Modelling of protoplanetary disks

A "cookbook" for observationally-motivated disk physico-chemical models

> Catherine Walsh NWO Veni Fellow Leiden Observatory

Observations of protoplanetary disks

Dullemond, C. P., et al. 2006, PPV, 555; Thi, W.-F., et al. 2004, A&A, 425, 955; Guilloteau, S., et al. 2006, A&A, 448, L5

General outline of a physico-chemical model

Outline

Disk physical structure: ★ dust ★ gas

Disk chemical structure: * gas-phase (vapour) * solid-phase (ice)

Building physico-chemical models

Early modelling efforts concerning the dust focussed primarily on reproducing the spectral energy distribution (SED)

Dust spectral energy distribution

Optical wavelengths: scattered light;
 hence no temperature/density information

Near-infrared wavelengths: originates mainly from "hot" inner rim

Mid-infrared wavelengths: originates from "warm" dust close to the star (< 10 AU) and is typically optically thick; hence, no density information but probes temperature of dust photosphere

 Sub-mm/mm wavelengths: originates from "cold" dust in outer disk (> 10 AU) and is typically optically thin; hence, has both temperature and density information

Testi, L., et al. 2014, PPVI, 339

Some simple assumptions about the (sub)mm opacity and dust temperature can yield an estimation of the disk mass

Dust spectral energy distribution

Optical depth $\tau_{\nu} = \int \rho \kappa_{\nu} ds = \kappa_{\nu} \Sigma_{z}$

Dust mass opacity $\kappa_{\nu} = 0.1 \left(\frac{\nu}{10^{12} \,\mathrm{Hz}}\right)^{\beta} \,\mathrm{cm}^2 \,\mathrm{g}^{-1}.$

Disk mass $M(\text{gas} + \text{dust}) = \frac{F_{\nu}d^2}{\kappa_{\nu}B_{\nu}(T)},$

Gas-to-dust mass ratio ~ 100

Beckwith et al. 1990, AJ, 99, 924; Andrews & Williams 2005, ApJ, 631, 1134; Williams & Cieza 2011, ARA&A, 49, 67

The advent of (sub)mm interferometry required more sophisticated models to describe the radial disk structure

Disk surface density, temperature, and dust mass opacity were "wellfit" using power laws

$$T_r = T_1 \left(\frac{r}{1 \text{ AU}}\right)^{-q},$$

$$\Sigma_r = \Sigma_5 \left(\frac{r}{5 \text{ AU}}\right)^{-p},$$

$$\kappa_
u = \kappa_0 igg(rac{
u}{
u_0} igg)^eta,$$

The advent of (sub)mm interferometry required more sophisticated models to describe the radial disk structure

Andrews & Williams 2007, ApJ, 659, 705; Williams & Cieza 2011, ARA&A, 49, 67

Fitting is done directly to the interferometric data (so-called visibilities) which are the Fourier transform of the intensity distribution

Andrews & Williams 2007, ApJ, 659, 705; Williams & Cieza 2011, ARA&A, 49, 67

Higher-resolution (sub-arcsecond) interferometric data required additional considerations for models of the dust emission: cavities and rings

SMA observations

Williams & Cieza 2011, ARA&A, 49, 67

Evolution of dust in protoplanetary disks

Generalised picture of dust evolution in protoplanetary disks

Small (~ µm-sized) and large (~ mm-sized) grains follow different paths

Williams & Cieza 2011, ARA&A, 49, 67

Modelling of dust in protoplanetary disks

Simple power-law models are still used, but with gaps and cavities, and "small" and "large" grains are decoupled to simulate settling

Despite more complex models being using to model more complex data, significant degeneracies still remain in the models

Andrews S. M., et al. 2011, ApJ, 732, 42l Bruderer, S 2013, A&A, 559, A46

Modelling of dust in protoplanetary disks

Simple power-law models are still used, but with gaps and cavities, and "small" and "large" grains are decoupled to simulate settling

Despite more complex models being using to model more complex data, significant degeneracies still remain in the models

Andrews S. M., et al. 2011, ApJ, 732, 42l Bruderer, S 2013, A&A, 559, A46

Modelling of dust in protoplanetary disks

Simple power-law models are still used, but with gaps and cavities, and "small" and "large" grains are decoupled to simulate settling

Despite more complex models being using to model more complex data, significant degeneracies still remain in the models

Dust opacity

The dust density and size distribution sets the temperature structure of the disk: dust composition and opacity are required

Nomura, H. & Millar, T. J., 2005, A&A, 438, 923; Andrews S. M., et al. 2011, ApJ, 732

How do we know the composition of the dust?

The dust emission at mid- to far-IR wavelengths shows spectral features which can be attributed to different grain components

van Dishoeck, E. F. 2004, ARA&A, 42, 119

How do we know disks are flared?

Spatially-resolved mid-IR imaging has revealed the flared morphology of emission from small grains (PAHs) in nearby protoplanetary disks

How do we know disks are flared?

Spatially-resolved mid-IR imaging has revealed the flared morphology of emission from small grains (PAHs) in nearby protoplanetary disks

Lagage, P.-O., et al. 2006, Science, 314, 621; Walsh, C, et al. 2016, ApJ, under review

Highly asymmetric (sub)mm dust emission attributed to dust trapping in vortices potentially created by forming planets

Are these the exception rather than the norm? Both are A-type stars

Casassus, S., et al. 2013, Nature, 493, 191; van der Marel, N., et al. 2013, Science, 340, 1199

Highly symmetric and concentric rings attributed to various mechanisms, including dust traps, sintering, condensation fronts, ...

ALMA Partnership 2015, ApJL, 808, L3; Andrews, S. M., et al, 2016, ApJ, 820, L40

Highly symmetric and concentric rings attributed to various mechanisms, including dust traps, sintering, condensation fronts, ...

HL Tau

ALMA Partnership 2015, ApJL, 808, L3; Andrews, S. M., et al, 2016, ApJ, 820, L40

Highly symmetric and concentric rings attributed to various mechanisms, including dust traps, sintering, condensation fronts, ...

HL Tau

TW Hya

ALMA Partnership 2015, ApJL, 808, L3; Andrews, S. M., et al, 2016, ApJ, 820, L40

Gas is mainly H_2 (90%) and He (10%) which are difficult to observe: CO (~0.01%) is used as a proxy as the second-most abundant molecule

Warning! CO gas can have a complex distribution due to the disk structure

Williams, J. P & Best, W. M. J. 2014, ApJ, 788, 59

Gas is mainly H_2 (90%) and He (10%) which are difficult to observe: CO (~0.01%) is used as a proxy as the second-most abundant molecule

Warning! CO gas can have a complex distribution due to the disk structure

Williams, J. P & Best, W. M. J. 2014, ApJ, 788, 59

Emission from the main CO isotopologues (¹²CO and ¹³CO) are optically thick, hence less abundant isotopologues are used (C¹⁸O and C¹⁷O)

Dust and gas masses from the ALMA Survey of Lupus

Ansdell, M., et al. 2016, ApJ, in press

Emission from the main CO isotopologues (¹²CO and ¹³CO) are optically thick, hence less abundant isotopologues are used (C¹⁸O and C¹⁷O)

Ansdell, M., et al. 2016, ApJ, in press

Picture is further complicated by chemical effects, namely, isotopeselective photodissociation

Miotello, A., et al. 2015, A&A, 572, A96

Given the relative complexity of interpreting CO observations, HD (~0.001% of H₂) is proposed as an alternative tracer of the gas mass

Bergin, E. A., et al. 2013, Nature, 493, 644

CO line emission in the ALMA era

Declination (J2000)

1 ALMA Cycle 0 observations of CO 0.8 J=3-2 emission from HD 163296 0.6 (Jy/beam) 0.4 46 0.2 0

CO line emission in the ALMA era

CO J=3-2 shows emission from a moderately flared disk (z/r ~ 0.1) and reveals evidence of CO freezeout in the disk midplane

de Gregorio-Monsalvo, et al. 2013, A&A, 557, 133

CO line emission in the ALMA era

ALMA Cycle 0 observations of CO J=3-2 emission from HD 97048

Walsh, C., et al., 2016, ApJ, under review; ; Guilloteau, S., et al. 2006, A&A, 448, L5

Modelling the gas and dust in tandem

Gas surface density still assumed to follow the dust: gas-to-dust mass ratio is now a "free" (yet still global) parameter

Towards a global prescription of gas and dust

Kama, M., et al. 2016, A&A, submitted

Towards a global prescription of gas and dust

Modern models now fit the dust SED and spectrally and spatially resolved molecular line observations simultaneously

Kama, M., et al. 2016, A&A, submitted

Observations of protoplanetary disks

Dullemond, C. P., et al. 2006, PPV, 555; Thi, W.-F., et al. 2004, A&A, 425, 955; Guilloteau, S., et al. 2006, A&A, 448, L5
Observations of protoplanetary disks

Dullemond, C. P., et al. 2006, PPV, 555; Thi, W.-F., et al. 2004, A&A, 425, 955; Guilloteau, S., et al. 2006, A&A, 448, L5

The astronomers' periodic table

http://www.chandra.harvard.edu

The astronomers' periodic table

http://www.chandra.harvard.edu

Molecules in space

2 atoms		3 atoms		4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	9 atoms	≥ 10 atoms	
H ₂	HD	C ₃	AINC	c-C₃H	C5	C ₅ H	C ₆ H	CH ₃ C ₃ N	CH ₃ C ₄ H	CH ₃ C ₅ N	
AIF	FeO ?	C_2H	SiNC	I-C₃H	C ₄ H	1-H ₂ C ₄	CH ₂ CHCN	HCOOCH ₃	CH ₃ CH ₂ CN	(CH ₃) ₂ CO	
AICI	O ₂	C_2O	НСР	C ₃ N	C ₄ Si	C_2H_4	CH ₃ C ₂ H	CH₃COOH	(CH ₃) ₂ O	(CH ₂ OH) ₂	
C ₂	CF ⁺	C ₂ S	ССР	C ₃ O	1-C ₃ H ₂	CH ₃ CN	HC ₅ N	C ₇ H	CH ₃ CH ₂ OH	CH ₃ CH ₂ CHO	
СН	SiH ?	CH ₂	AIOH	C ₃ S	c-C ₃ H ₂	CH ₃ NC	CH3CHO	C ₆ H ₂	HC7N	HC ₉ N	
CH ⁺	PO	HCN	H ₂ O ⁺	C ₂ H ₂	H ₂ CCN	CH ₃ OH	CH ₃ NH ₂	CH ₂ OHCHO	C ₈ H	CH ₃ C ₆ H	
CN	AIO	HCO	H ₂ Cl ⁺	NH ₃	CH ₄	CH₃SH	c-C ₂ H ₄ O	I-HC ₆ H	CH ₃ CONH ₂	C ₂ H ₅ OCHO	
СО	OH+	HCO ⁺	KCN	HCCN	HC ₃ N	HC ₃ NH ⁺	H ₂ CCHOH	CH ₂ CHCHO ?	C ₈ H-	CH ₃ OCOCH ₃	
CO ⁺	CN ⁻	HCS ⁺	FeCN	HCNH ⁺	HC ₂ NC	HC ₂ CHO	C₀H-	CH ₂ CCHCN	C ₃ H ₆	c-C ₆ H ₆	
CP	SH ⁺	HOC ⁺	O ₂ H	HNCO	НСООН	NH ₂ CHO		H ₂ NCH ₂ CN	CH ₃ CH ₂ SH	n-C ₃ H ₇ CN	
SiC	SH	H ₂ O	TiO ₂	HNCS	H ₂ CNH	C ₅ N		CH₃CHNH		i-C ₃ H ₇ CN	
HCI	HCl+	H_2S	C ₂ N	HOCO+	H ₂ C ₂ O	I-HC ₄ H				HC ₁₁ N	
KCI	TiO	HNC	Si ₂ C	H ₂ CO	H ₂ NCN	I-HC ₄ N				C ₆₀	
NH	ArH ⁺	HNO		H ₂ CN	HNC ₃	c-H ₂ C ₃ O				C ₇₀	
NO	NO ⁺ ?	MgCN		H ₂ CS	SiH ₄	H ₂ CCNH ?		. , .	 • • •	 	
NS		MgNC		H ₃ O ⁺	H ₂ COH ⁺	C₅N⁻	# Cations (positively-charged)				
NaCl		N_2H^+		c-SiC ₃	C₄H⁻	HNCHCN	+ Anions (negatively-charged)				
OH		N_2O		CH ₃	HCOCN		- $+$ Radicals (uppaired electrons) $-$				
PN		NaCN		C₃N⁻	HNCNH						
SO		OCS		PH ₃	CH ₃ O		* Unsaturated carbon chains				
SO ⁺		SO ₂		HCNO	NH ₄ ⁺		\longrightarrow Structural isomers				
SiN		c-SiC ₂		HSCN	H ₂ NCO ⁺ ?		—— * Complex organic molecules —				
SiO		CO ₂		H ₂ O ₂	HCCNH ⁺						
SiS		NH ₂		C ₃ H ⁺			★ Many isotolopologues				
CS		H_3^+		HMgNC			\pm > 180 and counting				
HF		SiCN		НССО					_		

Molecules in space

2 atoms		3 atoms		4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	9 atoms	≥ 10 atoms
H_2	HD	C ₃	AINC	c-C ₃ H	C5	C ₅ H	C ₆ H	CH ₃ C ₃ N	CH_3C_4H	CH_3C_5N
AIF	FeO ?	C ₂ H	SiNC	I-C₃H	C ₄ H	1-H ₂ C ₄	CH ₂ CHCN	HCOOCH ₃	CH ₃ CH ₂ CN	(CH ₃) ₂ CO
AICI	O ₂	C ₂ O	HCP	C ₃ N	C ₄ Si	C_2H_4	CH ₃ C ₂ H	CH3COOH	(CH ₃) ₂ O	(CH ₂ OH) ₂
C ₂	CF ⁺	C ₂ S	CCP	C ₃ O	1-C3H2	CH ₃ CN	HC₅N	C ₇ H	CH ₃ CH ₂ OH	CH ₃ CH ₂ CHO
СН	SiH ?	CH ₂	AIOH	C₃S	c-C ₃ H ₂	CH ₃ NC	CH₃CHO	C ₆ H ₂	HC ₇ N	HC ₉ N
CH ⁺	PO	HCN	H_2O^+	C_2H_2	H ₂ CCN	CH ₃ OH	CH ₃ NH ₂	CH ₂ OHCHO	C ₈ H	CH ₃ C ₆ H
CN	AIO	HCO	$H_2C ^+$	NH ₃	CH ₄	CH₃SH	c-C ₂ H ₄ O	I-HC ₆ H	CH ₃ CONH ₂	C ₂ H ₅ OCHO
	OH+	HCO ⁺	KCN	HCCN	HC ₃ N	HC ₃ NH ⁺	H ₂ CCHOH	CH ₂ CHCHO ?	C ₈ H-	CH ₃ OCOCH ₃
CO ⁺	CN⁻	HCS ⁺	FeCN	HCNH ⁺	HC ₂ NC	HC ₂ CHO	C ₆ H⁻	CH ₂ CCHCN	C ₃ H ₆	c-C ₆ H ₆
СР	SH ⁺	HOC+	O ₂ H	HNCO	НСООН	NH ₂ CHO		H ₂ NCH ₂ CN	CH ₃ CH ₂ SH	n-C ₃ H ₇ CN
SiC	SH	H ₂ O	TiO ₂	HNCS	H ₂ CNH	C ₅ N		CH₃CHNH		i-C ₃ H ₇ CN
HCI	HCI+	H_2S	C_2N	HOCO+	H ₂ C ₂ O	I-HC ₄ H				HC ₁₁ N
KCI	TiO	HNC	Si ₂ C	H ₂ CO	H ₂ NCN	I-HC ₄ N				C ₆₀
NH	ArH ⁺	HNO		H ₂ CN	HNC ₃	c-H ₂ C ₃ O				C ₇₀
NO	NO ⁺ ?	MgCN		H ₂ CS	SiH ₄	H ₂ CCNH ?				
NS		MgNC		H ₃ O ⁺	H ₂ COH ⁺	C₅N⁻				
NaCl		N ₂ H ⁺		c-SiC ₃	C₄H⁻	HNCHCN				
OH)		N ₂ O		CH ₃	HCOCN					
PN		NaCN		C ₃ N⁻	HNCNH					
		OCS		PH ₃	CH ₃ O					
SO ⁺		SO ₂		HCNO	NH4 ⁺					
SiN		c-SiC ₂		HSCN	H ₂ NCO ⁺ ?					
SiO		CO ₂		H ₂ O ₂	HCCNH ⁺					
SiS		NH ₂		C ₃ H ⁺						
CS		H_3^+		HMgNC						
HF		SiCN		HCCO						

Molecules in space

2 atoms		3 atoms		4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	9 atoms	≥ 10 atoms		
H_2	HD	C ₃	AINC	c-C₃H	C5	C ₅ H	C ₆ H	CH ₃ C ₃ N	CH ₃ C ₄ H	CH_3C_5N		
AIF	FeO ?	C ₂ H	SiNC	I-C₃H	C ₄ H	1-H ₂ C ₄	CH ₂ CHCN	HCOOCH ₃	CH ₃ CH ₂ CN	(CH ₃) ₂ CO		
AICI	O ₂	C ₂ O	HCP	C ₃ N	C ₄ Si	C_2H_4	CH ₃ C ₂ H	CH3COOH	(CH ₃) ₂ O	(CH ₂ OH) ₂		
C ₂	CF ⁺	C ₂ S	CCP	C ₃ O	1-C3H2	CH ₃ CN	HC ₅ N	C ₇ H	CH ₃ CH ₂ OH	CH ₃ CH ₂ CHO		
СН	SiH ?	CH ₂	AIOH	C ₃ S	$c-C_3H_2$	CH ₃ NC	CH₃CHO	C ₆ H ₂	HC ₇ N	HC ₉ N		
CH ⁺	PO	HCN	H_2O^+	C ₂ H ₂	H ₂ CCN	CH ₃ OH	CH ₃ NH ₂	CH ₂ OHCHO	C ₈ H	CH ₃ C ₆ H		
CN	AlO	HCO	$H_2C ^+$	NH ₃	CH ₄	CH₃SH	c-C ₂ H ₄ O	I-HC₀H	CH ₃ CONH ₂	C ₂ H ₅ OCHO		
	OH+	HCO ⁺	KCN	HCCN	HC ₃ N	HC ₃ NH ⁺	H ₂ CCHOH	CH ₂ CHCHO ?	C ₈ H⁻	CH ₃ OCOCH ₃		
CO ⁺	CN⁻	HCS ⁺	FeCN	HCNH ⁺	HC ₂ NC	HC ₂ CHO	C₀H⁻	CH ₂ CCHCN	C_3H_6	c-C₀H₀		
СР	SH ⁺	HOC+	O_2H	HNCO	НСООН	NH ₂ CHO		H ₂ NCH ₂ CN	CH ₃ CH ₂ SH	n-C ₃ H ₇ CN		
SiC	SH	H ₂ O	TiO ₂	HNCS	H ₂ CNH	C ₅ N		CH ₃ CHNH		i-C ₃ H ₇ CN		
HCI	HCI+	H ₂ S	C_2N	HOCO+	H ₂ C ₂ O	I-HC₄H				HC ₁₁ N		
KCI	TiO	HNC	Si ₂ C	H ₂ CO	H ₂ NCN	I-HC ₄ N				C ₆₀		
NH	ArH ⁺	HNO		H ₂ CN	HNC ₃	c-H ₂ C ₃ O				C ₇₀		
NO	NO ⁺ ?	MgCN		H ₂ CS	SiH ₄	H ₂ CCNH ?						
NS		MgNC		H ₃ O ⁺	H ₂ COH ⁺	C₅N⁻	Protoplanetary disk					
NaCl		N_2H^+		c-SiC ₃	C₄H⁻	HNCHCN						
OH		N ₂ O		CH ₃	HCOCN		molecules/volatiles?					
PN		NaCN		C₃N⁻	HNCNH							
SO		OCS		PH ₃	CH₃O							
SO ⁺		SO ₂		HCNO	NH4 ⁺		21* and counting					
SiN		c-SiC ₂		HSCN	H ₂ NCO ⁺ ?							
SiO				H ₂ O ₂	HCCNH ⁺							
SiS		NH ₂		C ₃ H ⁺								
CS		H_3^+		HMgNC			* not including isotopologues					
HF		SiCN		НССО								

A crash course in molecular spectroscopy

A crash course in molecular spectroscopy

A crash course in molecular spectroscopy

Vibrational transitions: H_2O

Vibrational transitions: H_2O

Infrared wavelengths: absorption

(Sub)millimeter wavelengths: emission

Chemical anatomy of a protoplanetary disk

Pontoppidan+, Gibb+, Salyk+, van Dishoeck+, Dutrey+, Chapillon+, Qi+, Oberg+, Kastner+, Thi+, Carr+, Najita+, Hogerheijde+, Fedele+, Meeus+

What chemistry is important where and why?

Protoplanetary disks are essentially 2/3D photon-dominated regions (PDRs)

Tielens, A. G. G. M. & Hollenbach, D. J.1994, ARA&A, 35, 179; Henning, Th. & Semenov, D. 2013, Chem. Rev., 113, 9016

What chemistry is important where and why?

Protoplanetary disks are essentially 2/3D photon-dominated regions (PDRs)

Disk surface

Tielens, A. G. G. M. & Hollenbach, D. J.1994, ARA&A, 35, 179; Henning, Th. & Semenov, D. 2013, Chem. Rev., 113, 9016

What chemistry is important where and why?

Protoplanetary disks are essentially 2/3D photon-dominated regions (PDRs)

Tielens, A. G. G. M. & Hollenbach, D. J.1994, ARA&A, 35, 179; Henning, Th. & Semenov, D. 2013, Chem. Rev., 113, 9016

Gas-phase chemistry

Bond formation

 $X^{+} + Y \rightarrow XY^{+} + \gamma_{UV}$ $X^{-} + Y \rightarrow XY + e^{-}$ $X + Y + M \rightarrow XY + M$

Bond destruction

Bond rearrangement

 $X^{+} + YZ \rightarrow XY^{+} + Z$ $X^{+} + YZ \rightarrow X + YZ^{+}$ $X + YZ \rightarrow X + YZ$

Gas-phase chemistry

Bond

destruction

Bond formation

 $X^{+} + Y \rightarrow XY^{+} + \gamma_{UV}$ $X^{-} + Y \rightarrow XY + e^{-}$ $X + Y + M \rightarrow XY + M$

 $XY + \gamma_{UV} \rightarrow X + Y$ $XY + \gamma_{XR} \rightarrow X + Y$ $XY + \gamma_{CR} \rightarrow X + Y$ $XY + \gamma_{CR} \rightarrow X + Y$ $XY^{+} + e^{-} \rightarrow X + Y$ $XY + M \rightarrow X + Y + M$

Bond rearrangement

 $X^{+} + YZ \rightarrow XY^{+} + Z$ $X^{+} + YZ \rightarrow X + YZ^{+}$ $X + YZ \rightarrow X + YZ$

Interstellar and circumstellar conditions: chemical kinetics dominate

Tielens, A. G. G. M. 2013, Rev. Mod. Phys., 85, 1021

Gas-phase chemistry

Interstellar and circumstellar conditions: chemical kinetics dominate

Tielens, A. G. G. M. 2013, Rev. Mod. Phys., 85, 1021

Dust grains act as a third body for association reactions

Herbst, E. & van Dishoeck, E. F. 2009, ARA&A, 47, 427; Hama, T. & Watanabe, N. 2013, Chem. Rev., 113, 8783; Cuppen, H., et al. 2016, Space Sci. Rev., in prep

We know freezeout and desorption are important in disks because we see midplane depletion of e.g., CO, and gasphase molecules present where they would otherwise be ice

Dust grains act as a third body for association reactions

Herbst, E. & van Dishoeck, E. F. 2009, ARA&A, 47, 427; Hama, T. & Watanabe, N. 2013, Chem. Rev., 113, 8783; Cuppen, H., et al. 2016, Space Sci. Rev., in prep

Dust grains act as a third body for association reactions

Herbst, E. & van Dishoeck, E. F. 2009, ARA&A, 47, 427; Hama, T. & Watanabe, N. 2013, Chem. Rev., 113, 8783; Cuppen, H., et al. 2016, Space Sci. Rev., in prep

Grain-surface processes

Grain-surface processes

Grain-surface chemistry increases complexity

Fuchs, G., et al. 2009, A&A, 505, 629; Oberg, K. I., et al. 2009, ApJ, 504, 891; Fedoseev, G., et al. 2015, MNRAS, 448, 1288

Grain-surface chemistry increases complexity

Fuchs, G., et al. 2009, A&A, 505, 629; Oberg, K. I., et al. 2009, ApJ, 504, 891; Fedoseev, G., et al. 2015, MNRAS, 448, 1288

Calculating the chemistry

Molecular abundances are a function of disk conditions and time

 $n_{\rm X} = F\left[T_{\rm gas}, T_{\rm dust}, n_{\rm gas}, F_{\rm UV}(\lambda), F_{\rm XR}(E_{\rm XR}), \zeta_{\rm CR}, \sigma_{\rm dust}\right]$

$$\frac{dn_{\rm X}}{dt} = F_{\rm X} - D_{\rm X}$$

$$\frac{dn_{\rm X}}{ds} = F_{\rm X} - D_{\rm X}$$

$$s = (r, z)$$
 or (ρ, ϕ, z)

Chemistry in disks is not in equilibrium: steady state is possible

A "simple" chemical network: H₂

A "simple" chemical network: H₂

H₂ forms almost exclusively on dust grains

Vidali, G. 2013, Chem. Rev., 113, 8762

H⁺/H/H₂ in protoplanetary disks

Nomura, H., et al. 2007, ApJ, 661, 334; Walsh, C., et al. 2012, ApJ, 747, 114

H⁺/H/H₂ in protoplanetary disks

X-rays also influence the H⁺/H/H₂ transition regions

Meijerink, R., et al. 2012, A&A, 547, A68

A more complicated network: CO

C⁺/C/CO in protoplanetary disks

Nomura, H., et al. 2007, ApJ, 661, 334; Walsh, C., et al. 2012, ApJ, 747, 114

C⁺/C/CO in protoplanetary disks

Woitke, P., et al. 2009, A&A, 501, 383; Bruderer, S., et al. 2012, A&A, 541, 91
C⁺/C/CO in protoplanetary disks

Similar stratification is seen in numerous physico-chemical models

Woitke, P., et al. 2009, A&A, 501, 383; Bruderer, S., et al. 2012, A&A, 541, 91

An even more complicated network: H₂O

"Hot" neutral-neutral chemistry

van Dishoeck, E. F., et al. 2013, Chem. Rev., 113, 9043

Water in protoplanetary disks

Networks can quickly become complicated!

Walsh, C. et al. 2015, A&A, 582, A88

Creating synthetic observations

Bast, J., et al. 2013, A&A, 551, 118

Creating synthetic observations

Bast, J., et al. 2013, A&A, 551, 118

Creating synthetic observations

Walsh, C., et al. 2014, A&A, 2014; Walsh, C., et al. 2016, ApJ, 2016

General outline of a physico-chemical model

General outline of a physico-chemical model

T_{gas} and T_{dust} decouple in disk atmosphere

At low densities and high ultraviolet fluxes, gas-grain collisions are inefficient and gas cools radiatively (which is slow)

Gas temperature calculation needs to be coupled with small chemical network to compute self-consistently the abundances of the main coolants: [CI], [OI], CO, H₂O

Nomura, H. & Millar, T. J., 2005, A&A, 438; Woitke, P., et al. 2009, A&A, 501, 383; Walsh, C., et al. 2010, ApJ, 722, 1607; Bruderer, S 2013, A&A, 559, A46

Coupled physico-chemical models

DALI Bruderer et al. (2012); Bruderer (2013)

INPUTS

- Density structure
- Stellar spectrum

Chemical networks for astrochemistry

Talk to an astrochemist!

Gas-phase chemistry <u>http://www.udfa.net/</u> <u>http://kida.obs.u-bordeaux1.fr/</u> <u>http://kinetics.nist.gov/kinetics/index.jsp</u>

Photoionisation/photodissociation <u>http://home.strw.leidenuniv.nl/~ewine/photo/</u> http://phidrates.space.swri.edu/

> Freezeout/desorption Grain-surface chemistry <u>http://kida.obs.u-bordeaux1.fr/</u> <u>http://faculty.virginia.edu/ericherb/research.html</u>

McElroy, D., et al. 2013, A&A, 550, A36; Wakelam, V., et al. ApJS, 2015, 217, 20; Garrod, R. T. & Herbst, E., A&A, 457, 927; van Dishoeck, E. F., et al. 2006, Farad. Disk., 133, 231; Heays, A., et al. 2016, ApJS, in prep.; Huebner, W. F. & Mukherjee, J. 2015, Plan. Space. Sci., 106, 11; Cuppen, H., et al. 2016, Space Sci. Rev., in prep.

Molecular data

Talk to an astrochemist!

LAMDA: Leiden Atomic and Molecular Database <u>http://home.strw.leidenuniv.nl/~moldata/</u>

Cologne Database for Molecular Spectroscopy http://www.astro.uni-koeln.de/cdms/

JPL Molecular Spectroscopy <u>http://spec.jpl.nasa.gov</u>/

HITRAN/HITEMP http://hitran.org/

> ExoMol <u>http://www.exomol.com</u>/

Radiative transfer codes

Radiative transfer codes

Future outlook

- Coupling dust evolution models with thermo-chemical and complex chemistry models: dust models are inherently 1D
- Correct treatment of viscous effects on disk structure and chemistry
- Large-scale mixing: connection with the solar system
- Breaking axisymmetry: creation of vortices, dust traps, and corresponding chemical effects
- Using molecular lines to distinguish between different models to explain dust morphology as observed with ALMA
- Chemistry in evolving disks: fingerprints of early conditions