = 3, pink - l = 4, light
blue - l = 5, yellow - l = 6, black - l = 7.

3.5 Equatorial and Inclined Anomalies

The heat budget of the core is entirely controlled by the overlying mantle. The CMB
heat flux pattern is shaped by convective mantle processes or impacts. Until now, we
always assumed that the simplified degree-one CMB heat flux anomaly is aligned with
the axis of rotation. The position or orientation of thermal anomalies in the mantle, such
as due to low-degree mantle convection or impacts, is rather unconstrained. Therefore we
have to test the influence of inclined CMB heat flux anomalies. In the related study of
Amit et al. (2011) the heat flux anomaly was tilted away from the axis of rotation. The
authors compared a 45◦ inclined and an equatorial anomaly. They find that for the inclined
anomaly the hemispherical convection emerges same as for the axial perturbation (Amit
et al. 2011). Here we will systematically tilt the anomaly from a orientation aligned with
the axis of rotation up to an equatorial heat flux anomaly.
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3 Results I : Hemispherical Convection and Induction

3.5.1 Arbitrary Tilting Angles

Since a degree (l=1, m=0) shaped anomaly is a rather special case, we systematically vary
the tilting angle α (see eq. 2.89) of the perturbation up to 90 degrees. In terms of spherical
harmonics, different tilting angles are prescribed as a linear combination of (l=1, m=0)
and (l=1, m=1) modes according to equation 2.92. The equatorial perturbation of α = 90◦

corresponds then to the pure (l=1, m=1) pattern. Note, that the axial perturbation with
α = 0◦ is still axisymmetric, but equatorial antisymmetric. But the equatorial perturbation
of α = 90◦ is equatorial symmetric, but axisymmetric. All anomalies with tilting angles
smaller than 90◦ and larger than 0◦ are nonaxisymmetric and equatorial asymmetric.

The figure 3.19 shows the relative strength of the EAA symmetry as a function of the
perturbation amplitude for various tested tilt angles. It demonstrates that the hemispher-
ical mode dominates up to α = 80◦. Only the α = 90◦ shows a new behavior where the
strength of the EAA mode remains negligible. Also the magnetic energy (figure 3.19,
bottom plot) shows the similar behavior as for an axial perturbation. Note, that there was
no dynamo solution found for a tilting angle of α = 60◦ and g = 60%. Slight breaking
of north-south symmetry obviously suffices to strongly excite the new hemispherical con-
vective mode prescribed above. Consequently, a breaking of equatorial symmetry of the
CMB heat flux affects the systems more severely than breaking the axisymmetry. Only
the purely equatorial (l=1, m=1) perturbation forms a rather special case, that we describe
in the following section.

3.5.2 Equatorial Anomaly

Increasing the relative perturbation amplitude g for the equatorial anomaly leads to a rise
in the flow amplitude (see figure 3.20, red). Like in the (l=1, m=0) case the kinetic
energy increases with growing perturbation amplitude. And once more the rise is mainly
carried by growth of toroidal energy. The magnetic energy has a distinct minimum around
g = 50% and g = 100%. Interestingly there the magnetic field reverses rather periodically
with a period of half the magnetic diffusion time. This oscillation might have the same
origin as the oscillations observed for the axial perturbations, at least the frequencies are
rather similar and increase with the perturbation amplitude. Surprisingly the magnetic
field oscillations disappear for perturbation amplitudes larger than g = 100%. Therefore
the time averaged magnetic energy in terms of the Elsasser number (figure 3.20, green) is
significantly higher at g = 200%. In case of the oscillations found for the axial perturba-
tions we could relate the onset of their onset with the increasing amount of toroidal field
induced by an ω-effect thus with the presence of flow gradients. This does not seem to be
true here, since the g = 200%-case has a larger ω∗ of roughly 24%, whereas for the two
reversing cases we find ω∗(g = 50%) ≈ ω∗(g = 100%) = 21%. Additionally the oscil-
lations on the axial perturbation case set in when ω∗ reached 60%, hence a much larger
value. It remains unclear, why the oscillations set in for moderate perturbation amplitudes
and disappear again for strong perturbation.

For convenience, we name the more and less efficiently cooled hemispheres western
and eastern, respectively. As expected, the imposed heat flux pattern leaves the eastern
hemisphere hotter than the western. This difference drives a large scale westward directed
flow and a more confined eastward flow in the equatorial region of the outer part of the
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Figure 3.19: The relative equatorial antisymmetric axisymmetric energy for
different tilting angles follows the onset of EAA convective mode in the axial
perturbation case (red). For the equatorial perturbation (black) the EAA contri-
bution to total kinetic energy remains Zero. Green - 10◦, blue - 30◦, Pink - 45◦,
light blue - 60◦, gray - 80◦

shell (figure 3.21). Coriolis forces divert the westward directed flow poleward and inward,
and lead to the confinement of the eastward directed flow. Consequently, the westward
flow plays the more important role here.

Figure 3.22 illustrates the solution in a snapshot (left column) and time averaged (right
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Figure 3.20: As figure 3.11 but for the equatorial perturbation.

Figure 3.21: Equatorial slice of uφ for the homogeneous reference case (left)
and the equatorial heat flux anomaly (right). The marks ’+’, ’-’ and ’0’ denote
maximal, minimal and zero perturbation amplitude.

column) over roughly a magnetic diffusion time for a perturbation amplitude of 200%.
We collect spherical surfaces of the radial and temperature at the CMB in the top plots,
and the three components ur, uφ, uϑ and z-vorticity at mid-depth (see figure 3.22). The
diverted flows feed two distinct downwelling features, which are best identified in the
time average flow and correlate with the coldest temperatures. Right at the latitude of
zero heat flux disturbance a pair of downwelling forms close to the tangent cylinder.
The second important downwelling region is located close the to maximum heat flux.
Eastward directed backflows connect the second and the first feature at higher latitudes
and additionally feed the downwellings close to the tangent cylinder. The time averaged
flows form two main cyclonic structures illustrated with the z-vorticity in figure 3.22.
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3.5 Equatorial and Inclined Anomalies

A long anticylonic structure associated to the strong equatorial westward flow stretches
nearly around the globe and connects the equator with high latitudes inside the tangent
cylinder. A smaller cyclonic feature is owed to the eastward equatorial flow.

The comparison of snapshots and the time averages (see figure 3.22) shows that at any
instance in time the flow is significantly more complex than the time average. Several
classical convective columns are located beneath the region of increased heat flux but
are absent in the opposite hemisphere, where up- and downwellings are mainly located
at higher latitudes. These smaller scale features vary strongly and therefore average out
over time.

The snapshot and time averaged radial magnetic fields shown in figure 3.22 are rather
similar which demonstrates that the time dependent small scale convective features are
not very efficient in creating larger scale coherent magnetic field. The radial field is
strongly concentrated in patches above flow downwellings where the associate inflows
concentrate the background field (Olson et al. 1999). Like in the study for dynamos with
homogeneous CMB heat flux by Aubert et al. (2008b) the anticyclone is the main player in
poloidal magnetic field production. The cyclone gives the field another twist and thereby
is responsible for the pair of inverse (outward directed here) field patches located at mid
latitudes in the western hemisphere. The exceptional strength of the high latitude normal
flux patches suggests that additional field line stretching further intensified the field here.
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Figure 3.22: Aitoff projections of spherical surfaces of (from top to bot-
tom) radial field, temperature (both at the CMB), ur, uϑ, uφ and z-vorticity at
r/rcmb = 0.8 for a snapshot (left plots) and the time average (right).
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3.6 Dependence on Boundary Conditions and Model Pa-
rameters

Unfortunately a parameter regime realistic for planet can not be reached with the available
computational power. Analyzing many model cases might allow to compile a scaling law
for extrapolating the results to realistic planetary parameters. Here the dependence on
heating mode, the mechanical boundary conditions, the Rayleigh and the Ekman number
is investigated. The special characteristics of the Martian interior such as secular cooling
as heating mode and the heterogeneous CMB heat flux pattern allow the hemispherical
convection to emerge more easily. Thus a hemispherical magnetic field might be the
favored mode of magnetic induction.

3.6.1 Heating Mode

The core of Mars might be entirely liquid even today (Dehant 2003), therefore the dynamo
was driven by secular cooling. The Earth, on the other hand, started to nucleate an inner
solid iron core at a given point in its thermal evolution. After which core convection
was supported by the chemical buoyancy due to light element release from the inner core
boundary. Here we compare the reaction of core convection driven either by internal or
bottom heating to a heat flux anomaly at the CMB. We set up the bottom heated case
in prescribing a heat flux at the inner core boundary and set the amplitude of the heat
source density to zero. Even though Mars most probably never nucleate an inner core,
the question whether the strong sensitivity to heat flux anomalies is a unique property of
the internal heated dynamos needs to be clarified. Figure 3.23 shows the strength of the
EAA convective mode for unperturbed core convection (lower lines) and the g = 100%
case (upper lines) for both heating modes.

The unperturbed cases show higher EAA contribution if the system is driven from the
bottom, even though both are fairly low. But the heat flux anomaly does have a much
greater effect on the internal heated dynamo. For g = 100% the hemispherical convection
dominates by far and columnar convection seems entirely removed from the system. In
the bottom driven dynamos, the relative strength does not exceed 15% of the total kinetic
energy. The cause for this beavior might be the radial distribution of the temperature,
where in the internal heated case the strongest temperature gradients are close to the
outer boundary (Hori et al. 2012). Therefore it is much more sensitive to CMB heat flux
anomalies. In the bottom heated core convection, the largest temperature gradients are
located close to the inner boundary, therefore it reacts only weakly to a heterogeneity on
the outer boundary. The study of Hori et al. (2012) investigated that issue in closer detail.
Their findings, that internally driven dynamos are more sensitive to the outer boundary,
whereas the dynamos driven from the bottom are more sensitive to the inner boundary
indeed confirms our results.

3.6.2 Mechanical Boundary Conditions

Here also the influence of the mechanical boundary conditions is investigated. Stanley
et al. (2008) used free slip walls, whereas in our study we impose rigid walls. This choice
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Figure 3.23: Natural onset and forced emergence of the hemispherical con-
vection measured by its equatorial asymmetry and axisymmetry (EAA) for dif-
ferent heating modes (green - internal heated, red - bottom driven) for the
homogeneous (lower lines) and perturbed system (upper lines).

is based on the fact, that the thickness of the mechanical boundary layers scales with the
square root of the Ekman number (Soward and Dormy 2007). Therefore the effect of the
mechanical walls is very minor at realistic Ekman numbers or inside a planetary core. But
the numerical reachable Ekman numbers or far too large in comparison to a realistic Ek-
man number, thus the mechanical boundary conditions have a stronger influence. Hence
we consider a realistic confinement with rigid walls, what is the physically more accurate
choice for simulating a highly viscous model of the core.

Stanley et al. (2008) reported that they could find a hemispherical solution for stress
free but not for rigid mechanical boundaries. We propose, that it is even easier for rigid
walls to enforce a dominant EAA mode and thus a hemispherical dynamo. To proof
or disproof this hypothesis a series of runs was made for the identical parameters but
different mechanical boundary conditions. Here we concentrate on the onset and strength
of the hemispherical convection. In figure 3.24 the response of the convection to heat flux
anomalies of different strength is shown, where the left plot shows the behavior for the
free slip walls and the right for the rigid walls. The total kinetic energy is given in red
color, the kinetic energy contained in the EAA mode in green and the ratio of the two
giving the relative strength of the EAA in blue (right axis, in figure 3.24).

The amplitude of the total kinetic energy as well as the EAA energy is significantly
higher in the free slip cases with an axial perturbation. The rigid wall cases store a signif-
icant amount of kinetic energy, here especially zonal flows, in the boundary layers (Jones
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Figure 3.24: Onset of the EAA mode and symmetry of the kinetic energy for
free-slip (left) and rigid (rigid) mechanical boundaries. The total kinetic energy
is colored red, the kinetic energy contained in the EAA mode in green, whereas
the blue curve is the relative strength of the EAA mode.

2011) since also the tangential part of the kinetic energy has to vanish at the boundary.
The tangential velocity is mainly given by the axisymmetric toroidal energy of the zonal
flows, thus their amplitudes are weaker for rigid walls. The difference in total kinetic
energy can also originate from different magnetic field strengths.

The contributions and symmetries of poloidal and toroidal kinetic energy, listed in
table 3.2, show also that the amplitude of axisymmetric poloidal energy (meridional cir-
culation) is significantly higher in the rigid wall cases although the total kinetic energy is
smaller. This is a hint on the Ekman pumping mechanism driven by the rigid mechanical
boundaries. Ekman pumping and Ekman suction appears only for no slip boundary, where
a flow into to the boundary layer (suction) or outwards (pumping) emerges. Soward and
Dormy (2007) pointed out that Ekman suction (pumping) appears if the vorticity of the
flow is antiparallel (parallel) to the rotation. Since we find an eastward zonal flow cell in
the northern hemisphere, and the westward directed in the southern, the rigid walls will
pump fluid from north to south. In the recent review by Soward and Dormy (2007) it is
mentioned, that the amplitude of Ekman suction/pumping decrease with increasing colat-
itude. As a consequence a large scale meridional circulation downward close the inner
core and upward close to the outer boundary emerges. This results was recently discussed
by Landeau and Aubert (2011), where the authors already suggested the Ekman pumping
mechanism for supporting the zonal flows. We thus find besides the temperature anomaly
in the Ekman pumping mechanism another source of meridional circulation. Both kinds
of meridional flow will transport hotter fluid from the northern into the southern hemi-
sphere closer to the rotation axis and colder fluid backwards closer to the CMB. Note,
that meridional circulation is deflected by the Coriolis force into zonal flows indepen-
dently of the source of the meridional circulation. In any case, the following zonal flow
gradients are ageostrophic. In the free slip simulations, no Ekman pumping can emerge,
thus the ageostrophic zonal is entirely driven by the temperature anomaly emerging from
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Epol Etor

g total as ea eaa total as ea eaa

0 13910 96.6 2409 45.92 31210 3126 8296 248.2

13390 72.8 2511 37.7 41310 8256 6990 200.2

20 12170 300.5 3018 219.5 35150 774.3 12470 4911

12350 146.8 2860 86.33 41220 9751 10620 1790.4

60 11010 1324 4731 1210 144300 123600 126400 116300

11350 389.6 3571 273.5 115400 80820 74520 62450

100 10540 2375 6055 2076 199800 187200 178700 172400

15190 475.7 5492 322.1 263500 219200 208100 191000

200 17370 2995 9860 2705 289100 266800 234100 223600

65250 995.1 17940 632.4 950300 770600 489700 404300

Table 3.2: Comparison of the impact of a heat flux anomaly on the amplitude
and symmetry of the kinetic energy for different mechanical boundaries. The
upper value is calculated for rigid walls, whereas the lower one corresponds to
stress free mechanical boundaries.

the heat flux anomaly.

Figure 3.25: Snapshot of the axisymmetric zonal flow free slip (left) and
rigid walls (right), with meridional circulation as contour. In the free slip case
there is a geostrophic and an ageostrophic zonal flow visible, where as in the
rigid wall case only the ageostrophic thermal wind is present. Parameters:
Ra = 4.0 × 104,E = 10−4,Pm = 2, g = 200%
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The relative strength of the EAA mode reaches a maximum around g = 100% in
the free slip case. For higher perturbations the total kinetic energy increases much faster
than the equatorial antisymmetric zonal contribution (see also last line in table 3.2) driven
by the temperature anomaly. This means that equatorially symmetric zonal flows con-
tribute more significantly than for rigid boundaries. Figure 3.25 show the emergence of
a geostrophic contribution that opposes the thermal winds in the northern hemisphere.
Thermal winds can not be geostrophic, Reynolds stresses seem to become increasingly
important. Typically they emerge if there is a clear correlation between the cylindrical-
s and φ velocity component. Christensen (2002) showed this relation, when proposing
Reynolds stresses as the main source of the zonal flows on gas giants.

3.6.3 Thermal Wind Balance
The main driver of the strong zonal flows are the latitudinal temperature gradients. Merid-
ional flows seek to equilibrate them and are diverted into strong zonal flows by the strong
Coriolis force. The thermal wind balance yielded (see equation 3.12)an equation for the
strength of the zonal flows as function of latitudinal temperature gradients.

2
E
∂uφ
∂z

=
Ra
Pr

1
ro

∂T
∂ϑ

(3.14)

We showed in section 3.4.1 that the Lorentz force associated to the azimuthal field sup-
presses the convective columns. Therefore the thermal wind balance is tested explic-
itly for a magnetic and non-magnetic case with a moderately perturbation amplitude of
g = 60%. Due to the strong time variability of magnetic and kinetic energy, snapshots
as well as time averages are used. The figure 3.26 shows left- and right-hand side of the
thermal wind balance for a snapshot and as a time average for the four different scenarios
mentioned. It can be seen, that in the nonmagnetic cases (a and b), the zonal shear is en-
tirely driven by the temperature anomaly. The mechanical boundary conditions are rigid,
therefore strong velocity gradients appear in the plots of the shear, which do originated
from the temperature anomaly. The Lorentz force, on the other hand, shows only minor
influence on the thermal wind balance. Since both, the main contribution of flow and
field, are azimuthal the resulting Lorentz force is zero. This can be seen, if we assume the
magnetic field B = Bêφ has only an azimuthal component. The azimuthal component of
the Lorentz force is then

[(∇ × B) × B]φ =

1
sinϑ

(
∂

∂ϑ
(sinϑBφ) −

∂

∂φ
Bϑ

)
Bϑ

−
1
r

(
1

sinϑ
∂

∂ϑ
Br −

∂

∂r
(rBφ)

)
Br . (3.15)

If Br and Bϑ are zero, the azimuthal Lorentz force is zero as well. Of course, in the
southern hemisphere, where field and flow are much more variable, the Lorentz force
is responsible for small deviations from the thermal wind balance (compare figure 3.26.
Because of the good agreement other sources, such as Reynolds stresses, driving zonal
flows can be ruled out.
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a)nonmagnetic, snapshot
b) nonmagnetic, time aver-
age

c) magnetic, snapshot d) magnetic, time average

Figure 3.26: Plots the left and right hand side of the thermal balance equation
3.14 for pure hydrodynamic cases (a and b) and including the Lorentz force (c
and d). Figure provided by T. Gastine.

The thermal wind balance can be simplified to find an order-of-magnitude estimate.
The Reynolds number Re = UD/ν contains the rms kinetic energy and thus serves as
measure for a characteristic flow amplitude. We construct a special Reynolds number Re∗

such that the involved flow amplitude is calculated exclusively from the strength of the
axisymmetric toroidal flows. The z-derivative of the zonal flow is approximated with the
ratio (∂uφ/∂z ≈ Re∗/lz), where lz is the typical variation length scale of the zonal flow.
Assuming the hydrodynamic Prandtl number Pr = 1 yields

Re∗ =
RaE

2
lz

ro

∂T
∂ϑ

rms

. (3.16)

94



3.6 Dependence on Boundary Conditions and Model Parameters

The temperature anomaly is estimated as the root mean square of the latitudinal gradient
of the time averaged axisymmetric temperature, therefore zonal flow Re∗ and [∂T/∂ϑ]rms

are output quantities. We set the variation length of the zonal flow lz = 1 and use ro = 1.55
for the nondimensional outer core radius. Figure 3.27 compares the observed zonal flow
Re∗ with the value predicted by the thermal wind balance (the right hand side of equation
3.16). Figure 3.27 shows that the agreement is surprisingly good. Hence the thermal wind
balance is also valid for different Ekman numbers (colors in the figure) and Rayleigh
numbers (symbols). The axisymmetric toroidal flow dominating the kinetic energy is
exclusively driven thermal winds.
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dT/dθ Ra E / 2 r0

Figure 3.27: Approximated thermal wind balance for different Ekman numbers
(green - 3.0 · 10−4, blue - 1.0 · 10−4, black - 3.0 · 10−5, red - 1.0 · 10−5) and
Rayleigh numbers (symbols). The size of the symbols is scaled proportional
to the square root of the perturbation amplitude g. See table 3.3 on page 100
for details.

To predict the importance of the EAA zonal flows and thus hemispherical dynamo
action in a simulation or a planet one would have to know how the temperature anomaly
[∂T/∂ϑ]rms depends on the system parameters Ra, E and g. Intuitively, one might as-
pect increasing the perturbation amplitude g will lead to an increase of the temperature
anomaly, whereas an increase of the vigor of convective motions in terms of an increas-
ing Rayleigh number will lead to faster mixing and stirring thus to a weaker temperature
anomaly. For a realistic Ekman number, the Taylor-Proudman constraint becomes in-
creasingly more important.

Figure 3.28 shows the temperature anomaly calculated for all our model runs. It can
be seen, that an increase of g indeed leads to higher temperature anomalies, but the more
crucial parameter seems to be the Rayleigh number. As an example the low Ekman num-
ber case: E = 3.0×10−4 (green symbols), the closer to the onset (triangles down - weakly
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Figure 3.28: Amplitude of the temperature anomaly as function of the pertur-
bation amplitude g for all our model runs. Colors indicate Ekman numbers,
symbols the Rayleigh numbers, the symbol size increases with g. See table
3.3 on page 100 for details.

supercritical, triangles up - strongly supercritical) the stronger is the latitudinal temper-
ature contrast. The Ekman number itself, seem to be of minor importance. The blue
squares denoting E = 10−4 and Ra = 4 × 107 show another difficulty arising here. For
weaker perturbations up to g = 60%, the slope in figure 3.28 is much stronger, whereas
it flattens for higher g. Obviously, for the weak perturbation, the EAA mode is activated
more and more, whereas for g > 60% a saturation appears. This saturation is given if the
convection is dominated by the EAA mode. Thus further increase of g leads to a weaker
increase of the temperature anomaly. We will focus for the scaling attempt on cases where
the EAA mode is saturated.

We restrict the amount of data to g = 100% and plot the temperature anomaly as func-
tion of supercriticality Ra/Rac in figure 3.29 as log-log plot. We fit further the decrease
of temperature anomaly [∂T/∂ϑ]rms with increasing supercriticality Ra/Rac with power
laws of the form

∂T
∂ϑ

rms

= m
(

Ra
Rac

)n

. (3.17)
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and find

E m n

3.0 × 10−4 0.5319 −0.5728

1.0 × 10−4 0.3679 −0.5262

3.0 × 10−5 0.3725 −0.5396

(3.18)

These exponents are fairly close to those predicted by King et al. (2010) in a somewhat
different context (gray lines in figure 3.29). There the authors studies scaling laws for the
convective heat transfer in planetary dynamos measured by the Nusselt number Nu

Nu =
q0D
k∆T

. (3.19)

The Nusselt number measures the ratio between superadiabatic heat transport and the
convective part of this heat transport. The thickness of the thermal boundary layers δκ
scales as inverse of the Nusselt number (Spiegel 1971). The study by King et al. (2010)
inspected the radial temperature gradient distribution for small Ekman E and large tem-
perature contrast based Rayleigh numbers R. They proofed that the Nusselt number scales
with supercriticality such that Nu = (R/Rc)6/5. Our main interest is in the temperature
gradients in latitudinal direction. If we assume now, the thickness of the thermal bound-
ary layer δκ ≈ [∂T/∂ϑ]rms is representing the amplitude of the latitudinal temperature
anomaly, we should be able to reconcile the findings of King et al. (2010). Note, that in
this study a Rayleigh number R based on the temperature contrast, rather than the heat
flux was used. The two relate like R = Ra ∗ Nu−1. We find then

Nu ∝
(
RaNu
Rac

)6/5

(3.20)

Nu11/5 ∝

(
Ra
Rac

)6/5

(3.21)

Nu−1 ∝ δκ ≈

∂T
∂ϑ

rms

∝

(
Ra
Rac

)−6/11

. (3.22)

We added the slope of n = −6/11 as gray lines in figure 3.29 showing a good agree-
ment. Note, our calculated slopes for the different Ekman numbers are only constraint
by a few, sometime only two points. However, the striking agreement suggests, that the
temperature anomaly introduced by a CMB heat flux anomaly scales very similarly as
the radial temperature contrast given by the vigor of the convection as suggested by King
et al. (2010). We can go one step further and try to suggest the amplitude of thermally
driven zonal winds presumably this scaling law holds. Landeau and Aubert (2011) used
Rac ∝ E−4/3 for scaling the critical Rayleigh number. Thus we find for the estimate of the
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thermal wind according to equation 3.16

Re∗ =
Ra E

2
1
r0

∂T
∂ϑ

rms

Re∗ =
Ra E

2
1
r0

(
Ra
Rac

)−6/11

Re∗ =
Ra1−6/11 E1−6/11 4/3

2r0

Re∗ =
Ra5/11 E3/11

2r0
. (3.23)

The flux based Rayleigh number Ra and the Ekman number for the ancient Mars are given
by

Ra =
αρcpgqD4

νκ2 = 2 × 1028 (3.24)

E =
ν

ΩD2 = 3 × 10−15 , (3.25)

when using the values given in the introduction section 1.3 and by table 1.1. We find
Re∗ ≈ 2.66×108, thus a significant fraction of the total flow amplitude of a planetary core
(Re = 108...109). Note, that we have neglected an additional Ekman number dependence.
We will further discuss this result in the discussion section 6.

3.6.4 Parameter Dependence I - General Trends
In this section we collect the results of all numerical runs and show general dependencies
on the governing parameters. The data used for this study cover four different Ekman
numbers (E = 3.0 × 10−4, 1.0 × 10−4, 3.0 × 10−5, 1.0 × 10−5), several Rayleigh numbers
(Ra = 7.0× 106 up to 4.0× 108) and magnetic Prandtl numbers (Pm = 1.0 up to 5.0). The
heat flux variation g is bordered by g = 0 and g = 600%. Only the hydrodynamic Prandtl
number is kept constant (Pr = 1). The table 3.3 lists the different symbols (different
Rayleigh numbers and magnetic Prandtl numbers) and colors (Ekman numbers) used to
distinguish the parameters in the figures. If not described differently, the perturbation
amplitude scales the size of the symbols.

We had seen, the thermal wind balance holds for all our studied cases. The source of
the thermal wind is the latitudinal temperature anomaly, for which we suggest a scaling
law. The consequence of the strong thermal winds is a switch in the convective structure
from equatorially symmetric, but nonaxisymmetric columnar convection, to the equatorial
antisymmetric and axisymmetric EAA mode. It has been reported by Landeau and Aubert
(2011), that the EAA mode can emerge naturally from strong supercritical convection in
internal heated dynamos. We test this hypothesis in comparing the relative EAA strength
for unperturbed dynamos and such with a g = 100% CMB heat flux anomaly in figure
3.30. The colors are again given by the Ekman number and according to table 3.3. The
unperturbed cases show (lower curves in the figure) the natural emergence of the EAA
mode, thus being consistent with the results of Landeau and Aubert (2011). For the
lowest Ekman number used here (E = 3 × 10−4) we see, that the growth of EAA mode
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Figure 3.29: Amplitude of the temperature anomaly as function of supercriti-
cality for a subset of our model runs where g = 100%. Colors of the symbols
and linear functions indicate Ekman numbers. The symbols refer the cases,
whereas the colorish straight lines are least mean square fits calculated seper-
ately for each Ekman number. The grey lines indicate the prediction fom theory.
For details see text.

with increasing supercriticality Ra/Rac is limited and turns into a decrease of the EAA
mode when the convection is strongly supercritical. We interpret this as the effect of
the increasing stirring and mixing efficiency according to the more and more vigorous
convection overwhelming the intrinsic temperature anomalies given by the onset of EAA
flows. In other words, once the mixing is fast enough, the source of the EAA mode
(temperature anomalies) dissappear faster than the EAA mode can establish and further
promote them. The lower Ekman number curves (blue, black, red) in figure 3.30 do
not show this effect, but are not driven that far into supercriticality neither. The upper
curves denote the according g = 100%-cases, and show the same effect. The higher the
supercriticality, the weaker is the EAA mode.

As a second important feature, we investigated how the EAA mode grows if the am-
plitude of the boundary anomaly is increased. We studied this transition for E = 10−4

and Ra = 4 × 107 in section 3.3. In figure 3.31 we investigate the strength of the EAA
mode as function of the perturbation amplitude, while covering the whole data set. The
different colors in figure 3.3 relate to the different Ekman numbers, where the curves for
E = 3 × 10−4 (green) and E = 3 × 10−5 (black) match the curve for E = 10−4 (blue). At
a perturbation amplitude of g = 100%, all cases exceed (besides the low Ekman num-
ber case, red stars in the plot) in EAA strength 0.6, thus the EAA mode dominates or
at least contributes significantly to the convection. Note, the blue squares reflecting the
intensively studied runs (E = 10−4, Ra = 4 × 107 and with a broad coverage in pertur-
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E Ra Pm Symbol

3.0 × 10−4 1.0 × 107 5 O
3.0 × 10−4 3.0 × 107 5 H
3.0 × 10−4 6.0 × 107 5 4

1.0 × 10−4 7.0 × 106 2 ^
1.0 × 10−4 2.1 × 107 2 ◦

1.0 × 10−4 4.1 × 107 2 �
1.0 × 10−4 8.0 × 107 2 •

1.0 × 10−4 2.0 × 108 1 N
3.0 × 10−5 1.0 × 108 2 +

3.0 × 10−5 4.0 × 108 2 ×

1.0 × 10−5 4.0 × 108 2 ∗

Table 3.3: Overview of the symbols and colors used for some of the upcoming
plots. The color always refers to the Ekman number.
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Figure 3.30: Natural onset of the EAA mode (lower curves) and forced EAA
mode (upper) for different Ekman numbers and convective supercriticality. De-
tails are in the text.

bation amplitude g) shows the decline of the EAA mode once g exceeds 200%. As we
had seen during section 3.3 this is due to the southward migration of the shear zone be-
tween the zonal flow cells. As a consequence, the equatorial antisymmetry decreases and
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whereas the axisymmetry remains strong, thus the combined symmetry in the EAA mode
decreases as well. Interestingly, the red symbols denoting the few cases for E = 10−5

seem to have a much shallower onset curve for the EAA strength. This is indeed also
visible in the figure 3.30, where we limit the plots to g = 0 and g = 100% cases. It might
reflect the increasing importance of the Taylor-Proudman theorem, which does not allow
for z-gradients in axisymmetric flows to emerge.
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Figure 3.31: Relative strength of the EAA convective mode as function of
the perturbation amplitude g. Colors refer to Ekman numbers, the symbols to
different Rayleigh numbers. See table 3.3 for the full legend, and details in the
text.

The induction mechanism is shown to be affected by the EAA mode, whereas the ma-
jor contribution of the toroidal field is created by an ω-effect associated with the shear
between the zonal flow cells (see section 3.4). Figure 3.32 extends this proposal to the
whole data set in cross-correlating the EAA strength with the relative ω-effect ω∗ (see
equation 3.13 for the definition). The colors and symbols are again similar to the previous
plots and summarized in table 3.3 on page 100. The figure 3.32 shows, that whenever the
EAA mode is strong, the toroidal field is mainly induced by the shear of the zonal flows.
Even in the unperturbed cases (small symbols) the ω-effect amounts roughly 20%. The
relative ω-effect increases more or less linearly with the EAA mode and saturates around
ω∗ = 0.8 thus 80% of the toroidal field is ω-induced. Both, EAA mode and ω∗ can not
reach unity. For the EAA there is neccessarily always non-axisymmetric poloidal (and
toroidal as well) energy due to the convection, what is not coverd by the EAA symmetry.
The induction, on the other hand, has always a contribution of α-effect associated with
helical flows thus creates both, toroidal and poloidal field. Without the α-effect the dy-
namo will not work, since there wouldn’t be any poloidal field being subject to shear thus
creating toroidal field. Again the red symbols in figure 3.32 refering to the low Ekman
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number simulations seem to be somewhat exceptional. Even though the g = 100%-case
(upper red symbol) hosts an EAA strength of roughly 0.4, it does not show an strongly
increased ω-effect compared to the g = 0% reference case (lowest red symbol in figure
3.32). A lower Ekman number also reflects smaller viscosity and thus smaller flow length
scales. This smaller and faster convective length scales give stronger helical flow, thus a
more efficient α effect. Therefore the extra induction of toroidal magnetic field via the
ω-effect does not have a strong effect.
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Figure 3.32: Relative shear flow induced toroidal field measured by the rela-
tive ω-effect ω∗ cross-correlated with the strength if the EAA mode.

3.6.5 Parameter Study II - Peculiar Points

Here we collect special cases, which typically appear close to the onset of dynamo action.
Interestingly, close to the onset of dynamo action the imposed heat flux variation can help
to maintain magnetic field generation. For example, at E = 10−4, Ra = 7 × 106 and
Pm = 2, no dynamo can be found for g = 0% with a magnetic Reynolds number at the
small side with Rm = 55 (table A.1 first line). For g = 100%, however, a rather weak field
with Λ = 0.1 is sustained. The small extra Ω-effect promoted by the thermal wind seems
to help here. The Lorentz forces are too weak to suppress columnar convection and the
resulting field is a peculiar mixture of hemispherical and columnar dynamo action. We
find a relative EAA strength of 0.85, but the relativeω-effect remains small likeω∗ = 0.32.
Figure 3.33 shows the radial flow and field for that case. The solution is stationary in time,
but drifting and shows a m = 8 azimuthal symmetry.

A similar case can be found for E = 10−4, Ra = 4 × 107, Pm = 1 and g = 100%
although here the homogeneous boundary case already shows weak dynamo action. When
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increasing g further to 200%, however, the dynamo ceases because the still necessary
columnar dynamo action becomes incompatible with the stronger ω-effect.

At E = 10−4, Ra = 2 × 108 and Pm = 1 we find another case were the homogeneous
case fails but dynamo action is maintained for g ≥ 60%. Here the g = 0 is likely located
in the cusp region between dipole dominated and quadrupolar dynamos where somewhat
higher magnetic Prandtl numbers are required to guarantee dynamo action (see fig. 2 in
Kutzner and Christensen (2002)).

For E = 10−4, Ra = 7 × 106 and Ra = 4 × 107 we also varied the magnetic Prandtl
number. A rise of Pm leads to a larger relative ω-effect ω∗ due to the stronger magnetic
field and therefore stronger suppression of convective columns and more dominant zonal
flows. The magnetic Prandtl number provides a rough measure for the ratio of convective
to magnetic length scales on the diffusive end of the spectrum.

Figure 3.33: Radial magnetic field (top plot) at the CMB and radial flow at
mid-depth (bottom plot) for the peculiar case of E = 10−4, Ra = 7 × 106 and
Pm = 2 with g = 100% perturbation amplitude.
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4 Results II : Periodic Oscillations –
Parker Waves?

The transition from α2 to αω dynamos seems to coincide with the onset of the magnetic
oscillations, described in section 3.4.2. The convection in planetary cores is typically
dominated by the fast rotation, thus subject to a strong Coriolis force. The main force
balance is then geostrophic or magnetostrophic, depending on the strength and morphol-
ogy of the magnetic field. As a consequence of the strong Coriolis force, it is thought
that terrestrial planets do not show large ageostrophic zonal flows or differential rotation.
Therefore the core dynamo of a terrestrial planet is usually, in terms of the mean-field
theory, to first order an α2-dynamo (Olson et al. 1999, Aubert et al. 2008b, Wicht and
Aubert 2005). It would need a strong mechanism to enforce zonal flows yielding an ef-
ficient ω-effect. As shown above (section 3.4) the thermal winds promoted by the strong
latitudinal temperature anomalies provide strong zonal flow shear, where axisymmetric
toroidal field is induced by an ω-effect. This thermal wind is ageostrophic, since it shows
large variations of the zonal flow along the latitude.

A model for oscillating dynamo waves in an αω-dynamo was introduced by Parker
(1955) in order to explain the solar cycle. The solar dynamo is maintained by large scale
differential rotation at the bottom of the convection zone, where a substantial ω-effect is
inducing the toroidal field of the Sun and helical convection within the convection zone.
Here we test, by using a simplified dispersion relation, whether the observed magnetic
oscillations in our simulations are of the same origin as the Parker waves.

4.1 Introduction to Mean-Field Dynamos
The Parker model (Parker 1955) is based on the theory of kinematic or mean-field dy-
namos. In the theory of mean-field dynamos (Krause and Rädler 1980), or kinematic
dynamos in general, the effect of the Lorentz force on the flow structure is typically ne-
glected and only the induction equation is analyzed with a prescribed or parametrized
velocity field. This approach was very successful for investigating the cyclic solar mag-
netic field, see e.g. Proctor (2006), Ossendrijver (2003), Charbonneau (2010) for recent
reviews. The main aim of these theories is the analysis and understanding of the first
unstable modes, the onset of dynamo waves under the influence of shear flows, MHD tur-
bulence or different geometries. The dimensional induction equations was given by (see
eq. 2.62)

∂B
∂t

= ∇ × (u × B) − λ∇ × ∇ × B , (4.1)
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4 Results II : Periodic Oscillations – Parker Waves?

where we assumed the magnetic diffusivity λ to be a constant. In the mean-field dynamo
theory the magnetic and velocity field are separated into a mean part u, B and a fluctuating
or turbulent part u′, B′. The fluctuating contributions vanish when applying the averaging
method used to define the mean contributions. Then only the evolution of the mean field
is investigated while the action of the fluctuating field is parametrized. The derivation
of the mean field equations and the underlying average process can be found, e.g. in
Krause and Rädler (1980). The choice of the averaging method, typically with respect to
time, length scales or ensemble, needs to be defined according to the specific application.
Here we propose to use a separation via the length scales, and assume the mean field B
and the mean flow u to be axisymmetric, and the fluctuating contributions represent the
nonaxisymmetric flow and magnetic field. The special convective and inductive dynamics
in the hemispherical dynamos matches the requirements of such a treatment to a large
extend. The major contribution of kinetic energy is indeed axisymmetric. Our results in
section 3.3 shows, that the kinetic energy consists to roughly ≈ 80% of azimuthal flow, but
with smaller contributions of convective kinetic energy. The same is true for the magnetic
field, since it consists mainly of axisymmetric azimuthal toroidal field (≈ 80%) plus an
additional small-scale (and hemispherical) poloidal field.

Providing the separation as described above, the induction equation reads:

∂(B + B′)
∂t

= ∇ ×
[
(u + u′) × (B + B′)

]
− λ∇ × ∇ × (B + B′) (4.2)

∂B
∂t

+
∂B′

∂t
= ∇ ×

[
(u × B) + (u′ × B) + (u × B′) + (u′ × B′)

]
− λ∇ × ∇ × B − λ∇ × ∇ × B′ . (4.3)

Now we make use of the averaging properties. The general rules for the averaging, such
as commutability with derivatives or double averages are called ’Reynolds rules’ (Krause
and Rädler 1980). The average of the fluctuating contributions is by definition zero, thus
u′ = B′ = 0. Applying the averaging to the induction equation yields:

∂B
∂t

= ∇ ×
[
(u × B) + (u′ × B′)

]
− λ∇ × ∇ × B , (4.4)

which describes the induction of the mean field. To find an equation for the fluctuating
field, we subtract the full from the averaged equation and obtain

∂B′

∂t
= ∇ ×

[
(u′ × B) + (u × B′) + (u′ × B′) − (u′ × B′)

]
− λ∇ × ∇ × B′ . (4.5)

It is of advantage to neglect the second order contributions of the fluctuating field, thus
the terms (u′ × B′) and (u′ × B′) are both neglected here. This is called the ’first order
smoothing approximation’ (FOSA) or ’second order correlation approximation’ (see e.g.,
Stix (2002), Krause and Rädler (1980)).

In the equation for the mean field (equation 4.4), the term (u′ × B′) = E appears, this
is the so called ’mean electromotive force’. It induces mean field from the fluctuating or
turbulent flow and field. We consider the induction equation with FOSA approximation
for the fluctuating field B′

∂B′

∂t
= ∇ ×

[
(u′ × B) + (u × B′)

]
− λ∇ × ∇ × B′ , (4.6)
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and integrate this equation to find an expression for B′. Again, some simplifications are
applied. For simplicity, the mean flow u is assumed not to influence the turbulent field,
thus the term (u × B′) drops out. Additionally we drop the diffusive term, requiring the
magnetic diffusivity λ to be small. This is the widely used high conductivity limit (Krause
and Rädler 1980), for which the magnetic Reynolds number Rm of the turbulent flow
should be much larger then unity. As a test, we calculate Rm = Re Pm ≈ 70 (Parameters:
E = 10−4,Ra = 4×107, Pm = 2), where Re is a typical nondimensional velocity amplitude
of the non-axisymmetric poloidal flow. Then the equation reduces to

∂B′

∂t
= ∇ × (u′ × B) (4.7)

= u′ · ∇B + B · ∇u′ , (4.8)

where two additional terms proportional to either ∇ · u′ or ∇ · B drop out due to the
incompressibility of the flow and the non-existence of magnetic monopoles, respectively.
The turbulent magnetic field B′ is then a function of the turbulent flow u′ and the mean
magnetic field B. To find an expression for the mean electromotive force E depending on
u′ and B, a Taylor expansion of the turbulent field with respect the turbulent flow and the
mean field is applied. The details of this expansion can be found in Krause and Rädler
(1980) or Rüdiger and Hollerbach (2004).

E = (u′ × B′) = α · B − β : ∇B + h.o.t. , (4.9)

where α and β are tensors of 2nd and 3rd rank and depend on the turbulent velocity u′. If
the turbulence u′ is homogeneous, i.e. independent on the spatial position, and isotropic,
i.e. independent of direction, both α and β contract to pseudo-scalars, such that:

αi j = αδi j (4.10)
βi jk = βεi jk. (4.11)

Inserting this approximation (E = αB − β∇ × B) into the mean field induction equation
(eq. 4.4) leads to

∂B
∂t

= ∇ ×
[
(u × B) + (αB − β∇ × B)

]
− λ∇ × ∇ × B (4.12)

= ∇ × (u × B) + ∇ × αB − (β + λ)∇ × ∇ × B . (4.13)

Therefore the β-term is acting as an additional diffusion and we combine both into the
turbulent diffusivity λT = β + λ. This is already a useful equation, as long as knowledge
of α is either provided or not needed, depending on the application. Attempts to directly
evaluate the coefficients of the α-tensor from 3D numerical simulations were made by
Schrinner (2011), Schrinner et al. (2005, 2007), where the studies compare the applica-
bility of the mean field approach to direct numerical simulations. However, we want to
derive a dispersion relation for the dynamo waves and therefore describe the α-effect in
more detail. Even though it would be possible to use this so called ’test field method’
(Schrinner 2011) and explicitly calculate the components of the α-tensor, we restrict us to
a simpler procedure. If isotropic turbulence is assumed α is a pseudo-scalar field

α = −
τ

3
u′ · ∇ × u′ (4.14)
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and is thus proportional to the azimuthally averaged helicity of the turbulent velocity
field. The graphical interpretation of this induction mechanism, was given by Parker
(1955). This ’Parker Loop’ mechanism, assumes that a horizontal field line is bended by
the convection into the vertical direction, twisted around a vertical axis and thus forms
magnetic field perpendicular to the initial horizontal field line (Proctor 2006). A new
unknown, the correlation time τ appeared. It reflects the time for which the mean field
does still depend on the (or ’memorizes’) its state during an earlier time. We estimate τ
as the ratio of a convective length scale and a typical convective flow amplitude.

For the further analysis of the mean induction equation, we introduce the separation
into poloidal and toroidal field. If we assume axisymmetry, the toroidal field only has an
azimuthal component. The poloidal field is described as the curl of the magnetic vector
potential a, what also has only an azimuthal component.

B = b + ∇ × a = bêφ + ∇ × (aêφ) (4.15)

The curl of a toroidal (poloidal) field is then purely poloidal (toroidal), where the cross
product of two toroidal (poloidal) fields vanishes. The induction equation for the mean
field reads then:

∂(b + ∇ × a)
∂t

= ∇ ×
[
(u × b) + (u × ∇ × a) + αb + α(∇ × a)

]
− λT∇ × ∇ × b

− λT∇ × ∇ × ∇ × a . (4.16)

We separate terms which contribute to the poloidal and toroidal field, respectively. The
induction for the two fields are obtained as:

∂(∇ × a)
∂t

= αb − λT∇ × ∇ × a (4.17)

∂b
∂t

= (∇ × a) · ∇u + ∇ × (α∇ × a) − λT∇ × ∇ × b (4.18)

A constant α was used, and we neglected the advection terms (u · ∇(∇ × a)). As we will
show later, the magnetic oscillations found during section 3.4.2 are not influenced by the
advection.

In the famous work of Parker (1955), he investigated the behavior of the solutions of
the mean field induction equation on a plane layer, known as ’Parker model’. Similar
to Parker (1955) and Schrinner et al. (2011) we introduce a cartesian coordinate system
(x, y, z) corresponding to the spherical coordinates (φ, ϑ, r). Further, we write the toroidal
and poloidal field b, ∇ × a as scalar fields, since they depend only on x-direction (φ
before), such that b = b ex and ∇ × a = ∇ × a ex. The mean velocity is simplified to
u = u ex. The shearing term corresponding to an ω-effect has then two contributions,
namely

∇u · (∇ × a) =
∂u
∂y
∂a
∂z

+
∂u
∂z
∂a
∂y

(4.19)

The first describes the shearing due to variation in the zonal flow along the colatitudinal
direction y (ϑ before), whereas the second describes the shear due to variations in the
radial direction z (r before), what is rather small (see section 3.3.1). Similar to the nondi-
mensionalization of the full MHD induction equation (see section 2.6 and equation 2.68),

108



4.2 Parker Waves and Dispersion Relations

we introduce a magnetic Prandtl number, but here the turbulent magnetic diffusivity λT is
used. The final set of equations describing our simplified mean field dynamo are then:

∂a
∂t

= αb +
1

Pm
∆a (4.20)

∂b
∂t

= − α∆a︸︷︷︸
α

+
∂u
∂y
∂a
∂z︸︷︷︸
ω

+
1

Pm
∆b (4.21)

This set of equations yield direct insights into the induction mechanism. The induction of
poloidal field is exclusively done by the α-effect, the creation of toroidal field can be done
by either α-effect (first term) or via shearing (ω-effect, second term). Parker (1955), Busse
and Simitev (2006), Schrinner et al. (2011) used a pure αω-dynamo model to describe the
emergence of dynamo waves. Dropping the α-effect from the induction of toroidal field
might not be applicable for our model. Even though up to 80% of the toroidal field is
induced by the shear, the additional α-induced contributions might still have an effect on
the observed frequencies. Therefore we follow both possibilities.

4.2 Parker Waves and Dispersion Relations
Plane waves can be used to derive an eigenvalue equation. We use the notation of Schrin-
ner et al. (2011) for consistency:

a = â exp (ik · r + σt) (4.22)

b = b̂ exp (ik · r + σt) , (4.23)

where σ = γ + iν is the complex growth rate and k = (kx, 0, kz) is the wave number.
Firstly we solve for the pure αω-dynamo (equation 4.21), thus dropping the α-term in the
equation for the toroidal field. Inserting the plane wave ansatz gives

σâ = αb̂ −
k2

Pm
â (4.24)

σb̂ = ikz
∂u
∂y

â −
k2

Pm
b̂ . (4.25)

To combine both equations into one, we first bring the diffusive part on the left hand side.(
σ +

k2

Pm

)
â = αb̂ (4.26)(

σ +
k2

Pm

)
b̂ = ikz

∂u
∂y

â , (4.27)

which then leads to the dispersion relation(
σ +

k2

Pm

)
=
√
α

√
ikz
∂u
∂y

. (4.28)
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The square root of a complex number (m + in) is in general given by

√
m + in =

1
√

2

[√
√

m2 + n2 + m + i sgn(n)
√
√

m2 + n2 − m
]
. (4.29)

Then we find for the growth rate γ and the frequency ν as the real and imaginary part of
this root:

γαω = −
k2

Pm
+

√
α

2

√
kz
∂u
∂y

(4.30)

ναω =

√
α

2

√
kz
∂u
∂y

. (4.31)

This shows that the frequency increases like the square root of the zonal flow shear. Fur-
thermore, we derive a second dispersion relation while keeping the second α-term. In-
serting the plane wave ansatz into the full equation 4.21, gives

σâ = αb̂ −
k2

Pm
â (4.32)

σb̂ =

(
αk2 + ikz

∂u
∂y

)
â −

k2

Pm
b̂ . (4.33)

Similar to the pure αω model, we derive a dispersion relation(
σ +

k2

Pm

)
=
√
α

√
αk2 + ikz

∂u
∂y

(4.34)

The above introduced relation for the root of complex numbers (equation 4.29) is applied.
This yields:

γα2ω = −
k2

Pm
+

√
α

2

√√√√(
αk2)2

+

(
kz
∂u
∂y

)2

+ αk2 (4.35)

να2ω =

√
α

2

√√√√(
αk2)2

+

(
kz
∂u
∂y

)2

− αk2 . (4.36)

The mathematical differences 4.31 shows already that this α2ω-approach predicts smaller
frequencies. The difference depend on the relative amplitude of zonal shear and the α-
effect.

4.3 Evaluating the Helicity
Before we compare the frequencies measured from the time evolution of Gauss coeffi-
cients with the prediction from the two dispersion relations, we have to quantify how to
calculate the helicity h. The α-effect is proportional to the kinetic helicity, thus estimating
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the potential of inducing magnetic field via helical flows. The MagIC code (Wicht 2002,
Christensen and Wicht 2007) calculates the azimuthally averaged helicity out of the full
flow velocity

h(r, ϑ) = u × (∇ × u) , (4.37)

and integrates h over a single hemisphere. This method works fine, if the axisymmetric
flows do not contribute. Typically zonal flows are expected to be small for planetary dy-
namo models. But here very strong zonal flows are induced by the CMB heat flux anomaly
in the form of thermal winds. The divergence of this thermal winds at the rigid walls will
create a significantly amount of additional vorticity perpendicular to the flow, thus helic-
ity. In the boundary driven models we study here, the helicity should be constrained to the
southern hemisphere along with the convective motions and explicitly being hemispheri-
cal. To analyze the interplay of zonal flows and the rigid mechanical boundary conditions,
we investigate radial profiles of the helicity averaged over a single hemisphere such that

h(r) =

∫
u × (∇ × u) sinϑ dϑ , (4.38)

where the integral is taken either over the northern or the southern hemisphere. Figure 4.1
shows the radial helicity profile for the northern (red) and southern hemisphere (blue) as
function of the radius for a standard boundary forced case with E = 10−4, Ra = 4 × 107,
Pm = 2 and g = 100%. The large peaks close to the outer boundary are visible in
both hemispheres and comparable in amplitude hence suggesting the influence of the
zonal flows. The sign is opposite in both hemisphere, since the zonal flow is eastward
in the north and westward in the south. The large zonal flows will have to vanish at the
rigid boundaries. This obviuosly introduces large amounts of helicity which does not
contribute to the α-effect. To avoid this problem, we use only the nonaxisymmetric flow
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Figure 4.1: Radial profile of the helicity for northern (red) and the southern
hemisphere (blue).
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contributions and recalculate the helicity

h(r) =

∫
u′ × (∇ × u′) sinϑ dϑ . (4.39)

The avoid problems with the mechanical boundaries, we further cut out the double thick-
ness of the Ekman layers δE from the radial profiles. The Ekman layer gives the thickness
of the mechanical boundaries, if the motion is dominated by Coriolis force and its thick-
ness is of the order of δE = E1/2 (Soward and Dormy 2007). Figure 4.2 shows the radial
profiles of the azimuthal averaged helicity calculated from the non-axisymmetric flow for
the northern (light blue) and southern (orange) hemispheres and profiles (blue/red) if we
cut the points being inside the double thickness of the Ekman layer. The usage of the
nonaxisymmetric flow decreased the helicity dramatically and brought in the expected
hemispherical asymmetry as shown by the light blue and orange curve in figure 4.2. Cut-
ting the boundaries might be a valid approximation, since the potential to create magnetic
field close to the boundaries is only given when there is magnetic field. Toroidal field has
to decay to zero at the inner and outer boundaries. Hence the thickness of magnetic and
flow boundaries are comparable, because the magnetic and viscous diffusivity in terms of
the magnetic Prandtl number is of order unity, the helicity introduced by the rigid walls
might not create poloidal field simply because the toroidal needed for such a process is
not present there. The boundary cutted helicity (figure 4.2, blue and red curves) are used
from now.
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Figure 4.2: Radial profile of the helicity for northern (red) and the southern
hemisphere (blue).

Interestingly, the modified kinetic helicity h(r) for the southern hemisphere (same fig-
ure, red blue curve) changes the sign in the shell. Thus, we plot the radial profiles of the
modified helicity for several perturbation amplitudes for the northern (figure 4.3 top plot)
and southern hemisphere (same figure, bottom plot). For the homogeneous reference case
(g = 0%, red curves) the helicity is equatorially antisymmetric and negativ (positiv) for all
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radii in the northern (southern) hemisphere. An equatorially antisymmetric helicity might
create an equatorially antisymmetric magnetic field, such as the dipole field for that case.
If now the perturbation amplitude is increased the helicity in the northern hemisphere de-
creases according to the reduction of convection in the northern hemisphere (other curves
in figure 4.3, top plot). For the southern hemisphere the helicity becomes more negative
close to the inner core boundary with increasing g and remains positive close to the outer
core boundary. Thus a hemispherical helicity creates a hemispherical magnetic field.
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Figure 4.3: Radial profile of the helicity for northern (upper plot) and the south-
ern hemisphere (lower plot) for different perturbation amplitudes.

Even though interesting to see, our main interest is an estimate of the total helicity
on the southern hemisphere in order to work with the dispersion relations for the mean
field αω and α2ω dynamos. Since the helicity changes sign, a simple integration over the
radius will not provide the correct measure of the potential to induce magnetic field via
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the α-effect. Instead, we use the rms helicity of the southern hemisphere

hrms
S H =

[∫ π

π/2

∫ ro−2δE

ri+2δE

(
u′ × (∇ × u′)

)2r2 sinϑ dϑ dr
]1/2

. (4.40)

The radial integration is restricted to points which are two Ekman layer thicknesses away
from the boundaries.

4.4 Application to Hemispherical Dynamos
The liability of the used assumptions can be justified, when comparing the predicted
frequencies with those measured from the numerical simulations. Given the numerous
approximations involved it is not expected to match the measured frequencies very accu-
rately, the calculated dispersion should at least predict the correct order of magnitude and
follow the same trend, e.g. when increasing the shearing. In the 3D simulations the trans-
formation from classical columnar dynamo into the hemispherical solution can be studied
while varying the amplitude of the relative strength of the heat flux anomaly. When the
hemispherical convection mode is strong, magnetic and velocity field is strongly axisym-
metric and thus more applicable to the mean field theory.

Busse and Simitev (2006) and Schrinner et al. (2011) simplified the dispersion relation
further in approximating the wave number kz and the derivatives with typical length scales.
We follow that approach and evaluate the shear term ∂u/∂y such that

∂u
∂y
≈

u
δy

=
Re∗

δy
, (4.41)

where δy is the characteristic variation length scale of the shear in latitudinal direction
and Re∗ is the Reynolds number associated with the axisymmetric energy (as in equation
3.16, in section 3.6.4). It is reasonable that, δy is half the circumference along y-direction
(ϑ before) at mid depth.

δy ≈ π(ri + ro)/2 ≈ π , (4.42)

where ri = 0.54 and ro = 1.54, the nondimensional inner and outer core radii. The
characteristic length scale in radial direction is then δz ≈ (ro − ri) = 1, the shell thickness.
The wave numbers kz and ky correspond to the 2π-th of the equivalent inverse length scale
and are given by:

kz =
2π
δz

= 2π (4.43)

ky =
2π
δy

= 2 (4.44)

k2 = 4 + 4π2 . (4.45)

The definition of the α quantity (equation 4.14) contains not only the helicity, but also the
correlation time τ. For this we use

τ =
dcon

Recon , (4.46)
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where dcon is a characteristic convective length scale. We take the mean degree l from the
spectrum of the nonaxisymmetric kinetic energy to evaluate dcon = 1/l. The frequencies
predicted in a pure αω model ναω, and for the more realistic α2ω model να2ω are then
roughly:

ναω =

√
α

2

√
kz

Re∗

δy
(4.47)

να2ω =

√
α

2

√√√√(
αk2)2

+

(
kz

Re∗

δy

)2

− αk2 . (4.48)

Figure 4.4 tests the two different dispersion relations. It is obvious that the second α-
term significantly reduces the frequencies. Furthermore, the α2ω-dispersion fits slightly
better the observed frequencies obtained from the time evolution of the Gauss coefficients
(see figure 3.18). The misfit increases strongly at small Re∗ where the system is in a non
or weakly perturbed state and the ω-effect is very weak and the mean field assumptions
therefore break down. The better agreement of the frequencies with the α2ω dispersion
at larger Re∗ indicates that the α-effect still plays a role for toroidal field production.
Both dispersion relations show the same trend for increasing the shear amplitude, what
is characteristic feature of the Parker waves (Parker 1955). The two dispersion relations
differ only by a factor of two or three. If one takes the numerous simplifications and
estimates into account we can conclude that both might fit.
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Figure 4.4: Frequencies measured from the evolution of the Gauss coeffi-
cients (blue triangles), the frequencies calculated by the αω (eq. 4.31, green
circles) and the α2ω (eq. 4.36, red squares) dispersion relation as function of
the zonal flow amplitude given by Re∗.
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Yoshimura (1976) studied the evolution of Parker waves in the solar context. There
it was found that the 22-year-cycle of the solar magnetic field can be explained with a
mean field dynamo approach (Stix 2002, Rüdiger and Hollerbach 2004). On the sun,
the field changes polarity every 11 years, whereas periods of strong magnetic field are
associated with the presence of sun spots and other magnetically driven activity on the
solar surface. The sunspots show a characteristic migrating behavior, where the spots
appear pairwise (but with different polarity) on either side of the solar equator in higher
latitudes. Then they migrate equatorwards, describing the typical pattern of the famous
butterfly diagrams. The sunspots represent the poloidal part of the magnetic field. For
the sun it is believed, that a mean field model of a αω-dynamo type can describe the
correct reversal and migration properties of the solar magnetic field (Yoshimura 1976).
The direction of the Parker dynamo wave depends on the product of α-effect and the
zonal flow gradient thus the ω-effect and their signs. The ω-effect is associated with the
differential rotation, where the strongest radial gradients of the angular velocity reside
at the bottom of the convective zone (tachocline). It might be a difficult task, to predict
the dominant sign of the α-term in the convective hemispheres of the sun. Therefore
several mechanism were proposed to explain the equatorward migration of the sunspots
associated with the poloidal field. Tobias and Weiss (2007), Rüdiger and Hollerbach
(2004) give recent reviews on that issue.

We propose, that the dynamo waves found in the hemispherical dynamos share char-
acteristics with the solar magnetic field and its cyclic dependence beyond the dispersion
relation for the Parker waves. Therefore we firstly show a series of axisymmetric poloidal
field lines and axisymmetric toroidal field during half a wave cycle in figure 4.5. The left
halfs show the toroidal field and the right halfs the poloidal field lines. The cycle can be
interpreted as starting a mid southern latitude at the outer boundary (compare figure 4.5,
small red patch, plot 1). Here normal polarity field (red) is amplified (2), moves radially
inward (3,4) and then northward (5,6) along the inner boundary. It then starts to move
radially outward (7,8) and finally southward along the outer boundary to close the cycle.
During the cycle cancellations and variations in the production efficiency lead to variation
in the field strength.

To compare this to the migration direction predicted from mean field αω dynamos, fig-
ure 4.6 shows the isocontours of the zonal averaged angular velocity. Yoshimura (1976)
showed how the signs of α-effect and differential rotation or shear, ∂u/∂y affects the prop-
agation direction. Figure 4.6 shows isocontours of the angular velocity, what is propor-
tional to the zonal velocity and changes from strongly westward in the northern hemi-
sphere to eastward in the southern. This gradient in latitude (y-direction in our notation)
seem to be the major source of the gradients in the angular velocity, a variation in radial
direction is not clearly visible. Note, that we had neglected the shear along the radius
(z-direction). The gradient ∂u/∂y > 0 everywhere in the shell except for the region inside
the tangent cylinder at the southern pole. The sign of the α-effect flips at half radius of
the shell, as shown in figure 4.3, lower plot. Thus the product α ∂u/∂y is negative (pos-
itive) close to outer (inner) boundary, representing an southward (northward) migration
(Yoshimura 1976, Rüdiger and Hollerbach 2004). This seems to be consistent with the
migration of the dynamo wave shown in figure 4.5. It should be noted, that the numerous
simplifications included in the mean field model might just be marginally satisfied. Even
though the main field and flow is indeed axisymmetric, we further assumed, besides other
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4 Results II : Periodic Oscillations – Parker Waves?

approximations, that the zonal flow gradient is only strong for the latitudinal direction.
Especially close to the southern pole, this might be true. Also we assumed the α to be
constant and isotropic, although we had seen that the helicity is strongly hemispherical
and the turbulent convection in the southern hemisphere has strong gradients and time
dependencies. Thus we expect derivations from the simplified mean field theory. But it
remains an interesting fact, that if applying a simple αω/α2ω dynamo model, the order of
magnitude predictions for the frequencies of the magnetic oscillations and the migration
are consistent with Parker’s wave theory (Parker 1955).

Furthermore, Yoshimura (1976), Tobias and Weiss (2007) pointed out, that a αω dy-
namo wave migrates along isolines of constant angular velocity. This (for our case) radial
motion is visible at the equator. The field migrating northward close to inner boundary
(see figure 4.5, red polarity, plot 7 and 8), moves outwards and pushes the other (blue)
polarity ahead and southwards.

As another agreement with the Parker dynamo waves, in some of our simulations
we can observe a phase shift between the poloidal and toroidal magnetic field energy.
Figure 4.7 shows the time evolution of both fields during several magnetic oscillations.
Yoshimura (1976) predicted from the analysis of mean field αω waves, that the poloidal
field is ahead of the toroidal field by a phase shift of π/4. Note, in the study this is used
to determine the sign of of α in each hemisphere. Figure 4.7 clearly brings out a phase
shift. The black bar denotes a full cycle time (representing 2π), and the phase shift of π/4
in blue color. However, the phase shift fits quite well to time evolution of the fields.

For the sun the evolution of the sunspots were used to measure the frequencies and
migration behavior of the solar field. A so called ’butterfly diagram’ plots the radial
field at the surface or a scatter plot of the sunspots as function of the time. We use the
axisymmetric poloidal field to plot a similar figure (4.8). The amplitude and direction of
axisymmetric field at the CMB is shown as function of time (here real time) and latitudinal
angle. The time scales of the solar cycle are roughly 22 years, where here the slowest
waves in our model have oscillation periods of roughly tens of thousands years. The
details of rescaling the viscous to physical time is described in section 5. In figure 4.8
the slopes of the magnetic field patches vary with latitude. The southward migration of
a patch of given polarity is rather slow as shown by smaller slopes, whereas the inward
migration and amplification is fast.
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𝝏𝒖

𝝏𝒚
> 𝟎 

𝛂 < 𝟎 

𝛂 > 𝟎 

Figure 4.6: Gray-shaded isocontours of the zonal averaged angular veloc-
ity in black and white shows the main shear due to zonal flow gradients is
in latitudinal direction. The shear ∂u/∂y associated with the ω-effect is posi-
tive everywhere, whereas the α-effect changes sign from α > 0 near the inner
boundary to α < 0 close to the outer boundary (CMB). For comparison in figure
4.3, lower plot the radial profile of the helicity was discussed.
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cycle time 

π/4 phase 

Figure 4.7: Time evolution of poloidal (red) and toroidal (green) magnetic field
during several wave cycles. There seems to be a consistent phase shift be-
tween the two energies. Time scale at the left bottom denotes a full cycle and
the appropriate π/4-fraction of it.

Figure 4.8: Time evolution of the poloidal CMB field as a function of latitude for
two different frequencies. Note, that time scale is rescaled to kyrs and slightly
different in the right plot. We refer to the section 5 for the details of the time
rescaling.
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5 Application to Mars and Discussion

The main research highlights of the this chapter are compiled in a publication named ’A
hemispherical dynamo model: Implications for the Martian crustal magnetization’ and
re-submitted after moderate revision to the ’Physics of the Earth and Planetary Interiors’
(PEPI).

In this section we aim to relate our findings to the crustal magnetization of Mars.
Although we could show that it is indeed possible to enforce a substantial hemispherical
dynamo by combining internal heating as driving mode and apply a degree-1 anomaly
on the CMB heat flux, there are further constraints for using such magnetic fields as an
admissible model for the hemispherical pattern of the crustal magnetization on todays
Mars. To compare our numerical results to the satellite and meteorite measurements,
we have to continue the magnetic fields upwards to the surface and rescale time and
magnetic field strength to physical units. As mentioned in the introduction (section 1.4.2),
the measured pattern of the crustal magnetization reveals a distinct hemisphericity, thus
most of the magnetic anomalies are located south of the equator (Acuña et al. 1999).
Figure 5.1 shows a reconstruction of the radial magnetic field according to the crustal
magnetization measurements by the MGS space craft (Langlais et al. 2004). Amit et al.
(2011) calculate a root mean square amplitude of the magnetic field in the northern and
southern hemisphere of 8.4 and 29.5 nT, respectively.

To address whether our model provides a realistic explanation for the crustal magne-
tization of Mars, we compare the numerical results to the hemisphericity of the crustal
field and furthermore to predictions of the ancient dynamo field strength. Estimates of
the strength of the magnetizing field are based on paleomagnetic analysis of Martian me-
teorites (ALH 84001) and range from 5 to 50 µT (Weiss et al. 2002). Details on the
laboratory investigation of that meteorite can be found in section 1.4.2 or in greater detail
in Weiss et al. (2010) and Langlais et al. (2010).

In our numerical simulations magnetic field strength is given in terms of the square
root of the Elsasser number Λ = B2/µ0λρΩ. We rescale to dimensional units, by assuming
a mean density of ρ = 7000 kg/m3, mean rotation rate of 7.1 × 10−5 s−1, magnetic diffu-
sivity λ = 2 m2/s, radius of surface and CMB rsur = 3.39× 106 m and rsur = 1.55× 106 m,
respectively. The physical parameters are taken from table 1.1 and can be found in
Morschhauser et al. (2011) or Jones (2007).

An alternative way of rescaling magnetic field strength has been proposed by Chris-
tensen and Aubert (2006) and relies on the convective power available to drive the dy-
namo. However, our simulations show that the magnetic field strength significantly de-
pends on the perturbation pattern and amplitude and therefore their scaling laws based
on homogeneous temperature boundary conditions do no apply. Even if the convective
power as given by the Rayleigh number is kept constant, the field strength varies strongly
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Figure 5.1: Reconstructed radial magnetic field at 200 km altitude from
Langlais et al. (2004) using equivalent dipole sources.

due to the gradual change to the hemispherical magnetic field with significantly lower
magnetic energy.

The rescaling of the time can be done in different ways. The nondimensional time
scale used in this study is the viscous diffusion time τν = D2/ν. However, since we are
mostly interested in the dynamo process this is converted into a magnetic diffusion time
scale τλ by multiplying with the magnetic Prandtl number Pm:

τλ =
D2

λ
= τνPm . (5.1)

The time is then rescaled by setting τλ to a realistic planetary value. Using D = 1.09 ×
106 m we find τλ = 17 kyrs · Pm. In principle each of the nondimensional numbers could
be used for rescaling the time, since these numbers are defined as the ratios between time
scales (see table 2.2 for details). For example the magnetic Reynolds number Rm as the
ratio magnetic diffusive and advection time scale, D2/λ and D/U, respectively, can be
used as well if a characteristic velocity U is know. For the Earth, the secular variation
might give this velocity scale.

5.1 Surface Extrapolation
In order to describe the field magnetizing the crustal rocks, we extrapolate the result of the
hemispherical dynamo towards the planetary surface using a potential field extrapolation
(equation 5.9). This approach was applied to Earth’s magnetic field by Gauss and assumes
an electrically isolating mantle and thus no electrical currents in the mantle. The magnetic
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5.1 Surface Extrapolation

field in the absence of currents is equivalent to a simple diffusive process. The Maxwell
equation (∇ × B = j) then simplifies with j = 0 to

∇ × B = 0 . (5.2)

The magnetic field is then a conservative vector field and can be described as the gradient
of a scalar potential b

∇b = B . (5.3)

Applying a divergence operator on this equations yields the Laplace equation

∆b = 0 . (5.4)

In spherical coordinates the Laplace operator is defined as[
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1
r2 sinϑ

∂2

∂φ2

]
b = 0 (5.5)

One of the major inventions of Gauss was the description of such a potential field with
spherical harmonics (Kono 2007). When assuming the sources are located inside the
planet, Gauss proposal is

b = rsur

∞∑
l

l∑
m

(rsur

r

)l+1
Plm(cosϑ)

[
glm cos(mφ) + hlm sin(mφ)

]
, (5.6)

where rsur is the surface radius of Mars and Plm are the Schmidt-normalized associated
Legendre-polynoms, which are proportional to the spherical harmonics Ylm like

Ylm =
1
√

2π

√
2l + 1

2
(l + m)!
(l − m)!

Plm(cosϑ) (glm cos(mφ) + hlm sin(mφ)) . (5.7)

Here glm and hlm are named after its inventor Gauss coefficients (Kono 2007). Equation
5.6 for the magnetic potential b shows the structure of the product ansatz frequently used
for solving the Laplace equation. The radial dependence is proportional r−(l+1), whereas
the horizontal dependence is given by the spherical harmonics. For the Earth, the Gauss
coefficients measured by satellites are used to investigate the temporal evolution of the
geomagnetic field (Kono and Finlay 2007). Note, for the Earth the core field is only
visible for degree and order l,m < 13, because the higher modes are biased by the crustal
magnetization (Kono 2007, Purucker and Whaler 2007).

For the further investigation we want to restrict the analysis to the axisymmetric (or-
der or azimuthal wave number m = 0), because the main contribution of magnetic field
including the cyclic variations follow the axisymmetric field only. Figure 5.2 shows the
temporal evolution of several axisymmetric (red and black) and nonaxisymmetric (other
colors) Gauss coefficients. It can be seen, the regular oscillations of larger amplitude are
mainly carried by the axisymmetric modes. Interestingly they show the same frequency
but the signs alternate with the spherical harmonic degree l. The red (black) curve in fig-
ure 5.2 corresponds to the g10 (g20) thus dipolar (quadrupolar) spherical harmonic mode,
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5 Application to Mars and Discussion

which has a equatorial parity of antisymmetry (symmetry). Combining both with oppo-
site sign amplifies the magnetic field in the southern and weakens the field on the northern
hemisphere. We refer here to the figure 3.18 showing that all modes belonging to a sin-
gle symmetry family show same signs, where the dipolar is equatorially antisymmetric
and the quadrupolar family is equatorially symmetric. The nonaxisymmetric Gauss co-
efficients show irregular variations of much weaker amplitude (figure 5.2, green, blue,
orange curve). The investigation of the mean field induction equation yielded frequencies
for the axisymmetric (mean) magnetic field contributions. We tested the resulting disper-
sion relation against the frequencies measured from the axisymmetric modes and found a
good agreement.
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Figure 5.2: Time evolution of the several Gauss coefficients glm at the Martian
surface. The axisymmetric modes (red - g10 and black - g20) show regular
oscillations with large amplitudes, whereas the nonaxisymmetric (green - g11,
blue - h11 and orange - g22) have more irregular variations and are weaker in
amplitude. The parameters are E = 10−4, Ra = 4 × 107, Pm = 2 and g = 60%.

For the axisymmetric contributions is the azimuthal wavenumber m = 0 and all hlm =

0, hence the expression for the potential field simplifies to

b(r, ϑ, φ) = rsur

∞∑
l

(rsur

r

)l+1
glPl(cosϑ) . (5.8)

The radial field is given by the radial derivative of the magnetic potential:

Br(r, ϑ) =

∞∑
l

(l + 1)
(rsur

r

)l+2
glPl(cosϑ) . (5.9)
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5.1 Surface Extrapolation

This equation describes the radial dependence of a set of spherical harmonics mode
of degree l, where the mode decays with radius the faster the higher l is. The figure 5.3
shows this radial decay of the Gauss coefficients for the first six axisymmetric modes
when extrapolating from the CMB to the surface. The heat flux anomaly strength is here
g = 100%, the other parameters are E = 10−4, Ra = 4×107, Pm = 2 and Pr = 1. The core
mantle boundary is on the the left side at r/rcmb = 1 in figure 5.3, the surface at the right.
All modes decay depending on the degree l proportional to r−(l+2) for the field. Therefore
the field becomes increasingly dipolar with further extrapolation. In the figure we show a
hemispherical dynamo, what is dominated by l = 4 and l = 5 at the CMB, but the dipolar
mode l = 1 has the slightly largest amplitude at the surface.
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Figure 5.3: Decay of the amplitude of Gauss coefficients when extrapolating
the CMB field as a potential field of a hemispherical dynamo. Parameters:
g = 100%,E = 10−4,Ra = 4 × 107,Pm = 2 and Pr = 1

In figure 5.4 we compare the radial field at the CMB (first plot) and the surface (sec-
ond), using snapshots of the solution. The surface extrapolation damps the small scales
and also the field amplitude. Thus the field at the surface is more dominated by the modes
of larger degree l because of the decay proportional to r−(l+2). The increase in dipolarity
and decrease of magnetic field amplitude with increasing extrapolation distance is con-
trolled by the spectral distribution of the CMB field. The smaller the dominant magnetic
scales at the CMB the stronger are both effects. Note, here all axisymmetric and nonax-
isymmetric modes are used.
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Figure 5.4: Snapshot of the radial magnetic fields taken at the CMB (upper)
and at the planetary surface (lower plot) for a hemispherical dynamo. The
contour steps are 45µT (upper) and 0.75µT (lower). Parameters as in figure
5.3.

5.2 Hemisphericity
The surface extrapolations of our hemispherical dynamos should match the measured di-
chotomy of the crustal magnetization. This implies, that there appeared no major resurfac-
ing events altering the dichotomy significantly after magnetization because the measure-
ments are taken 3.7 Gyrs (Langlais et al. 2010) after the magnetization process occurred.
To measure the equatorial dichotomy of the magnetic field at the a given extrapolation
radius, we sum the unsigned magnetic flux over each hemisphere separately:

BN,S
r (r) =

2π∫
0

π/2,π∫
0,π/2

|Br(r, ϑ, φ)| sin ϑ dϑ d φ . (5.10)

Then, for example BN
r (r) denotes the surface integral of the unsigned radial field in the

northern hemisphere. The hemisphericityH(r) is then defined as:

H(r) =

∣∣∣∣∣∣BN
r (r) − BS

r (r)
BN

r (r) + BS
r (r)

∣∣∣∣∣∣ . (5.11)
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5.2 Hemisphericity

The hemisphericity is a function of radius according to the extrapolation away from the
core mantle boundary. A pure equatorial symmetric magnetic field such as a dipole, will
have by definitionH = 0, whereas a magnetic field residing in only one hemisphere will
have H = 1. For the crustal magnetization of Mars, Amit et al. (2011) obtained an rms
field strength of 29.5 nT in the southern hemisphere and 8.4 nT in the northern. They give
an uncertainty range of ±

√
3 nT. We find then for our hemisphericity measure

H(r = rsur) = 0.55 ± 0.1 . (5.12)

The strong hemisphericity of the Martian crustal magnetization puts some contraints on
the spectral distribution of the involve magnetic modes (Amit et al. 2011). We therefore
further investigate the spectral properties of our dynamos and calculate the hemisphericity
introduced above.

5.2.1 Synthetic Spectra
In section 2.9 it was mentioned that a hemispherical magnetic field needs equal con-
tributions of both: the dipolar (equatorially antisymmetric) and quadrupolar (equatorial
symmetric) family of magnetic modes. We will investigate the spectral representation
of the radial CMB and surface field regarding this property. The dipolar family are all
modes where the sum of degree l and order m is odd, which means they are antisymmet-
ric with respect to the equator. The so called quadrupolar family in turn does obey the
rule that l + m is even and is therefore symmetric with respect to the equator. Each family
alone would yield a hemisphericityH = 0, since the unsigned flux is always equatorially
symmetric. An appropriate combination of modes of both families is required to yield
a pattern of unsigned magnetic flux with equatorial asymmetry or ’hemisphericity’ and
valuesH > 0. To test the effect of such a spectral ’whitishness’, a simple test distribution
of the Gaussian coefficients is taken with gl = 1 for all l and r = rsur:

Br(ϑ) =

l=lmax∑
l=1

(l + 1)Pl(cosϑ) . (5.13)

The more modes are taken into account, the more the magnetic flux is concentrated to-
wards one of the poles. When all modes have a positive sign, the peak appears on the
northern pole. Whereas if the modes of quadrupolar family are multiplied with (−1), the
peak is located around the southern pole. Figure 5.5 shows the latitudinal distribution of
the radial field as a function of maximum number of modes lmax, where all modes have the
same amplitude but alternating signs depending on the affiliated symmetry family (dipolar
or quadrupolar). The lmax = 1-case on the left border of figure 5.5 is then a simple axisym-
metric dipole field. The further lmax increases, the more modes are added and the more
the field is concentrated at the southern pole and the more increases the hemisphericity.

In figure 5.6 we calculate the hemisphericities for ’spectral white’ fields up to maxi-
mum order lmax of one thousand. As expected, the hemisphericity H increases with the
maximum number of modes involved. Note, that surface hemisphericities are suggested
to be H(rsur) = 0.55 ± 0.1 (Amit et al. 2011). The ’spectral white’ fields match these
values from lmax = 3 and exceed the uncertainty at lmax = 6 (see figure 5.6). To obtain
H > 0.8 twenty modes are needed, whereas to reach unity a thousand seem sufficient.
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Figure 5.5: Radial field for a hypothetical axisymmetric dynamo with white
spectrum up to degree lmax (x-axis). In the y-axis the latitude is shown, with
0 - southern pole, π/2 - equator and π - north pole. The lmax = 1 field is only
an axisymmetric dipole. All fields are normalized such that the maximum peak
equals unity.

Thus significant contribution of small scale energy is needed, what is unlikely to be main-
tained again ohmic decay.
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Figure 5.6: Hemisphericity H of a synthetic hemispherical dynamo, con-
structed with an exactly white spectrum of lmax modes.

5.2.2 Numerical Spectra

We had seen, that a flat spectral distribution (’whitishness’) yields a strong hemisphericity.
In figure 5.7 we show the spectrum per degree l of the time averaged poloidal magnetic
energy of the full core shell. Again, the standard parameters are used here: E = 10−4,
Ra = 4×107, Pm = 2 and Pr = 1, where we vary the perturbation amplitude g. The g = 0
reference case with homogeneous CMB heat flux (figure 5.7, red curve) is clearly domi-
nated by the dipole mode (l = 1), whereas all the other modes (l < 1) are smaller by an
order of magnitude. The spectra of the perturbed (g < 0%) cases show more a whitish dis-
tribution, where the effect increases with increasing perturbation amplitude. The dipolar
component is exceeded in amplitude by some of the higher modes for the strong perturbed
case (light blue and yellow curve in figure 5.7). Since the magnetic field reverses in some
cases the time averaged spectra rather than the spectrum of the time averaged field is
taken. The total magnetic energy decreases with increasing the perturbation amplitude,
whereas the spectral representation changes from clearly dipole dominated (red curve in
figure 5.7) towards hemispherical (other curves). At g = 60% (pink curve) the spectrum
is indeed rather flat, what interestingly coincides with the onset of the dynamo waves. In
figure 3.18 the temporal evolution of the Gauss coefficients and the onset of the periodic
variations are shown. Since our major interest is in the axisymmetric surface field, we
computed the Gauss coefficients at the CMB associated with the poloidal spectrum dis-
cussed before. Figure 5.8 shows a simplified spectra in terms of the axisymmetric (m = 0)
Gaussian coefficients gl for the first 14 modes taken at the CMB. This agrees well with the
energy spectra (figure 5.7), showing that in the dipolar reference case (red curve in both
plots) clearly the modes of the dipolar family are promoted. For the dipolar reference case
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Figure 5.7: Poloidal energy spectra of full core shell by degree l for the dipolar
reference case (red), and several perturbed cases. Colors: g = 20% - green,
g = 50% - blue, g = 60% - pink, g = 100% - light blue g = 200% - yellow. The
parameters are E = 10−4,Ra = 4 × 107 and Pm = 2.

(red curves) the stronger (weaker) dipole (quadrupolar) family is visible by the zig-zag
pattern until l = 6. The hemispherical magnetic field (other curves) does not show such
a clear separation into the two families. Therefore the reference case has a strong equa-
torially antisymmetry and weak hemisphericity, whereas the flat spectra of the perturbed
case relate to a hemispherical field. For the leading modes up to l = 7 the distribution
flattens out, and becomes ’whitish’ at g = 60% (pink curve), where the oscillations set in.
Higher perturbations decrease the amplitude of the first modes, therefore the maximum
Gauss coefficient is around a spectral degree of l = 5.
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Figure 5.8: First 14 axisymmetric Gauss coefficients taken at the CMB by
degree l for the dipolar reference case (red), and several perturbed cases.
Colors: g = 20% - green, g = 50% - blue, g = 60% - pink, g = 100% - light
blue g = 200% - yellow. Parameters as in figure 5.7.

5.2.3 Hemisphericities from the Simulations

The hemisphericity will be affected by the extrapolation procedure. In figure 5.3 we had
shown the radial decay of several axisymmetric Gauss coefficients for the hemispherical
g = 100% case. Furthermore, the hemisphericity tends to be high if the leading modes
have a comparable amplitude. Thus the hemisphericity will be strongest if the leading
modes cross each other during the extrapolation. Figure 5.9 shows the hemisphericity of
the mean radial magnetic field intensity as a function of the extrapolation radius. In that
figure, the extrapolation radius is extended to several Mars radii, where the martian sur-
face is at r/rcmb = 2.1. The higher g, the larger the hemisphericity, but all curves tend to
zero, since the dipole mode is increasingly dominant with increasing extrapolation radius.
Figure 5.9 shows, that the hemisphericity of a hemispherical magnetic field can be signifi-
cant even at several planetary radii resulting in a deformed magnetosphere. Obviously, for
a stronger perturbation the maximum hemisphericity moves further out to larger radii. For
a magnetic field magnetizing rocks on the crust, the morphology at the surface is crucial.
We can find,H(r = rsur) > 0.5 for a perturbation of g = 100% (light blue curve in figure
5.9) at the Martian surface, what is comparable to the lowest estimates for hemisphericity
of the crustal magnetization thus the surface field of a hemispherical dynamo can indeed
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match the crustal hemisphericity. Even though the dipole becomes more and more im-
portant with outward extrapolation, it is indeed possible that the hemisphericity increases
with r/rcmb. This is the case, if the dipolar mode, or other modes of small l are weaker
than the leading modes. Due to the slower decay of the dipolar mode, it then crosses
the other modes at given extrapolation radius hence maximizes the hemisphericity. As an
example, the g = 100% case has leading modes of around l = 4, 5 at the CMB (see figure
5.8 light blue curve or figure 3.18) and a CMB hemisphericity of H(r = rCMB) = 0.77.
During the extrapolation towards the surface the spectral distribution changes according
the figure 5.3 where the dipolar mode is the strongest at the surface. At an extrapolation
radius of r/rCMB = 1.3 the hemisphericity peaks at H = 0.85 and drops until the surface
(r/rCMB = 2.1) down toH(rsur) = 0.55.
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Figure 5.9: Radial dependence of the magnetic hemisphericityH(r) for differ-
ent CMB heat flux perturbation amplitudes g. All curves tend to zero for larger
radii since the equatorially asymmetry decrease with decreasing small scales.
But for the dipole dominated reference case, the hemisphericity is always very
close to zero. Colors: red - g = 0, green - g = 30%, blue - g = 50%, pink -
g = 60%, light blue - g = 100%, orange - g = 150% and black - g = 200%.

Keeping in mind the magnetic field oscillations, we study the temporal evolution of
the hemisphericity in figure 5.10 at the cmb (green) and the planetary surface (red) for a
hemispherical dynamo with g = 100%. The time averaged value is given by the horizontal
lines. The variation is surprisingly strong and oscillates at twice the variation frequency
of the individual magnetic field Gauss coefficients. Since all coefficients roughly oscillate
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with the same period there are two instances during each each period where the hemi-
sphericity is particularly large since axial dipole and quadrupole have the same maximal
amplitude. Note, that H(rsur) (red curve) reaches maximal 0.8, what is also the maximal
value for the CMB variations (see figure 5.10, green curve). On the other hand, if both
are close to zero during an oscillation cycle, higher modes contribute stronger leading to
weaker hemisphericity.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

H

t

surface
CMB

Figure 5.10: Time evolution of hemisphericity H at the CMB (green) and sur-
face (red) for g = 100%. The horizontal lines are the according time averages.

We time average the hemisphericity over several viscous diffusion times to find a
reasonable characteristic value independent of the temporal variations. Figure 5.11 show
the hemisphericities calculated at the CMB (top plot) and the surface (bottom plot) for all
model cases as a function of the Reynolds number Re∗ based on the thermal winds (see
equation 3.16). The colors relate the different Ekman numbers, the symbols to different
Rayleigh numbers and the size of symbols is increased proportional to the square root of
the perturbation amplitude g. In table 3.3 on page 100 the symbols are described in greater
detail. The axisymmetric zonal flows in our model are based on the thermal wind balance.
Thus we drive stronger zonal flows, if the perturbation amplitude g is larger and make the
dynamo more and more hemispherical. As an example, the curve of Hcmb of E = 10−4

(figure 5.11, empty blue squares) first increase linearly with Re∗ and then saturates around
Hcmb ≈ 0.75 for Re∗ ≥ 200. This is consistent with the onset of the EAA mode since small
values of Re∗ denote the unperturbed reference case with homogeneous CMB heat flux
(smallest symbols) characterized by weak zonal flows and strong equatorial symmetry
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that goes along with a weak hemisphericity. All the other curves basically show the same
trend for the CMB values of H . But it can be seen that the cases with lower Ekman
number, such as E = 3 × 10−5 (black symbols)) and E = 10−5 (red) do not show the clear
relation as the other cases. This might be consequence of the weaker emergence of the
EAA mode for comparable anomaly amplitudes (see figure 3.30). There is a trade off

between g and Ra increasing either parameter leads to larger Re∗ values. For E = 10−5

Hcmb remains small at g = 100% and we could not afford to increase Ra here since larger
Ra as well as lower E values both promote smaller convective and magnetic length scales
and therefore require finer numerical grids.

If the poloidal field is extrapolated towards the planetary surface the hemisphericities
decrease because the equatorial symmetric dipolar mode becomes increasingly more im-
portant. In the bottom panel figure 5.11 we show the surface hemisphericity as a function
of Re∗. Additionally the measured surface values for the hemisphericity is marked by the
dark line and gray areas as uncertainties. Interestingly, we can only find large symbols
reflecting strong CMB heat flux perturbations matching gray area. The unperturbed and
weaker perturbed cases are either too symmetric in unsigned magnetic flux with respect
to the equator or the decay of H is too strong with increasing extrapolation radius. The
decay of the hemisphericity is controlled by the length scales of the CMB field. A larger
perturbation amplitude g (symbol size in the plot), a larger Rayleigh number or a larger
magnetic Prandtl number will decrease the magnetic length scales. As an example, the
green symbols referring to E = 3 × 10−4 are calculated with Pm = 5, thus the magnetic
length scales are rather small. There is only little difference between the hemisphericities
at the CMB (figure 5.11, upper plot) and the surface (same figure, lower plot). As a con-
sequence, to obtain a large hemisphericity at the surface, the length scales of the leading
magnetic modes need to be small enough for not being overwhelmed by the dipolar (or
other larger scale modes) mode. E.g., if there would be only the dipolar and the quadrupo-
lar mode with equal amplitude at the CMB, the hemisphericity will significantly decrease
while extrapolation.
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Figure 5.11: Top panel: Hemisphericity at CMB versus Re∗, the Reynolds
number based on the equatorially antisymmetric thermal wind.
bottom panel: Hemisphericity at the (imaginary) Martian surface.
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5.3 A Simple Cooling and Magnetization Model

Our numerical results obtained so far, suggest that it is indeed possible to find hemispher-
ical magnetic fields with appropriate hemisphericity matching the satellite measurements
(Acuña et al. 1999, Amit et al. 2011). Here we want to address the question how to trans-
late the surface magnetic field into a crustal magnetization pattern. In the introduction
(section 1.4.1) it was mentioned, that a ferromagnetic rock will imprint the ambient mag-
netic field when it cools under the Curie temperature. Rocks with a temperature higher
than the Curie temperature are heated before by impacts or volcanic activity. Further-
more Langlais et al. (2004) suggested, that the magnetization depth in the Martian crust
is between 20 and 40 km. It remains an open question, if a thick magnetized layer is
compatible with reversing hemispherical dynamo. The obtain an order of magnitude es-
timate of how fast and deep magnetization can grow if the magnetic field reverses, we
investigate a strongly simplified model describing the cooling and magnetization process.
We therefore analyze for the 1D heat conduction problem, as it is typically solved for
the magnetization in Earth if fresh oceanic crust is created at mid-oceanic ridges. When
this fresh crust is transported outwards at divergent plate boundaries and cooled down, it
preserves the ambient field direction and strength when reaching the Curie temperature.
If the dynamo undergoes polarity reversals, the new crust will show stripes of both polar-
ities. This has led to the conclusion, that the magnetic field of the Earth is of reversing
nature.

For the magnetization of the Martian crust the situation is different. The crust might
have been magnetized without crustal spreading to a depth of 20 km or 40 km (Langlais
et al. 2004). Therefore the magnetization history in the Martian crust is a function of
depth and not distance from a crustal spreading zone as for the Earth. Note, the natural
border of crustal magnetism in depth is given by the depth at which the Curie temperature
is exceeded due to the thermal gradient. During the time of dynamo action and crustal
genesis, the Curie depth was maybe rather similar to the magnetization depths proposed
by Langlais et al. (2004).

Here we investigate the cooling time of a 1D-pile of crustal rock, which is initially
heated up to the solidus temperature everywhere. The upper boundary is the surface of
the Mars, whereas the lower describes the depth of the Curie temperature. The heat is
evacuated through heat conduction, not due to convection. Thus we solve for the 1D heat
conduction equation.

∂T
∂t

= κ
∂2T
∂x

. (5.14)

Crustal rocks a rather poor heat conductors. Assuming density ρ, specific heat Cp and
thermal diffusivity k to be 2900 kg/m3,1000 J/kgK and 3 W/mK, respectively, leads to
thermal conductivity κ

κ =
k
ρCp

= 1.034 × 10−6 m2/s = 3.25 × 10−5 km2/yr . (5.15)

The numerical values are provided in Morschhauser et al. (2011). Therefore the temper-
ature will be nearly completely reduced through the upper boundary, where the cooling
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is very efficient due to radiation into space. A rough order-of-magnitude for the cooling
time can be achieved, when approximating the equation 5.14, such that

T
τ

= κ
1

D2 T . (5.16)

The characteristic temperature time scale is given by τ = D2/κ. Using D = 20 km and
40 km gives τ = 12.3 Myrs and 49 Myrs, respectively when assuming the above given
value of the thermal diffusivity κ. This shows already the large difference between the os-
cillatory time scales (10 kyrs) and the cooling time for crustal rocks. However, since the
material closer to the surface will cool much faster, the total, depth integrated, magneti-
zation will be dominated by the upper layer. During the time of stable polarity interval of
the order of 10 kyrs, a layer of D =

√
10 kyrs 3.25 × 10−5 km2/yr = 570 m is magnetized.

Deeper layers will cool much slower, thus the thickness of the magnetization obtained
during a stable polarity interval will further decrease. Therefore the total depth integrated
magnetization of a pile of 20 km or 40 km will be negligible.

To obtain the magnetization history we solve for the 1D time dependent heat diffusion
equation and magnetize at a given depth when the Curie temperature is reached. Us-
ing an explicit forward time central space (FTCS) finite difference approach, leads to a
discretization of heat equation 5.14:

T n+1(i) − T n(i)
∆t

= κ
T n(i − 1) + T n(i + 1) − 2T n(i)

(∆x)2 . (5.17)

Where n is the ordering number of the time step, i the spatial position, ∆t the time step
and ∆x the grid spacing. Since the scheme is explicit one can find the simple equation:

T n+1(i) =
κ∆t

(∆x)2
(T n(i − 1) + T n(i + 1) − 2T n(i)) + T n(i) . (5.18)

A stability criterion is needed to avoid numerical instabilities. It can be shown, that
κ∆t/(∆x)2 < 0.5 is sufficient for numerical stability. This criteria serves to define the
time step ∆t = 0.4(∆x)2/κ, where we use 80% of the largest time step possible. The step-
ping in x-direction is choosen such that the time step is much smaller than the smallest
frequency of the dynamo waves we obtain from the numerics. Typical oscillation periods
are roughly 10 kyrs, the algorithm uses ∆x = 1/1000, and therefore ∆t = 153.68 yr which
is sufficient to resolve the oscillations in time. For the magnetization profile of a fast
reversing field a much larger resolution might be needed, because the imprinted magneti-
zation becomes more and more compressed due to slower cooling at the lower end of the
rock pile.

Firstly we concentrate on the time to reach the Curie temperature while cooling to a
depth of 20 km and 40 km. We simulate the cooling of a hot pile of rock, where the rock
pile has an initial temperature of 1000◦ C representing the solidus temperature. Further
we choose the Curie temperature to be 500◦ C. The fast cooling through the planetary sur-
face is taken into account when using fixed temperature condition at the outer boundary
of T = 0. Further we distinguish between two different setup, characterized in figure 5.12.
For the first model, we choose the lower boundary to be thermally isolating ∂T/∂x = 0
thus all heat is exclusively lost through the upper boundary (see figure 5.12). For the sec-
ond model we take the thermal gradient during the early evolution of Mars into account.
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Thickness 20 km 40 km

Model 1: isolating 4.7 18.7

Model 2: thermal gradient 25 100

estimates 12.3 49

Table 5.1: Cooling time in million years.

We assume that the (linear) thermal gradient is so steep, that it crosses the Curie tempera-
ture at the lower edge of the rock pile. Thus for a 20 km anomaly, T (20 km) = 500◦ C and
T (40 km) = 1000◦ C as shown in figure 5.12, blue line. Then the thermal gradients for
the 20 km (40 km) model is 25 K/km (12.5 K/km), respectively. If the temperature has
reached the Curie temperature at the lower edge or more precisely everywhere inside the
rock pile, the time integration is stopped and we find the time it takes to magnetized a layer
of a given thickness. Table 5.1 compares the cooling times for two different numerical
models and the rough order of magnitude estimates. Obviously, the two numerical mod-
els differ by factor of five in the cooling time, where as the estimates reside in the middle
of both. The more realistic model 2 with the thermal gradient shows far larger cooling
times than the model 1 with the isolating lower boundary. However, all of the magneti-
zation times exceed the typical reversal rate obtained from the numerics and mean field
considerations by three orders of magnitude.

T 

depth T(0)=0 

T(40 km)=1000 

500 

1000 

2) T(20 km)=500 

1) d T / d x =0 

Figure 5.12: Numerical setup for the cooling model. The red box characterizes
the T = 1000◦ C temperature anomaly, the blue line is the background profile of
the thermal gradient. Here we show the setup for the 20 km thickness model.
Further details see text.

The cooling is faster for the layers close to the upper surface and slower for the layers
closer to the lower boundary. Naming Curie time as the time interval it takes to reach the
Curie temperature, and Curie depth as the depth in which the Curie temperature during
the cooling process is reached, figure 5.13 shows the Curie depth as function of the Curie
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5.3 A Simple Cooling and Magnetization Model

time for the model 1 with isolating lower boundary (reddish colors) and for model 2 with
the background thermal gradient (blue colors). The temperature anomaly mimicking the
magnetizing rock pile is 20 km (red and orange) or 40 km (blue and light blue). For
smaller Curie depths and times all curves agree and follow the same power law, whereas
the difference between the models is only visible for the very large depths and times. The
slope in the log-log plot (figure 5.13) is consistently with the diffusion equation 0.5.
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Figure 5.13: Curie depth versus Curie time for a 20 km (40 km) pile in red
(blue ) for the Model 2 with background profile and orange (light blue) for the
isolating Model 1.

Finally the rock pile is magnetized by an oscillating field. The ambient magnetic field
fluctuates according to B(t) = cos(t 2π/P), where P is the oscillation period. We test to
what extend the rock pile can be magnetized while changing P by from 104 (years) up
to 109. The first values reflects roughly the largest oscillation periods measured from the
numerical simulations, whereas the latter value is given by the time interval when the
dynamo on Mars was active (Morschhauser et al. 2011). Assuming that crustal genesis
and the duration of the ancient Martian dynamo agreed roughly, the maximal value then
also describes a magnetic field what is rather stationary with respect to the cooling time
scales. Figure 5.14 shows the obtained relative magnetization as function of depth. In
the plot there is a running depth-average of the imprinted magnetic field directions and
amplitudes shown. The different curves correspond to different oscillation periods P. For
the very fast oscillations with P = 104 and P = 105 we cutted the curves when the first
aliasing appeared. This is due to the fact that different magnetization directions becomes
increasingly dense at greater depth, thus the grid resolution can not resolve an oscillation
cycle appropriately anymore. In figure 5.14 it can be seen that for faster oscillation periods
(smaller P) the magnetization can not penetrate into significant depth. For example, when
P = 106, the magnetization will drop to the 1/e-th of its maximal value after roughly
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138 kyrs corresponding to only 4.5 km of depth are magnetized crust unidirectional. Such
an oscillation period agrees to the time scales for geomagnetic reversals (Kono 2007).
For any deeper magnetization the averaging effect due to the clumping of inverse polarity
layers wipes out the magnetization signal seen from above.
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Figure 5.14: Running depth-average of the magnetization as function of
depth. Different colors relate to different oscillation periods P.

As an interpretation, if the ancient Martian dynamo showed regular polarity reversals
only the fast cooling upper layers can be magnetized. Any layer of depth whose cooling
time is significantly larger than the oscillation period, the inverse polarities of the im-
printed field averages out the magnetization. Langlais et al. (2004) stated a magnetized
layer thinner than 20 km to be rather unlikely. This shows the problem with the rapidly
polarity inversions of the Parker-wave-like oscillations.

The frequencies of the oscillations in the hemispherical dynamo agree very well with
those obtained from the mean field theory (see section 4) for both, the αω and the α2ω
model. It is possible to get an estimate for the minimum frequency (largest oscillation
period P) from the αω dispersion relation. If the growth rate reaches zero, the dynamo
is activated and further amplifies. For border of a zero growth rate γ = 0, equation
4.31 yields a minimum frequency of ν0 = k2/Pm. If one takes into account dimensional
units, this gives ν0 = k2λ. If we assume the wave number k = 2π/lk corresponding the
fundamental mode with length scale lk equals to core radius and λ = 2 m2/s we find
ν0 = 26 kyrs. Interestingly, for the α2ω-dynamo no such simple calculation can be made.
Thus all frequencies might are possible to occur and the oscillation period can not be
bordered by a maximal value. If the magnetization was acquired in a similar way, say
while cooling thick layers of hot rocks, an satellite observer would measure the time
average of the underlying magnetization history.

140



5.4 Time Averaging

5.4 Time Averaging
Amit et al. (2011) addressed also the issue of how to relate the magnetic field from a
dynamo simulation to crustal magnetization pattern. As we had seen, the typical time
scales for crustal genesis and cooling exceed those from the numerical simulations by far
thus the time dependence of the core field has to be taken into account and appropriate
time averages need to be applied. To translate the dynamo field into a magnetization
pattern, Amit et al. (2011) suggest two end-members depending on how the magnetization
was acquired. The ’homogeneous’ crustal growth model assumes that the crust is build
up in global layers. This means the magnetization is reflected by the process we modeled
above with the simple coolig model, thus a thick layer of rocks hotter than the Curie
temperature cooled according to only heat diffusion. As our model suggests, the net
acquired magnetization as seen by an observer would then be roughly proportional to B̃,
the rms value of the time averaged magnetic field:

B̃ =
(
〈B〉2

)1/2
(5.19)

The other end member is what Amit et al. (2011) call the ’random’ magnetization model,
which assumes that the magnetization was acquired in regional patches without correla-
tion in time and space. Volcanoes and small impacts create then a patchwork in space
and time of smaller magnetic sites, which are thin enough to cool faster than (if any) the
oscillation period of the magnetic field. The net acquired magnetization would then rather
reflect the time average of the local intensity:

B̄ =

〈(
B2

)1/2
〉

(5.20)

The latter scenario ignores the temporal aspect and the constraint of a thick magnetized
crust. The magnetization process records the magnetic changes happening during the
periods of crust formation, whereas to build a magnetized layer of 20 km thickness it is
necessary to pile up thin layers with probably inverse polarity. Both arguments yield that
the local net magnetization, as seen by an observer, is always proportional to the time
averaged local magnetic field, possibly slightly dominated by the outermost layers. For
the geomagnetic field the magnetic time scales range from several years to tens of million
years (see figure 5.14, light blue curve for P = 107). Higher field harmonics typically
change on time scales of centuries while the axial dipole component is much more stable.
During the last tens of million years is has reversed roughly four times per million year.
Even for Earth the net local crustal magnetization is reduced by the fact that layers with
opposing polarity cancel each others (Kono 2007).

Figure 5.15 and 5.16 presents extrapolations of B̃ and B̄, respectively, of our models
at E = 10−4, Ra = 4 × 107, Pm = 2 and for different g values as a function of the
averaging time τ. The gray shaded areas reflect the suggestion of Weiss et al. (2002) for
the field strength of the ancient Martian field. The time averaged intensities, shown in
figure 5.16, demonstrate the for g < 60% field strengths similar to that predicted for Mars
are reached. For the higher perturbations the magnetic field amplitude at the surfaces
drops due to less efficient induction in the hemispherical dynamo models. The intensity
of the time averaged field (figure 5.15) show similar results for g ≤ 56%. However,
for g > 60% the dynamo becomes oscillatory and the field decays rapidly when the
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Figure 5.15: Amplitude of the time averaged surface magnetic field in nT and
the according hemisphericityH as function of averaging time in kyrs. The gray
area indicates the surface magnetic field strength suggested by Weiss et al.
(2002) and the hemisphericity of the crustal magnetization (Amit et al. 2011).
Red - g = 0%, green - g = 30%, blue - g = 60%, pink - g = 100%, turquoise -
g = 150%.

averaging times exceed the oscillation period of roughly 10 kyr. This shows the dilemma
of the hemispherical dynamos in order to count as the internal source of the dichotomous
magnetization of Mars. The periods, listed in table A.1, are of similar order for all the
oscillating hemispherical dynamos. This is much too short to build up any significant
crustal magnetization. We therefore conclude that while the hemispherical dynamo can
reach hemisphericities similar to that of the Martian crustal magnetization their oscillatory
nature makes them incompatible with the rather strong magnetization amplitude. The
scaling law for the magnetic field strength we use here, is based on the assumption that
the force balance is mainly magnetostrophic (Elsasser number Λ = 1), but this approach
might not be valid for the hemispherical dynamos. Scaling laws of the magnetic field
strength for a homogeneous boundary are more successful (Christensen and Aubert 2006)
and predict correct field strengths based on the available power (Christensen and Wicht
2007).
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Figure 5.16: Same plot as 5.15, but for the mean field intensity.
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It is rather problematic to model the realistic planetary properties like viscosity, diffu-
sivities or rotation rate, but our numerical model still offers significant insights into the
dynamics and the induction mechanism of dynamos influenced by CMB heat flux anoma-
lies. We described in detail how the convection and induction mechanisms are altered
by a degree-one (sinusoidal) perturbation of the mean CMB heat flux (section 3). The
major finding is the onset of an equatorially antisymmetric and axisymmetric (EAA) con-
vective mode, which is characterized by strong thermal winds (zonal flows) and hemi-
spherical poloidal flow and magnetic field. When this EAA mode reaches a significantly
amplitude relative to the classical columnar convection, the magnetic field tends to pe-
riodically reverse (section 3.4.2). We successfully attempted to describe the oscillations
with mean field dynamo models (section 4), where the dominant axisymmetry of flow
and field makes the mean field theory applicable. The frequency of the polarity reversals
estimated from the numerical results and those predicted from dynamo wave dispersion
relations agree surprisingly well. To apply the findings to the heterogeneous magnetiza-
tion pattern of Mars (Acuña et al. 1999), we tested our models against the hemisphericity
of the magnetization (Amit et al. 2011) and suggested field strength (Weiss et al. 2002) by
extrapolating the CMB field towards the planetary surface (section 5). We further showed
that independent of the magnetization process, the crustal field represents the time average
of the core field. Due to the different time scales of the oscillations and the magnetiza-
tion history, a hemispherical and rapidly oscillating field seems incompatible with slowly
acquired the crustal magnetization.

6.1 Validity of the Model Setup
It remains an open question to what extent the EAA mode can contribute to planetary
core convection. The amount of data collected (see table A.1), does not allow a mean-
ingful prediction for the response of the core convection affected by a large scale heat
flux heterogeneity. In general a much lower Ekman number will not allow to significantly
break the Taylor-Proudman constraint, therefore the magnetostrophic force balance is ex-
pected to hold. The main contribution of the forced hemispherical convective mode are
the equatorially antisymmetric and axisymmetric zonal flows, which severely violate the
Taylor-Proudman condition of z-independent flow. The zonal flows are driven by latitu-
dinal temperature anomalies (thermal wind) and introduce a broad shear layer with large
variation of zonal flow parallel to the axis of rotation. The few numerical runs at smaller
Ekman number (such as E = 1 × 10−5), show already a significantly weaker effect on the
convection and induction. It might be possible, that the EAA mode can not contribute to
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large extend to the core convection if the Taylor-Proudman theorem holds.
Both, the mechanical boundary conditions of rigid walls and the action of the Lorentz

force seem to support the strength of the hemispherical convection (section 3.6.2 and
3.4.1, respectively). The thickness of the mechanical boundary layers introduced by the
rigid walls scales like E1/2 (Soward and Dormy 2007) and therefore tends to zero at re-
alistic values of the Ekman number (E = 10−15). We have seen in section 3.6.2, the free
slip walls do not strengthen the EAA flow, even though they typically show somewhat
larger kinetic energies (see also figure 3.24 and the table 3.2). In the pioneer study of
Stanley et al. (2008) also free slip boundary conditions are used. The anomaly strength
was taken to be three times the mean superadiabatic heat flux. Stanley et al. (2008) did
not investigate the flow symmetries with respect to the EAA mode, but we believe that
the EAA mode was not so much dominant as in our study. At least our simulations for
free slip boundaries showed besides the ageostrophic EAA convection the emergence of
geostrophic zonal flows, which can not originate from thermal winds (compare 3.6.2).
Stanley et al. (2008) did not use internal heating to drive convection but used a bottom
heated setup, where the CMB heat flux is balanced with a lower boundary heat flux. In
section 3.6.1, we have shown that bottom driven dynamos are much less sensitive to the
heat flux anomaly than the internally heated cases explored here. This might explain why
Stanley et al. (2008) had to use a much larger anomaly amplitude (g = 300%) to see the
desired effect.

The Elsasser number Λ measures the impact of the Lorentz force relative to the Cori-
olis force. Λ is thought to be of order 1 in planetary dynamos (Christensen and Wicht
2007), what is consistent with our simulations. For the perturbed dynamos we find El-
sasser numbers of Λ ≈ 0.1 − 10. The amplitude of the magnetic field is determined by
the interplay between induction and Ohmic dissipation. Section 3.4.1 gives some insights
about the action of the Lorentz force. There the (toroidal) magnetic field suppresses the
convective columns and thus supports the relative strength of the EAA mode. The El-
sasser number may overestimate the impact of the Lorentz force since both the magnetic
field and the kinetic flow have their strongest contributions in large scale axisymmetric
toroidal components. The Lorentz force can not act on a flow parallel to the field and thus
predominantly alters the small scale convective motions in the (southern) hemisphere.

The Rayleigh number controls the vigor and length scales of the convective motions.
Landeau and Aubert (2011) have shown, that the EAA mode can also co-exist besides the
columnar convective motions if the Rayleigh number is sufficiently high. They restricted
the study to homogeneous heat flux boundary conditions. We also studied the impact of
the Rayleigh number on homogeneous CMB heat flow, especially for an Ekman number
E = 10−4, and find that for larger Rayleigh numbers the EAA convection is a natural part
of the convection. This confirms the conclusions of Landeau and Aubert (2011). However,
further increasing the vigor of the convection leads also to more efficient mixing that
goes along with more turbulent, three dimensional flow at even higher Rayleigh numbers.
As a consequence, the EAA mode might appear in homogeneous dynamos only for a
given range in supercriticality. If the supercriticality is enhanced to far, the latitudinal
temperature anomaly as the source of the EAA mode is reduced due to the more efficient
mixing. For this fast mixing regime a scaling law according to King et al. (2010) might
be valid. Unfortunately, our data coverage is insufficient to proof this idea. Figure 3.30 in
section 3.6.4 shows the dynamic response of the convection in terms of activating the EAA
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convection when increasing the Rayleigh number for the homogeneous and perturbed
cases. For the lowest Ekman number in the figure (green symbols refer to E = 3 × 10−4)
both curves, the homogeneous and the boundary force tend to decrease in the strength of
the EAA when the supercriticality is increased.

The EAA mode is fed by latitudinal temperature gradients driving equatorially an-
tisymmetric thermal winds. We tested this thermal wind force balance extensively in
section 3.6.3 and find that this is indeed the main driver of the strong axisymmetric zonal
flows. To get an order of magnitude estimate or a scaling law for the thermal wind bal-
ance, we restrict the amount of data to only axial perturbations (degree l = 1 and order
m = 0) of g = 100%, but take all combinations of Ekman E and Rayleigh number Ra into
account. King et al. (2010) suggested a scaling for radial temperature anomalies, what
we applied to the latitudinal temperature gradients. This scaling law predicts a relation
between temperature anomalies and the supercriticality, such that a temperature gradient
decrease as δT ∝ (Ra/Rac)−6/11. Interestingly the scaling still holds for latitudinal temper-
ature anomalies, such as we introduced with the CMB heat flux perturbations. Assuming
this scaling law to be valid and that the thermal wind balance holds also for a realistic
planet, we can estimate the characteristic zonal flow amplitude in terms of a Reynolds
number Re∗ = 108...109 depending on the supercriticality of the dynamo. A realistic flux
based Rayleigh number, might be on the order of RaQ = 1028 (King et al. 2010), provid-
ing extremely small convective length scales, and therefore also small penetration depths
of thermal anomalies. The total flow amplitude in planetary cores will not exceed the
estimate of the characteristic zonal flow amplitude by far. Given a magnetic Reynolds
number of Rm = 500 and magnetic Prandtl number Pm = 10−6 (Jones 2011), yields
Re = Rm/Pm = 5 × 108. Note, such a simple scaling neglects a further dependence on
the Ekman number. The Ekman dependence so far only appears in the supercriticality
(Rac ∝ E−5/3). The smaller (and more realistic) the Ekman number is, the more important
will be the Taylor-Proudman constraint of a z-independent (geostrophic) flow yielding an
additional decrease of the EAA mode with decreasing Ekman number. The EAA mode is
by definition ageostropic, thus the thermal winds might only contribute little to the total
kinetic energy of a convecting planetary core.

The variation amplitude of the CMB heat flux pattern one of the main study parame-
ters here, as well as in Amit et al. (2011). Stanley et al. (2008) choose a rather high (and
fixed) amplitude of g = 300%. It is thought, that anomaly amplitudes beyond g = 100%
violate the Boussinesq-Approximation, since they introduce a net buoyancy flow into the
core. This leads to a stable stratification and the assumption that the background state is
adiabatic and well mixed may be violated. Our model equations are based on the fact,
that there are only small fluctuations in temperature and density on top of the adiabatic
reference state. As stated in the introductory section 1.6, the amplitude of thermal anoma-
lies introduced by mantle features, such as hot mantle plumes, cold subdcuted slabs or by
giant impacts, can easily exceed the mean superadiabatic heat flux (compare table 2.1).
Therefore also the amount of heat conducted along the core adiabate will be affected
strongly and should be taken into account in the models.

We also varied the orientation angle relative to the axis of rotation of the heat flux
anomaly following Amit et al. (2011). They restricted there analysis to tilting angles of
α = 0◦, 45◦, 90◦, where we covered a broader range. We could show, consistent with
the findings of Amit et al. (2011) that only the equatorial anomaly of α = 90◦ provides

147



6 Discussion

a dynamo solution showing significant differences from the EAA mode. Interestingly
there is not much of a difference between α = 0◦ and α = 80◦ in terms of activating the
EAA mode and drive a north/south hemispherical dynamo. Obviously, the breaking of
the equatorial symmetry has a much stronger control over the dynamics. As long as the
anomaly is aligned with or has a contribution along the axis of rotation, the EAA mode
emerges and the radial magnetic field is mainly restricted to the hemisphere of higher
heat flux. Since the orientation of the heat flux anomaly is determined by the mantle,
which has no preferred axis due to the action of Coriolis force, basically all orientations
of the anomaly are possible. While in the study of Landeau and Aubert (2011) with
homogeneous CMB heat flux the hemispherical dynamo can emerge in either side of the
equator due to the spontaneous breaking of the equatorial symmetry, Amit et al. (2011),
Aurnou and Aubert (2011) and our approach force the hemispherical field to match the
crustal magnetization localized in the southern as well, by using higher heat flux in the
southern and smaller in the northern hemisphere.

6.2 Hemispherical Dynamo Action

We have shown that already several tens of percent of relative CMB anomaly ampli-
tude are sufficient to transform the stationary dipolar dynamo induced by convective
columns into a hemispherical oscillating configuration mainly driven by ageostrophic
thermal winds and localized convection (section 3 and figure 3.18). Large scale and as
well axisymmetric meridional circulation tries to equilibrate the temperature anomaly.
Consequently, these flows are deflected by the action of the Coriolis force into the az-
imuthal direction creating two large scale and counter directed thermal wind cells. The
convective (poloidal) motions are then restricted to a cusp in the vicinity of the pole of
higher heat flux. Most of the kinetic energy, as showed in the plot 3.10, is stored in
the zonal flows. Note, that the zonal flow energy is added to the system and not con-
verted, therefore the total kinetic energy in the perturbed cases exceed by far those in the
homogeneous cases (figure 3.10). Typically this contribution reaches up to 90% of the
total kinetic energy. Althought a larger kinetic energy goes along with a higher magnetic
Reynolds number, the magnetic energy of the hemispherical dynamos are significantly
smaller than for the dipolar ones. The amplitude of the kinetic poloidal energy changes
only little, but becomes localized in the fast cooling (southern here) hemisphere.

The induction of the magnetic field changes from a first order α2-dynamo in the ho-
mogeneous g = 0% case to a more or less pure αω/α2ω-dynamo in the hemispherical
convective case. The induction in the convective columns is a well understood standard
induction process (Wicht and Aubert 2005). Deeper investigations of the mechanism can
be found at Aubert et al. (2008b), Christensen et al. (2001), Christensen and Wicht (2007).
Helical motions responsible for the α-process are created by the superposition of the rotat-
ing convective columns and a secondary flow along the columns (pole- or equatorward).
The ω-effect according to shearing of poloidal field into axisymmetric toroidal is thought
to be of minor importance. Our numerical measurements (see figure 3.13), reveal a weak
contribution of roughly ω∗ = 10% for the homogeneous dynamo model. However, the
hemispherical convective mode forced by the heat flux anomaly, increases the relative
amount of ω-induced toroidal field up to 85%. Whenever the ω-effect becomes domi-
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nant, oscillations including polarity reversals set in (figure 3.18). These oscillations are
quite different from those of the observed magnetic field of the Earth. Reversals on the
Earth typically emerge randomly and are very rare. Further details about the geomagnetic
reversals in numerical dynamo simulations can be found in Amit et al. (2010). There
are attempts to relate the reversal frequencies to the core evolution Driscoll and Olson
(2009) or CMB heat flux disturbances of different patterns Olson et al. (2010). However,
all of the Earth related studies report random reversals happening a few times per Myrs.
The oscillations we observe under the influence of strong ω-effect are more related to
the regular magnetic field oscillations of the Sun. Simple models of the solar convection
uses mean field axisymmetric αω-theory to describe the solar variability as the evolution
of a dynamo wave (Parker 1955). This is basically consistent with the findings of our
Mars model. To show this is indeed a magnetic wave and there is no advection involved,
we computed the magnetic Reynolds number based on the axisymmetric poloidal field
to be roughly Rmad = 20 − 40. This gives the ratio of the poloidal advective time scale
to the magnetic time scale, showing that it can not be a simple magnetic field advec-
tion. Otherwise the time scales should be comparable and thus Rmad = O(1). Although
the significant meridional circulation transports hot fluid from the northern hemisphere
to the faster coolong southern and thus its pattern matches the evolution of the poloidal
magnetic field, its direction is opposite to the Parker wave. Furthermore we tested the
obtained frequencies against the dispersion relation for Parker dynamo waves, and find
the good match with both, an αω and an α2ω dispersion relation (section 4). Therefore
the second α-effect responsible for the induction of toroidal field is of minor importance
if the ω-effect is strong. Note, that in the hemispherical dynamo models the main flow
and field are axisymmetric, what is a requirement for applying the mean field theory.

6.3 Application to Mars

To apply the results of the numerical model to the measurements of the crustal field on
Mars, we upward continue the radial CMB magnetic field via a potential field extrapola-
tion (section 5.1). The surface magnetic field strength of the hemispherical dynamos is
much smaller than in a typical dipolar reference case. This might have several reasons.
First of all, the total magnetic energy inside the dynamo region is smaller by one order
of magnitude (see figure 3.13 or the table A.1) in hemispherical dynamos. This is mainly
related to the reduction of helical flows, thus weaker poloidal field induction. Since the
poloidal field contribution can be exclusively created in these helical flows, the contri-
bution of poloidal field to the total magnetic energy in the dynamo shell is rather small.
Secondly, the mean lengths scale of the poloidal field are much smaller in the hemispher-
ical cases, as shown in figure 3.9. Since the decay of a single magnetic mode of degree l
is proportional to r−(l+2) for the field, a small scale field will have a much weaker surface
amplitude than a dipolar one. As a third point, we had seen that in any scenario of crustal
genesis and magnetization only the time averaged field can be imprinted into crustal rocks
(section 5.4). Since the magnetic field shows these fast magnetic field oscillations includ-
ing polarity reversals (figure 3.18), the time averaged poloidal surface field will decay
even further on the relevant time scales for crustal magnetization in the order of millions
of years. Note, that the uppermost crustal layer will always have significant magnetization
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due to its fast cooling rate, if it cools under the Curie temperature in the presence of an
ambient field.

We calculated the equatorial asymmetry of the radial field intensity in terms of the
hemisphericityH , both at the CMB and the surface by comparing the unsigned magnetic
flux in each hemisphere (equation 5.11). A hemispherical magnetic is represented in a flat
spectrum for the leading modes, where equatorial symmetric and antisymmetric modes
cancel each other in one hemisphere and amplify in the opposing hemisphere. In section
5.2.1 we discussed the hemisphericity for a synthetic magnetic field with an artificial
white spectrum. The radial dependence and time variability of the hemisphericity H
according to the surface extrapolation was analyzed on section 5.2.3, showing that the
hemisphericity at the CMB typically exceeds that at the surface. Intuitively, this statement
matches the expectation, since all modes decay depending of their degree l and thus the
equatorial symmetric dipole becomes increasingly more important with radius. However,
we also observed that the maximum hemisphericity is not always located at the CMB,
but can reside somewhere in the mantle (see figure 5.9) depending on the small-scaleness
of the poloidal CMB field. This can happen, if the dipole mode is weaker than higher
modes at the CMB, and the poloidal energy spectra (see figure 5.7 or distribution of Gauss
coefficients (figure 5.8) becomes flatter or more ’whitish’ at a certain distance away from
the CMB.

Figure 6.1 tries to compile our results for a zero tilt angle by relating the cmb (top
panel) and surface (bottom) hemisphericities to the magnetic Reynolds number Rm?

which is only based on the equatorially anti-symmetric part of the zonal flow and therefore
useful to quantify the important ω-effect in the hemispherical dynamo cases. Compare
also the table A.1 for more details. We use here the magnetic Reynolds number, instead
of the hydrodynamic Reynolds number to take into account the different magnetic Prandtl
number used in the study. The figure 6.1 is equivalent to figure 5.11, but the colors do
not represent the Ekman numbers, but the secular variation. For all black symbols, the
dynamo is stable in time and does not show polarity inversions. The red symbols denote
the oscillating cases. It is clearly visible, that a sufficient strong hemisphericity goes along
with the dynamo waves showing regular reversals. Note that there are also cases with high
hemisphericity at the CMBHcmb (figure 6.1, top plot), which show no oscillations (black
symbols).

The ratio of Hcmb and Hsur is controlled by the length scales of the leading poloidal
magnetic modes. The leading modes correspond to spherical harmonics of degree l = 5..7
for a typical hemispherical case. If the dipole and other modes of large length scale
(smaller l) are sufficiently small, the spectral distribution of the strongest might remain
flat but is shifted to higher l during the surface extrapolation. In general the length scales
of the magnetic field dm are controlled with respect to the convective length scales via
the magnetic Prandtl number as the ratio between magnetic and viscous diffusion time, τλ
and τν:

Pm =
τν
τλ

=
d2

c/ν

d2
m/λ

, (6.1)

with the convective length scales dc. Larger values of Rayleigh number Ra, perturbation
amplitude g and smaller Ekman number E lead to smaller convective length scales, thus
smaller magnetic length scales. In figure 6.1 we can easily identify this dependence for g
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(e.g. filled circles) and Pm (all kinds of triangles have Pm = 5). For Ra and E the effect
is not clearly visible and might be biased by stronger dependencies on g and Pm.

Extrapolating the CMB field geometry using the geometric decay of the single modes,
leads to the lower plot of figure 6.1. The horizontal black line and the gray area shows
the estimated value of the equatorial asymmetry (hemisphericity) in the crustal magne-
tization of Mars (Amit et al. 2011) and the uncertainties, respectively. It can be seen,
that only the oscillating cases (red symbols) show sufficient hemisphericity Hsur at the
planetary surface. All the symbols with very large Rm∗ are those with E = 3 × 10−4 and
Pm = 5. For this cases it is rather easy to force the EAA convective mode to occur and
thus the amplitude of the zonal flows is rather strong. On top of that the high magnetic
Prandtl number increase the magnetic Reynolds number. An appropriate model would
need to match these values for the surface hemisphericity Hsur to successfully explain
the crustal magnetization dichotomy with a hemispherical dynamo mechanism. All our
model runs fulfilling this condition show oscillations, and therefore can not explain the
observed magnetization strength reported by Acuña et al. (2001).

Note, there is some evidence for a reversing dynamo in the crustal magnetization.
Connerney et al. (1999) studied the magnetic lineations in the southern hemisphere and
concluded, that they could have been acquired by plate tectonics and a reversing internal
magnetic field. The presence of plate tectonics, as stated by Morschhauser et al. (2011), is
indeed a possible scenario during the time of an active dynamo. Maybe even a necessary
condition, since plate tectonics cool the underlying mantle much faster and might have
increased the CMB heat flux over the adiabatic core heat flux thus allowing for core
convection and finally a dynamo at all. On the other hand plate tectonics recycle crust
quickly and thus that the average thickness might not exceed a few km. That contradicts
the conjecture of Langlais et al. (2004) that a unidirectional magnetization need to be
at least present in the uppermost 20 km of the crust. Thinner magnetized crust is only
compatible with the observed magnetic moment, if the magnetization density in terms of
abundance of iron oxides or other ferromagnetic minerals is much larger than expected.
If the magnetized crust would be thin enough corresponding to an anomalous density of
magnetic carriers, also our reversing dynamos would again serve as proper model.

151



6 Discussion

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200

H
cm

b

Rm*

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200

H
cm

b

Rm*

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200

H
su

r

Rm*

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200

H
su

r

Rm*

Figure 6.1: Top panel: Hemisphericity at cmb versus Rm?, the magnetic
Reynolds number based on the equatorially antisymmetric thermal wind.
bottom panel: Hemisphericity at the (imaginary) Martian surface versus Rm?.
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7 Summary

In 1998 the space probe Mars Global Surveyor (MGS) delivered vector magnetic field
measurements during orbits 185 − 400 km altitude over the Martian surface (Acuña et al.
1999). Crustal magnetization on Mars is characterized by its age of at least 3.7 Gyrs, a
strong amplitude, its depth of at least 20 km and the remarkable equatorial dichotomy. In
this study we therefore aim to model dynamos, which favor to concentrate the magnetic
field in one (south for Mars) hemisphere. Several attempts have been made to develop
numerical dynamo models which take characteristic features of the early Martian interior
into account (Stanley et al. 2008, Amit et al. 2011). We are following these studies and
model the ancient Martian dynamo as driven exclusively by thermal convection and vary
laterally the amount of heat escaping from the core into mantle.

The so modified dynamos concentrate dynamo action in the hemisphere of higher
core mantle boundary (CMB) heat flux. Indeed, the surface extrapolation of the core field
matches successfully the crustal magnetization pattern. However, our results suggest that
hemispherical dynamos which are boundary driven by CMB heat flux anomalies show an
oscillatory behavior including polarity inversions. We suggest that the oscillatory nature
originates from strong shear induced by equatorially antisymmetric and axisymmetric
thermal winds. Given the distinct time scales of crustal cooling and magnetization on
the one hand, and those typical for the cycle period in our hemispherical dynamos on the
other hand, our results seem inconsistent with a magnetization depth of at least 20 km
(Langlais et al. 2004).

Interestingly, the time dependence of the hemispherical dynamo was found to agree
well with the Parker’s theory of plane waves in order predict the solar cycle (Parker 1955).
We compared the frequencies and evolution of the reversing hemispherical dynamos with
the propagation of Parker-like dynamo waves and found a surprisingly good agreement.
This might be based on the fact, that the main contributions of flow and the magnetic field
in our simulations are axisymmetric and thus share characteristics with the mean field
model applied to the sun.
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A Table of Runs

E Ra Pm g α Rm Rm? Λ EAA ω∗ B̄sur Hsur Hcmb osci freq.

3e-4 1e7 5 0 0 280.9 13.4 12.27 6.9e-3 0.208 55161 5.5e-3 6.9e-2 no -

40 0 442.9 77.1 7.56 0.74 0.74 16107 0.142 0.53 no -

60 0 497.1 90.8 2.8 0.79 0.85 2501 0.603 0.705 yes 12.19

100 0 560.5 104.4 2.6 0.80 0.85 2242 0.581 0.708 yes 15.82

200 0 672.5 124.5 2.1 0.72 0.84 2059 0.52 0.70 yes 15.3

3e7 5 0 0 593.5 57 12.4 0.21 0.45 17288 0.175 0.553 yes ?

40 0 756.2 131.2 18.7 0.71 0.69 16244 0.61 0.7 yes 19.4

60 0 817.5 148.8 17.4 0.79 0.75 10849 0.58 0.72 yes 17.21

100 0 896.4 162.9 8.2 0.77 0.80 5152 0.62 0.71 yes 20.91

200 0 1020 183.8 7.2 0.68 0.82 3979 0.59 0.69 yes 13.51

6e7 5 0 0 825.5 66.5 15 0.148 0.405 11560 0.37 0.63 yes ?

40 0 1046 185.3 34.3 0.74 0.64 21745 0.55 0.705 yes 23.27

60 0 1113 200.9 24.4 0.77 0.71 15201 0.55 0.71 yes 23.02

100 0 1183 213.1 18.2 0.75 0.76 9387 0.6 0.703 yes 25.91

200 0 1306 201.2 16.7 0.67 0.78 7268 0.52 0.69 yes 26.2

1e-4 7e6 2 0 0 54.6 0.12 - 2.24e-5 - - - - - -

100 0 133.5 61.3 0.1 0.85 0.32 803.2 0.1 0.21 no -

5 0 0 117.1 0.79 9.79 1.93e-3 0.21 62510 4e-4 3e-3 no -

100 0 326.9 60.3 0.97 0.85 0.66 1469 0.1 0.35 yes ?

200 0 449.5 83.5 - 0.84 - - - - - -

100 90 230.8 - 2.22 5e-3 0.20 7264 - - yes 18.84

2.1e7 2 0 0 105.9 3.21 4.95 3.64e-3 0.24 64635 1.0e-3 0.03 no -

60 0 178.1 74.89 6.24 0.72 0.63 14017 0.12 0.38 no -

80 0 228.3 94.85 1.06 0.74 0.53 1684 0.17 0.61 yes 10.69

100 0 247.6 106.8 0.15 0.73 0.58 1001 0.21 0.55 yes ?

200 0 313.3 136 0.19 0.76 0.77 689 0.79 0.8 yes 56.27

100 90 160.2 40.2 2.64 6.6e-3 0.18 699 - - yes ?

4e7 1 100 0 169.3 143.1 0.2 0.73 0.53 922 0.21 0.22 no -

200 0 206.5 171.5 - 0.7 - - - - (yes)

2 0 0 155.6 1.79 6.26 2e-3 0.18 58349 3.0e-3 0.05 no -

20 0 162.9 7.3 9.1 0.11 0.29 65067 0.03 0.15 no -

30 0 172.7 17.1 10.32 0.28 0.38 61323 0.07 0.23 no -

40 0 200.9 45.4 11.3 0.48 0.49 31610 0.1 0.34 no -

46 0 213.7 58.2 21.4 0.59 0.55 22360 0.13 0.42 no -

50 0 229.3 73.8 22.9 0.66 0.58 17938 0.17 0.51 no -

54 0 253.8 98.2 7.4 0.71 0.61 13907 0.22 0.58 no -
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56 0 267.6 112 5.53 0.71 0.61 11877 0.23 0.58 no -

58 0 283.5 127.2 2.84 0.75 0.63 8259 0.25 0.59 no -

60 0 283.4 127.9 3.4 0.73 0.63 6154 0.26 0.6 yes 13.96

100 0 338.1 153.6 2.64 0.78 0.76 2219 0.52 0.77 yes 40.83

200 0 409.8 175 1.16 0.74 0.75 1628 0.74 0.75 yes 62.6

100 90 217.3 - 1.47 8.4e-3 0.21 10071 - - yes 20.77

200 90 226.5 - 5.41 4.1e-3 0.24 10934 - - no -

5 100 0 837.5 149.9 6.83 0.81 0.8 3493 0.7 0.65 yes 79.87

8e7 2 0 0 228.7 3.2 7.06 9e-3 0.18 60036 3.3e-3 0.07 no -

60 0 400.2 171.8 5.5 0.74 0.65 9268 0.41 0.72 yes 26.97

100 0 457.6 201.61 2.97 0.79 0.73 3240 0.68 0.73 yes 61.3

100 90 297.5 - 3.73 6.4e-3 0.20 16424 - - yes 24.5

2e8 1 0 0 251.8 54.4 - 0.05 - - - - - -

60 0 309.9 230.1 2.14 0.63 0.56 6095 0.15 0.56 no -

100 0 343.5 276.3 0.34 0.64 0.65 1119 0.42 0.72 yes 24.32

100 90 270.4 - 0.77 4e-3 0.21 7954 - - yes 17.95

3e-5 1e8 2 0 0 137.1 1.44 7.68 5.7e-3 0.19 80508 1e-3 0.03 no -

60 0 210.7 24.1 12.31 0.5 0.53 25567 0.1 0.23 no -

100 0 360.4 162.1 5.07 0.81 0.67 5157 0.12 0.46 yes 10.34

100 90 199.5 - 1.4 3.1e-3 0.16 10657 - - yes ?

3e-5 4e8 2 0 0 316.9 3.31 12.2 5.5e-3 0.26 71085 2.1e-3 0.07 no -

60 0 517.1 200.9 29.9 0.64 0.49 30528 0.24 0.51 no -

100 0 769.1 341 6.04 0.76 0.70 4584 0.62 0.76 yes 87.6

Mars

3e-15 2e28 1e-6 ? ? 500? ? ? ? ? 5000 0.45 ? no?

Table A.1: Selection of runs performed. Rm - magnetic Reynolds number, Λ
- Elsasser number of rms field in full core shell, EAA - relative equatorially an-
tisymmetric and axisymmetric kinetic energy, ω∗ - relative induction of toroidal
field by shearing,|B|sur - time averaged field intensity at the Martian surface in
nT, Hsur and Hcmb - hemisphericity at the surface and CMB, freq. - rough fre-
quency (2πPm/τvis) if present. Decaying solutions are marked with ‘-’ in the
Elsasser number. If not a single frequency could be extracted ‘?’ is used.
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