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Summary

The plasma of the Solar corona is practically collisionless. This imposes an important
role of waves and micro-turbulent interactions with particles for plasma transport, dissi-
pation, stability, etc, since binary particles collisions are inefficient. As a result the Solar
corona is also a natural laboratory for testing basic plasma turbulent phenomena. Current
sheets (CS), through which magnetic energy can be released, are ubiquitous in this envi-
ronment. Different from many other plasmas, the presence of large guide magnetic fields
plays a crucial role in the corona. In general, CS are prone to a large number of macro
and micro-instabilities, the more the thinner they become. CS can lead to or are formed
as consequence of magnetic reconnection. This is a fundamental physical process in the
Universe that converts magnetic into other forms of energy which goes along with change
of the magnetic connectivity.

In this context, we aim towards an appropriate characterization of the influence of the
guide magnetic field on the instabilities of and magnetic reconnection through CS, for
which in coronal plasmas small scale kinetic effects are essential. In order to investigate
the essential nonlinear properties, we use fully kinetic Particle-in-Cell (PIC) numerical
simulations to adequately describe the collisionless solar coronal plasma. The kinetic
approach is necessary to properly describe coupling of scales in collisionless magnetic
reconnection and to provide, in the end, macroscopic transport properties appropriately
describing the coronal plasma. In order to validate our methods, we also analyze the limits
cases of zero (antiparallel configuration) and infinite guide fields (gyrokinetic theory) for
comparison.

In the case of antiparallel Harris CS, we find several instabilities driven by tempera-
ture anisotropy which might be numerically induced when more realistic parameters (high
mass ratios) are used in PIC simulations. We reveal that they may mimic real collisional
physical processes, and we show how they can be efficiently avoided by choosing appro-
priate numerical parameters, such as the shape functions (interpolation schemes).

Next, we analyze the instabilities of Harris CS in the presence of small guide fields.
We develop methods to calculate spatial and temporal derivatives, as well as averages,
for a proper calculation of the mechanisms supporting the reconnected electric field. Our
methods, more accurate than previously used ones, reveals the appearance of additional
terms in the mean field generalized Ohm’s law at the edge of the magnetic islands, aris-
ing from the interaction with electromagnetic fluctuations. Our findings reveal cross-field
streaming and pressure gradient driven instabilities, causing plasma heating, particle ac-
celeration and turbulence.

In the third and last part, we analyze instabilities of force free CS in the presence
of large guide fields, which we compare with the results of gyrokinetic simulations. For
βi = 0.01, we find that gyrokinetic simulations model sufficiently well the regions close to
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Summary

the reconnection X point for guide fields bg & 5, and practically everywhere for bg & 30.
But only a fully kinetic PIC simulation can reveal, e.g., the physics of secondary magnetic
islands for moderate guide fields bg & 5, where macro and micro instabilities driven
by shear flow and streamings generate magnetic fields, particle heating and acceleration
besides of high frequency electromagnetic fluctuations. For βi ∼ 1, the applicability of
gyrokinetic simulation is much less restricted, in the sense that the convergence to the PIC
simulations results requires even lower guide fields.

Our results have important implications for understanding the role of current sheet
instabilities in the solar corona and their macroscopic consequences for the overall dy-
namics and energy conversion processes. This also applies for astrophysical collisionless
plasmas, as well as laboratory plasmas and nuclear fusion facilities on Earth.
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1 Why current sheet instabilities? an

introduction

1.1 Properties of the solar corona and magnetic reconnec-

tion

The solar corona is the outer layer of the Solar atmosphere, directly visible from the
Earth only during eclipses. It is composed by a practically collisionless (see definition of
“collision” in Sec. 2.1.3) and low beta (β, to be defined in Eq. (3.4)) plasma, permeated
by magnetic fields, electromagnetic turbulence and waves (see some characteristic param-
eters in Table 1.1). One of its most striking features is its very high temperatures above
106 K. This is about three orders of magnitude hotter that the photosphere (T ∼ 6 · 103 K),
the Sun’s visible surface located below. One of the most long standing open questions in
the solar corona research is trying to explain how the solar corona is heated to such high
temperatures.

Many explanations for the coronal heating have been proposed, which can be divided
basically in two groups (see Aschwanden 2005, Chap. 9). The first one are AC mecha-
nisms, based in the dissipation of the energy of electromagnetic waves. The second ones
are DC mechanisms, based in the dissipation of electric currents, e.g. in the so called
nanoflares. Basically, it proposes that current sheets (CS, to be discussed in Sec. 1.2) in
small flares, distributed everywhere in the solar corona (in both active and quiet regions),
are continuously releasing energy and contributing to the steady heating of the corona
(Cassak and Shay 2011). This is is in opposition to the much larger, but infrequent, re-
lease of energy by flares and coronal mass ejections (CME’s). In all these scenarios,
magnetic energy is converted to heat and plasma acceleration via a sudden change in the
topology of the magnetic field (see Somov 2006, and references therein), a process called
magnetic reconnection (to be discussed in Chapter 4). Since reconnection usually takes
place through CS, they are the main focus of this thesis.

There are many models of magnetic reconnection in solar flares, relying on a host
of different mechanisms from the pure magnetohydrodynamics (MHD, see definition of
this plasma model in Sec. 2.2) to fully kinetic ones (see Parker 1983, 1994, Priest et al.
2005, Somov 2006, Cassak and Shay 2011, and references therein). There is no unique
explanation: some of these models seem suitable to explain some events particularly in
collisional regimes, but there is a lack of models for collisionless cases. As pointed out by
Cassak and Shay (2011), the main problem for validation of these models is the huge gap
between the length scales of a typical solar flare (on the order of 107m) and the diffusion
region of collisionless reconnection where magnetic field lines reconnect (on the order
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1 Why current sheet instabilities? an introduction

A1

X point

A2

A1

A2

Figure 1.1: Scheme showing a possible scenario of current sheet and magnetic reconnec-

tion in a solar flare. In stage a), the magnetic field line A1 has end-points in “s” and “S”,

while A2 in “N” and “S”. In stage b) a current sheet is formed in the indicated place.

After the reconnection process takes place in the current sheet, the change in topology

alters the end point of the line A1 to the other side of the X point: from “s” to “n”, and

similarly for the line A2: from “N” to “s” . Adapted from Fig. 4.1 of Somov (2006).

of de ∼ 2cm. See Table 1.1) 1. A realistic numerical simulation that could test these
models would have to resolve a separation of 9 orders of magnitude in length scales,
something totally impractical nowadays. Moreover, as we will describe in Chapter 4,
magnetic reconnection also involves a very slow build-up phase (up to weeks in the case
of flares), but a very sudden release of energy during its onset (on the order of minutes).
This wide time-scale separation impose an additional severe constraint on any kind of
numerical validation of realistic models of solar flares.

But how do we know that magnetic reconnection is operating in the solar corona? The
CS where this process takes place cannot be resolved by observations due to their small
size, on the order of the diffusion region di in the collisionless coronal plasma (Büchner

1 All the symbols to be shown in this thesis are defined and described in Appendix A.1.2.
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1.1 Properties of the solar corona and magnetic reconnection

Plasma ne [cm−3] B [T ] Te [eV] ωpe [s−1]

Solar corona (flares) 109 2 · 10−2 200 1.4 · 109

Solar wind 7 7 · 10−9 10 2.5 · 105

Magnetotail 0.3 2 · 10−8 600 4 · 104

Magnetopause 10 5 · 10−8 300 1.1 · 105

Magnetar flares 1035 2 · 1011 5 · 105

MRX 1013 0.1 10
ITER 1014 5.3 2 · 104

Plasma S ωpe/Ωce c/vth,e de [m]

Solar corona (flares) 1 · 1013 1 − 2 50 0.2
Solar wind 3 · 1012 100 − 150 200 1.2 · 103

Magnetotail 4 · 1015 10 − 30 20 − 70 8.0 · 103

Magnetopause 6 · 1013 10 − 70 40 − 70 2.7 · 103

Magnetar flares 6 · 1016 − −
MRX 3 · 103 50 − 200 220 − 320
ITER 6 · 108 − −

Table 1.1: Some important parameters of plasmas in different environments where mag-

netic reconnection can develop. The symbols are described in Appendix A.1.2. Top: Mea-

sured parameters. Bottom: Derived quantities. Adapted from Ji and Daughton (2011),

Kivelson and Russell (1995), Boyd and Sanderson (2003). de is the typical spatial dimen-

sion of the diffusion region. In the magnetopause and magnetotail, Ti ∼ 10Te.

2007). But by means of indirect methods and numerical simulations (relating the mo-
tion of photospheric magnetic field with the plasma bulk flows) is possible to estimate,
e.g, the reconnected electric field Erec. This quantity, closely related to the reconnection
rate, (to be defined precisely in Chapter 4, Eq. (4.2)) quantifies the release of energy via
magnetic reconnection. By means of the previously mentioned methods, this (properly
normalized) electric field gives estimations of Erec/(B∞yVA) ∼ 0.001 − 0.2 (with VA the
Alfvén speed calculated on the asymptotic magnetic field B∞y sustaining the CS. See def-
inition in Appendix A.1.2) in the solar flares (see Cassak and Shay 2011, and references
therein). Therefore, a successful model of magnetic reconnection should predict rates on
this range (the upper limit is commonly called fast magnetic reconnection). On the other
hand, there are also observations of the flows resulting from reconnection in EUV and
visible range, as well as the radio and X-ray emission resulting from electron acceleration
(Karlický 2014).

15



1 Why current sheet instabilities? an introduction

1.2 The role of current sheets in magnetic reconnection

As we already mentioned without a proper definition (see Fig. 1.1), current sheets
(CS) constitute a basic ingredient for magnetic reconnection observed in the solar corona.
Indeed, most of the theories of reconnection in the solar corona predict that it should
take place and dissipate energy in these regions with enhanced current density and (by
Ampère’s law Eq. (2.10)) an associated strong magnetic field shear. CS form when two
highly conductive plasmas (see discussion in Eq. (2.49)) with different orientations in their
internal magnetic field come together due to an external driver. In the solar corona, this is
realized due to the motion of magnetic flux tubes as a result of the moving photospheric
plasma underneath (Parker 1994, Büchner 2006).

Magnetic reconnection in CS starts when steeper gradients are formed due to the afore-
mentioned external driver. This produce higher currents, being therefore concentrated in
smaller spatial regions (a thin CS) with a small typical length scale LB. This length will
be reduced more and more making CS thinner and thinner (Schindler 2007) as long as
the external driver is active, with a corresponding increase in the total energy stored in
this configuration. If in addition there is some other process enhancing the resistivity η in
that region, the magnetic Reynolds number Eq. (2.46) will be increased (Koskinen 2011).
2 Therefore, due to the resistive Ohm’s law Eq. (2.44) or induction equation, the diffu-
sive term in the Ohm’s law η~J will gain importance in comparison with the convective
one ~V × ~B, leading to a breaking of the frozen-in condition Eq. (2.49) and allowing thus
a rearrangement of magnetic field lines. Or in other words, the plasma loses its highly
conductive nature: the bulk plasma flow can move independently from the magnetic field
lines. As we are going to explain in Chapter 4, this global change in the magnetic field
topology transforms the magnetic into particle energy, in the form of bulk flow motions,
heating and particle acceleration. For this reason CS are the preferred locations where
magnetic reconnection can take place, at least in the context of resistive MHD (and some-
times is taken as part of its definition, according to Koskinen (2011)).

The physical process that can interrupt the continuous thinning of the CS (with the
corresponding increase in the total energy stored in the magnetic configuration) is known
as tearing instability, leading to CS with typical length scales LB ∼ di at the end of this
saturation stage. This instability, to be discussed in 5.1, prepares the onset for the fast
release of energy during magnetic reconnection.

In addition, the associated gradients in magnetic field, density, temperature currents,
and the electron-ion streaming (necessary to produce the currents), act as additional
sources of free energy to drive a large number of macro- and micro- instabilities (see
Silin et al. 2002, Silin and Büchner 2003, Silin 2004, and references therein). And be-
cause these effects will be enhanced when current sheets are thinner (especially around
ion length scales di), it is expected that kinetic effects, such as resonant wave-particle in-
teractions, play an important role as physical mechanisms leading to generalized forms of
dissipation in collisionless plasmas (see Büchner and Daughton 2007, Galeev and Sudan
1984, and also Sec. 4.2.5). A few of the most important instabilities taking place in thin
current sheets will be discussed in Chapter 5.

2 All the Plasma Physics concepts discussed here are discussed in detail in Chapter 2.
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1.3 Current sheets and magnetic reconnection in other environments

b)

a)

current sheets

Figure 1.2: Scheme of current sheet formation and reconnection in two possible con-

figurations of the Earth’s magnetopause. Top: “Closed” magnetosphere (Northward

IMF,Interplanetary Magnetic Field), no magnetic dayside reconnection. SW is the direc-

tion of the incoming Solar Wind. Bottom: “open” magnetosphere, dayside and nightside

magnetic reconnection is allowed through the formation of current sheets in the indicated

locations. Red lines are magnetic field lines not involved in reconnection, while blue lines

are the ones forming the current sheets. Adapted from Fig. 8.2 of (Somov 2006)

1.3 Current sheets and magnetic reconnection in other

environments

Current sheets and magnetic reconnection are also ubiquitous and important in many
other space, astrophysical and laboratory plasmas, such as in Earth’s magnetosphere
(see, e.g., Dungey 1961, Schindler and Birn 1978, Kivelson and Russell 1995, Hesse et al.
2014, and references therein). It can take place through current sheets formed in both mag-
netopause and magnetotail (see some characteristic parameters in Table 1.1), opening the
magnetosphere and leading to the development of magnetic substorms, as can be seen in
Fig. 1.2. While in the magnetotail reconnection is usually symmetric, in magnetopause is
remarkably asymmetric: different conditions are present in each side of the current sheet.
And different from the solar corona, this setting provides an unique opportunity for in-
situ measurements of magnetic reconnection, such those carried out by, e.g., the Cluster,
Themis and the just launched MMS space missions.

Magnetic reconnection has also been proposed to explain the acceleration of the solar
wind (see, e.g., Fisk et al. 1999, Büchner and Nikutowski 2005, and references therein).
It has been detected recently in the solar wind (Gosling 2011). It is interesting to men-
tion that although the data for its detection was available for many decades ago, there
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1 Why current sheet instabilities? an introduction

were not too many attempts to look at it for signatures of reconnection, because it was
thought that should not play an important role in the overall solar wind physics. Now
there have been observed even kinetic effects (Xu et al. 2015), and associated turbulence
in this environment (Osman et al. 2014, Vörös et al. 2014).

Magnetic reconnection also plays an essential role to explain the huge release of mag-
netic energy in “extreme” astrophysical environments, such as flares in pulsars’ mag-
netospheres (magnetars), gamma ray bursts (GRB) and accretion disks of AGNs (see
Uzdensky and Rightley 2014, Kagan et al. 2015, and references therein). Those environ-
ments are called extreme because their (usually pair) plasmas are embedded in intense
magnetic fields, besides of being very hot kBTe ≫ mec

2 and dense (see some characteris-
tic parameters in Table 1.1). This is in the realm of relativistic quantum plasma physics, a
theory that only recently started to be developed.

CS instabilities and magnetic reconnection are also of essential importance in labora-
tory plasmas. This is the case of MRX, “Magnetic Reconnection Experiment”, a labora-
tory at PPPL with the purpose of studying the basic physics of magnetic reconnection, or
VINETA II, another (linear) magnetic reconnection experiment in Germany (Bohlin et al.
2014). It is also relevant for fusion plasmas, such as in ITER: “International Thermonu-
clear Experimental Reactor” a tokamak reactor at France studying the feasibility of prac-
tical fusion reaction. See additional details in Yamada et al. (2010), Zweibel and Yamada
(2009) and references therein. In fusion devices, magnetic reconnection has to be avoided
in order not to destroy the magnetic topology that keeps the hot plasma confined inside of
tokamaks, etc.

1.4 General concept of instability

This thesis is devoted to the study of CS instabilities. Several specific cases will be
analyzed in Chapter 5. For that reason, now we will briefly describe the general concept
of plasma instability, in addition to introduce their related terminology.

Physically, an instability is due to the loss of equilibrium of the forces acting in a
plasma. Small perturbations will remove the system away from this unstable state. This
is in contrast to a stable equilibrium state, where these effects will only make the system
oscillate around its equilibrium configuration. Theoretically, linear instabilities are de-
scribed by a linear analysis of a given plasma model, determining if the plasma is stable
against small perturbations. The standard Ansatz is assuming that the solution for a given
quantity A = A(t) can be expressed in the frequency domain Ã = A(ω) by means of the
Fourier transform 3 in the following way:

Ã(ω) =
1
√

2π

∞∫

−∞

A(t) eiωt dt ⇒ A(t) =
1
√

2π

∞∫

−∞

Ã(ω) e−iωt dω (1.1)

3 This is suitable if the problem can be considered as one of normal modes. But in kinetic theory, when
analyzing any effect related with Landau damping (Landau 1946), it is more convenient to analyze the
problem as one of initial values. In this case, the Fourier transform has to be replaced by a Fourier-Laplace
transform (see, e.g., Baumjohann and Treumann 1997, Sec. 10).
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1.5 The importance of kinetic instabilities

It is often the case that in the solution to a problem the frequency cannot be considered as
purely real, but in general a complex number:

ω = ωr + iγ with ωr = Re(ω) and γ = Im(ω) (1.2)

Plugging this into the solution for A(t) in Eq. (1.1), each normal mode will have the
following dependence

exp (−iωt) = exp (γt) exp (−iωr t) (1.3)

This means harmonic oscillations modulated (or with an envelope) by exp (γt). If |γ| ≪
|ωr|, the oscillations will be weakly affected by that term, and we have a normal mode or
eigenmode. If γ < 0, the oscillations will decrease with time: the mode is called damped

or stable. If γ > 0, the oscillations will grow with time, indicating a linear instability with
the associated wave mode is said to be unstable. For this reason γ is called growth rate. Of
course, an instability cannot grow forever in nature, there is always some mechanism that
prevents that, leading to a different configuration of the plasma. This process is known as
the saturation of an instability, in many cases bringing the system to a quasi-steady state.

Plasma instabilities can be of different origin: they are always fed by a source of free

energy which can be, e.g, relative streaming, inhomogeneities in the density (drift insta-
bilities), magnetic or electric fields, inhomogeneities in the velocities (shear), magnetic
tension, wave-wave interactions (parametric instabilities), etc. These cases are called
macroinstabilities, since they depend on macroscopic quantities. Instabilities can, how-
ever, also arise from a “deformation” of a distribution function f (deviations from the
equilibrium Maxwellian f ). In this case, they are called microinstabilities. The physical
mechanisms of all instabilities requires free energy. If it is not resupplied (in a closed
system), they will deplete it (i.e. reducing the gradients, streamings or thermalizing the
distribution function) bringing the system back towards an stable state equilibrium. For
further details about plasma instabilities, see the list of textbooks listed at the beginning
of Chapter 2, and in particular the textbook by Gary (1993).

1.5 The importance of kinetic instabilities

Although some consequences of magnetic reconnection in the solar corona, are visible
at very large scales (rearrangement of magnetic fields), the physics behind takes place at
very small scales (diffusive or non-ideal process. See Sec. 2.5). Indeed, as we mentioned
before, reconnection requires the existence of CS over extended periods of time (e.g., in
MHD models of solar flares, Cassak and Shay 2011). In collisionless plasmas they can be
properly described only with kinetic theories, beyond fluid models as MHD (see Sec. 2.2).
Basically, in these plasmas it is necessary to take into account the microphysics of the
particle interacting in the plasma (see details in Sec. 2.1). Thus, the aforementioned
micro-scale physics is the first main justification for the use of kinetic theories for the
analysis of these processes.

The second reason has to do with the fact that the most of the space plasmas are prac-
tically collisionless, i.e.: they have such low density and high temperatures that a particle
can travel very large distances without experience significant interactions with other ones
over long time (see a more detailed discussion in Sec. 2.1.3). This can be seen in the high

19



1 Why current sheet instabilities? an introduction

value of the Lundquist number S given in Table 1.1, a measure of this behavior. In these
environments, the particles can be very far away from the thermodynamic equilibrium,
and therefore collective plasma phenomena dominate the global evolution of the system.
On the other hand, at the macroscopic level the transport processes governing the evolu-
tion of some key quantities as resistivity, diffusion, heat conduction, equation of state, etc
, rely on the assumption of thermodynamic equilibrium, equivalent to a local dependence.
Then, in the collisionless coronal plasma, these transport processes are controlled mostly
by the non-local, long range collective wave-particle interactions, very different from the
collision-dominated fluid picture. This has dramatic consequences in many of the phe-
nomena that can be observed, in the Solar corona. As stated in Schwartz et al. (2013): “If
we lived in a fluid Universe, there would be no solar flares, no ultra-relativistic cosmic
rays, and no Aurora Borealis”. For further details about the importance of the kinetic
effects in space and astrophysical plasmas, see, e.g., the review of Schwartz et al. (2013)
and the book by Balogh et al. (2014).

1.6 Outline of this thesis

In the previous sections of this chapter we have motivated the importance of the study
of collisionless current sheet instabilities and magnetic reconnection in the solar corona,
where a external guide field is an essential ingredient. The aim of this thesis is precisely
a proper description of these kinetic processes in this physical system via fully-kinetic
Particle-in-Cell (PiC) codes, capable to model accurately this kind of phenomena. We
gradually approach to this goal in three result Chapters 7 to 9.

First, in the result Chapter 7, we analyze spontaneous instabilities in Harris CS in
the limit case of zero guide field. We will see that a proper modeling of the physical CS
instabilities require a careful tuning of numerical parameters in a PIC code, in order to dis-
tinguish them from instabilities driven by numerical heating that previous works were not
taking properly into account. Then, in our second result Chapter 8, we switch to more
realistic CS configurations by adding a small guide field. Here we explore the dissipative
mechanisms allowing the fully developed stage of magnetic reconnection on dependence
on guide field, via the analysis of the Generalized Ohm’s law, properly averaged in time
and space via the techniques explained in Appendix B.1. This is particularly important be-
cause many previous studies have not taking into account these averaging processes and
their physical implications. Finally, in our last result Chapter 9 we address magnetic
reconnection and instabilities in the regime of moderate and large guide field, suitable for
the Solar corona. Since PIC simulations in this parameter range can be computationally
very expensive, we change our equilibrium to force free CS in addition to compare our
results with a gyrokinetic code, valid in the limit of infinite guide field. Our purpose here
is trying to clarify to what extent the gyrokinetic simulations can be used to replace the
PIC simulation in the realistic limit of finite guide fields. For that is necessary a careful
benchmark considering all the assumptions in the gyrokinetic plasma model, and a de-
tailed description of the instabilities and physical processes that can be modeled only by
a fully-kinetic PIC code.

However, it is necessary to pass through a long road full of possible pitfalls coming
from an inadequate understanding of the physical and/or numerical assumptions of the
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1.6 Outline of this thesis

models and algorithms in order to understand properly our results. That is why we are
going to explain next the somehow unconventional format of this thesis in the sense of
having a very long introduction divided in five additional chapters (including this one,
from Chapters 1 to 6).

The theoretical study of Plasma Physics relies heavily in a clever set of assumptions
and approximations. There are many plasma models suitable to describe some phenomena
but they are only valid under some parameter regimes. We are going to briefly describe
the ones applied to the processes to be observed in our results in Chapter 2, with special
emphasis in the assumptions and approximation where they are valid. Many times these
models are applied for cases beyond their validity regime, rendering any conclusion or
result based on them invalid. For that reason we start in Sec. 2.1 introducing the velocity
distribution function VDF f , basis of all kinetic treatments, and then showing how the
macroscopic quantities used in fluid models can be derived from it in Sec. 2.1.1. Next, we
present the basic equation of collisionless plasmas, called Vlasov equation, in Sec. 2.1.4.
The assumptions under which it is valid, absence of collisions, are reviewed just before,
in Sec. 2.1.3. Then, we go down into the hierarchy of plasma models by introducing
the multifluid approaches, based on a proper averaging of the Vlasov equation, and its
closures in Sec. 2.2. In particular, the equations and assumptions of two-fluid models are
described in Sec. 2.2.1. Then, we eliminate partially distinctions between plasma species
by combining them in one-single variable to arrive to Hall-MHD model in Sec. 2.3. This
model is essential to understand the physics of collisionless magnetic reconnection that we
are going to present in our results. When the Hall term, arising from a decoupling between
electrons and ions is neglected, we arrive to resistive MHD in Sec. 2.4. It is often the case
that resistivity can be neglected (especially in the collisionless solar corona plasma), in
which case we get a reduced system of equations known as ideal MHD, to be described
in Sec. 2.5. In that section we also present the Alfvén’s theorem (also known as frozen-
in condition), stating that any change of topology in the magnetic field configuration, a
necessary condition for magnetic reconnection, require a mechanism beyond ideal MHD.
This condition is nicely summarized in the Generalized Ohm’s law, presented for first
time in Sec. 2.2.1. Any plasma description beyond ideal MHD contributes with terms in
that equation responsible for the violation of Alfvén’s theorem, allowing the dissipation
necessary for magnetic reconnection. Therefore, it is of essential importance to clearly
understand any of the approximations used to get to this point, since when going down
into the hierarchy of plasma models we are neglecting effects that can be important to
explain the phenomena to be shown in this thesis (starting from the same definition of
the of single-particle distribution function, collisions, two fluid effects, etc). In resistive
MHD all the possible mechanisms for breaking the frozen-in condition are collapsed into
one single parameter, the resistivity, but that turns out to be an oversimplification in many
cases. That is the main justification for presenting all these models. Finally, in the last
section of this chapter, Sec. 2.6, we present the CGL approximation, an approach useful
to model low β plasmas with strong guide field such as the one to be shown in our results
of Chapter 9.

The study of CS instabilities requires the specification of initial equilibria. The ones
to be used in this thesis will be described in Chapter 3. As explained in Sec. 3.1, there are
many possible MHD equilibria but very few kinetic ones (see Sec. 3.2). The most famous
is the Harris equilibrium (Sec. 3.2.1) which is also an MHD equilibrium. We are going
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1 Why current sheet instabilities? an introduction

to use this one in our setup to be shown in Chapter 7. The Harris equilibrium also turns
out to be unaltered with the addition of a guide field, and that is why we are also going
to use for the guide field cases in Chapter 8. However, in the large guide field limit this
equilibrium turns out to be inconvenient for some numerical reasons.Due to this, in our
last result Chapter 9, we switch to a force free equilibrium to be described in Sec. 3.2.2.3.
However, this is an MHD equilibrium, approximation to the Harris equilibrium in the
strong guide field limit. Since in our results of Chapter 9 we focus in the non-linear or
quasy-steady stage of magnetic reconnection, the distinction is not so important. There is
an exact kinetic force free equilibrium described Sec. 3.2.2.2, but it does not include the
guide field dependence.

In Chapter 4, we review the literature about the fully-developed stage of magnetic

reconnection to put in context our work about guide field dependence in Chapter 8 and
Chapter 9. First, we review the generalities of the MHD models of magnetic reconnection
in Sec. 4.1, and how they are inappropriate to describe this physical process for the param-
eter regimes used in our studies. Then, in Sec. 4.2, we switch to collisionless magnetic
reconnection, more suitable in our case. In particular, we emphasize the importance of
Hall effects (Sec. 4.2.1) in the sense of that, although not breaking the frozen-in condition
of ideal MHD, they allow dispersive waves (Sec. 4.2.2) that can explain the fast recon-
nection rates observed in our studies in Chapter 9. Then, we explain three collisionless
dissipative mechanisms (terms in the Generalized Ohm’s law) that can violate the Alfvén
theorem in Secs. 4.2.3 to 4.2.5. We are going to identify all of them in our results in
Sec. 8.3 and Sec. 8.4, but only after developing a proper way to calculate time and spatial
averages resorting to the techniques explained in Appendix B.1. Finally, in Sec. 4.3 we
address what it is known about the guide field effects on magnetic reconnection, in order
to compare our results with the theoretical and numerical expectations of two-fluid theory.
In particular, in Sec. 4.3.1, we describe the effects of a guide field on the symmetries and
scaling of some key quantities on the steady-state stage of magnetic reconnection. This
is the theoretical framework in which we are going to compare our results in the large
guide field limit of Chapter 9. As we are going to show, any deviation from this two fluid
behavior can be attributed to some specific kinetic effects to be found in our results.

Next, in Chapter 5, we briefly describe and analyze the most important collisionless
instabilities in CS relevant for our results. First, we review the spontaneous instability
leading to magnetic reconnection, the tearing instability, in Sec. 5.1. We show its physical
MHD mechanism in Sec. 5.1.1 in order to emphasize how different is its kinetic descrip-
tion in Sec. 5.1.2. While in the first case its growth rates are controlled by the resistivity,
in the kinetic case they depends on the behavior of the particle orbits, and thus on how
thin is the CS halfwidth in comparison with the typical length scale ρi . We explain all
the approximations used to derive its growth rates (without guide field in Sec. 5.1.2.1 and
with guide field in Sec. 5.1.3) against which our results will be compared in Chapter 7 and
Chapter 8. This will allow to identify precisely the physical origin of the discrepancies.
We also describe the saturation mechanisms (without guide field in Sec. 5.1.2.2 and with
guide field in Sec. 5.1.3.4), in order to explain what physical process control the coales-
cence and merging of magnetic islands in our results of Chapter 7 and Chapter 8. Finally,
in Sec. 5.1.4, we review the tearing mode theory extended for temperature anisotropies,
since this will appear due to purely numerical reasons in our simulations of Chapter 7,
allowing us thus to explain its consequences in our system. This is especially relevant for
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1.6 Outline of this thesis

the bifurcation induced in CS (indirectly) due to this effect (see Sec. 5.1.4.1).
In Chapter 5 we also reviewed some other instabilities consequence of magnetic recon-

nection to be found in our results. In Sec. 5.2 we explain the theoretical expectations about
the instabilities driven by temperature anisotropy. The most important features of Weibel
and mirror instabilities are explained in Sec. 5.2.1 and Sec. 5.2.2, allowing us to justify
its appearance in our simulations of Harris CS when an initial temperature anisotropy is
imposed (see Sec. 7.3). We emphasize the conditions and approximations under which
they are expected, since these instabilities are not commonly seen in Harris CS. The the-
ory about Weibel instability will also be useful to understand its behavior when a guide
field is present (see Sec. 8.3). In Sec. 5.2.3 and Sec. 5.2.4 we also show the reasons be-
cause other two related instabilities driven by temperature anisotropy are ruled out in our
simulations.

In the last part of Chapter 5 we discuss two family of instabilities driven by bulk
flows that will appear in our simulations in the large guide field limit in Chapter 9. The
first ones explained in Sec. 5.3 are driven by the shear flow, initially present in the our
simulation setup. They are very related with the classical MHD Kelvin-Helmholtz insta-
bility to be explained in Sec. 5.3.1. The kinetic version of this instability is explained
in Sec. 5.3.2 in order to have the arguments to claim its presence under the conditions
present in our simulations. We also see a magnetic field generation in our simulations
with large guide field and initial shear flow, and that is why we describe in Sec. 5.3.3 a
similar mechanism observed in simulations for a different parameter range (in order to
gain physical insight). The consequences of the shear flow in reconnection are reviewed
in Sec. 5.3.4 and Sec. 5.3.5, allowing to understand quantitatively its effects in our results
for the specified parameter range. Finally, in Sec. 5.4 we describe instabilities driven by
relative streaming between electrons and ions. The ones relevant for the results shown in
Chapter 9 are cross-field, i.e: with propagation perpendicular to the dominant out-of-plane
guide magnetic field and driven by in-plane streamings. They are analyzed in Sec. 5.4.2.
We explained the high frequency cross-field instability in Sec. 5.4.2.1 that will be ruled
out, and another similar low frequency instability (modified-two stream instability MTSI)
in Sec. 5.4.2.2. In that section, as well as in Sec. 5.4.2.3, we describe its most important
features that will support our conclusions in identifying the behavior seen in our simula-
tions as due to that instability. In Sec. 5.4.2.4 we describe the lower hybrid drift instability
(LHDI). Although it is technically a instability driven by pressure gradients, it can also be
interpreted as driven by streaming originated from diamagnetic drifts. All the evidence to
be found in our results as due to that instability is explained in the mentioned section as
well as in Sec. 5.4.2.5. All these cross-field instabilities turn out to be important to explain
the differences between our PIC simulations results shown in Chapter 9 and the results
given by gyrokinetic simulations, since these last ones have restrictions on the magnitude
on the allowed cross-field streaming speeds.

Finally, the last introductory Chapter 6 is devoted to the main numerical tool used
to obtain the results shown in this thesis: fully kinetic PiC codes, with an emphasis on
the methods used by the ACRONYM code. Starting from some generalities of the PIC
method in Sec. 6.1, we then explain in Sec. 6.2 the consequences of coarse-graining the
phase space via the introduction of the shape function, used in the interpolation scheme
between the grid and the macroparticles. This often overlooked numerical parameter
will turn out to be of essential importance in avoiding numerical artifacts in the PIC sim-
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ulations shown in Chapter 7. Then, we describe different parts of the PIC algorithms
in Secs. 6.4 to 6.7 to finally discuss the most important numerical effects that we will
be facing in Sec. 6.8. First, we analyze the stability conditions constraining our choice
of parameters in the PIC simulations to grid cell sizes and time steps on order of elec-
tron scales, implying the additional requirement of artificial reduced mass ratio and other
similar numerical parameters, in order to make the simulations computationally less de-
manding. Then, in Sec. 6.8.2 we describe two mechanisms of numerical heating, one of
them related with the non-fulfillment of the stability condition (Sec. 6.8.2.1) and the other
one due to numerical scattering (Sec. 6.8.2.2). The latter one will show up spontaneously
and unexpectedly in our simulations of Chapter 7, since so far there were no enough
studies about this numerical effect and parameter regimes where it should be operating.
This mechanism of numerical heating is closely related with the numerical collisions in-
herent to all PIC codes, a side-effect of the coarse-graining the phase space. That is
why we discuss this process in Sec. 6.8.3, in particular because it can mimic real colli-
sional phenomena in a PIC plasma, deviating from the predictions of a real collisionless
Vlasov plasma. These collisions can be measured through the entropy to be discussed
in Sec. 6.8.4, a concept from statistical mechanics that requires a careful adaptation to
be applied to the non equilibrium phenomena driven by both numerical collisional and
physical collisionless processes taking place in a PIC plasma, characterized by a coarse-
grained distribution function. Finally, in Sec. 6.10 we describe briefly all the PIC methods
implemented specifically in the ACRONYM code.

Only after all these introductory chapters we can get a deeper understanding of the
meaning of our results, shown in Chapters 7 to 9, in the more general context of kinetic
plasma physics. Finally, we summarize our findings in the conclusion Chapter 10, also
with a brief outlook about possible extensions of our work.

24



2 Plasma physics background: an

overview of plasma models (used in

this thesis)

A plasma is sometimes called the fourth state of matter. It is basically an ionized

gas whose particles exhibit a collective behaviour. Its basic interaction is through elec-
tromagnetic fields. Although not commonly seen on the Earth’s surface, more than
the 99% of the visible (baryonic) matter in the Universe it is in plasma state, in par-
ticular the space environment in our solar system (the Sun, solar wind and the plan-
etary magnetospheres). This implies the paramount importance of an adequate study
of plasmas. In this section we will briefly describe some of the main plasma mod-
els used in this thesis, focusing on the kinetic approach and some of their approxima-
tions. A more complete discussion can be found in the general plasma physics textbooks
(in decreasing order of use for the purpose of this thesis): Baumjohann and Treumann
(1997), Treumann (2001), Krall and Trivelpiece (1973), Bellan (2006), Somov (2013),
Parks (2004), Koskinen (2011), Cravens (1997), Boyd and Sanderson (2003), Bittencourt
(2004).

Note that all the symbols and definitions to be used from now on are listed in Ap-
pendix A.1.2.

2.1 Kinetic theory

A basic model of a collisionless plasma is the one-particle kinetic theory. The foun-
dations of kinetic theory are based in the idea of an efficient approach to describe the
position ~x and velocity ~v of the large number N of particles (electrons, protons, and pos-
sibly other heavy ions) that compose a plasma, without having to follow the details of the
motion of each one of them. In the standard kinetic theory, the solution is to introduce the
phase space distribution function fα = fα(~x,~v, t) for each plasma specie α, defined as:

fα(~x,~v, t) =
dNα

dx3dv3
(2.1)

i.e.: the number of particles dNα per infinitesimal element of the 6D phase space: the
probability of finding a particle in dv3 dx3 = dvxdvydvzdxdydz around the point (~x,~v) at
the time t. But instead of using the number of particles Nα, it is more convenient to use
the number density dnα = dNα/dx3 and the commonly used velocity distribution function
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2 Plasma physics background: an overview of plasma models (used in this thesis)

VDF, defined as:

f V
α (~x,~v, t) =

dnα

dv3
(2.2)

From now on, we will drop the superscript V from this quantity.

2.1.1 Momenta of the VDF

By integrating Eq. (2.2) in the velocity space ~v with an appropriate weight, we get
the momenta of the VDF (Baumjohann and Treumann 1997): the macroscopic quantities
described by fluid models. The zero order moment is obtained by integrating directly:

nα(~x, t) =

∞∫

−∞

fα(~x, ~v, t) dv3 (2.3)

The integral is taken over all the velocity space dv3. The first order moment, the bulk (or
mean) flow velocity, is obtained by weighting with the velocity

Vα,i(~x, t) =
1

nα(~x, t)

∞∫

−∞

~v fα(~x,~v, t) dv3 (2.4)

with the index i = x, y, z indicates the spatial component. The second order moment can
be identified as the pressure tensor

Pα,i j(~x, t) = m

∞∫

−∞

(vi − Vα,i(~x, t))(v j −Vα, j(~x, t)) f (~x, ~v, t) dv3 (2.5)

where i and j are the spatial indices of this 3x3 tensor. This quantity measures the fluc-
tuations of the velocities with respect to their mean value, being thus proportional to the
standard deviation in the statistic terminology. We can recover some thermodynamics
concepts by identifying the diagonal elements of this tensor pressure via the ideal gas
relation pi = nikBTi , where Ti is the kinetic temperature:

Ti(~x, t) =
pi(~x, t)

kBn(~x, t)
=

m

kBn(~x, t)

∞∫

−∞

(vi − Vi(~x, t))2 f (~x,~v, t) dv3 (2.6)

This kinetic temperature is different from the thermodynamic one, since it can be applied
for any kind of VDF, for situations very far away from the thermodynamic equilibrium.
One can recover the usual (scalar) temperature T and pressure P by averaging the three
components of the kinetic temperature: T =

∑
α T j/3 and P = nkBT . Both definitions are

equal when the VDF is a Maxwellian one (see Eq. (2.17)), since it represents a state of
thermodynamic equilibrium
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2.1 Kinetic theory

2.1.2 Maxwell equations and single particle description

Since a plasma is a gas of ionized particles, the basic force describing their interaction
is from electromagnetic nature, with the electromagnetic fields ~E and ~B given by the (in
vacuo) Maxwell equations:

∇ · ~E(~x, t) =
ρ(~x, t)
ǫ0

(2.7)

∇ · ~B(~x, t) = 0 (2.8)

∇ × ~E(~x, t) = −∂
~B(~x, t)
∂t

(2.9)

∇ × ~B(~x, t) = µ0
~J(~x, t) + µ0ǫ0

∂~E(~x, t)
∂t

(2.10)

The Lorentz force on each single charged particle of the plasma is given by:

~FL = mα

d~v

dt
= q

[
~E(~x, t) +~v × ~B(~x, t)

]
(2.11)

However, as we mentioned previously, is more convenient to use the VDF f (~x, ~v, t)
instead of a single particle description of plasma, and thus Eq. (2.11) lose their impor-
tance for modeling its characteristic collective behaviour. In order to obtain an equation
describing the evolution of f (~x,~v, t), first is necessary to clarify the concept of collision
between charged particles in a plasma.

2.1.3 What is a collisional in a plasma? The kinetic Boltzmann equa-

tion

The precise definition of “collision” in a plasma is quite involved. This is because the
plasma particles do not experience binary collision like in a neutral gas, but long range
electromagnetic forces with an inverse dependence on the inter-particle distance. In order
to understand better this key concept, first it is necessary to introduce some definitions.

The smallest characteristic and typical length scale of a plasma is called the Debye

length, being defined by:

λDe =

√
ǫ0kBTe

nee2
(2.12)

for length scales below λDe, the electric fields are effectively shielded and quasineutrality

holds. Now, if there are enough particles in a sphere of radius λDe, i.e.:

Λ = neλ
3
De ≫ 1 (2.13)

where Λ is called the plasma parameter, the plasma will be dominated by collective in-

teractions instead of collisions. This is can be intuitively understood due to the fact that
the more particles that are together, the smoother will be the deflections due to long range
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2 Plasma physics background: an overview of plasma models (used in this thesis)

electromagnetic scattering that the particles will experience 1 . The plasmas where the
collective behavior is dominant Λ ≫ 1 are called collisionless, characterized by a very
unique and fascinating behavior: they can display large deviations from thermodynamic
equilibrium for long times, due to the long range and therefore non-local electromagnetic
interactions. On the other hand, when the plasma parameter Λ is small, the plasma is
called collisional, and any deviation from thermodynamic equilibrium is quickly atten-
uated: the plasma behaves like a fluid, with exclusively local interactions. The MHD
plasma model (to be described in Sec. 2.2) is based on this assumption of thermodynamic
equilibrium due to the dominant collisions. However, this behavior is far from being ac-
curate to describe the mostly collisionless plasmas in the solar corona, as well as in other
space environment, turning the foundations of its applicability invalid: a kinetic treat-
ment is essential in these cases (although many times MHD can still give relatively good
predictions for large scales).

On the other hand, it can be shown that the effective electron-ion collision frequency
νc, a measure of the classical cross-section of scattering as for neutral gases, it is propor-
tional to the logarithm of the plasma parameter (called Coulomb logarithm):

νc ∝
niln(Λ)

T
3/2
e

(2.14)

and thus the electron mean free path λc, a measure of how long a particle can travel in the
plasma without significant deviations in its trajectory by the surrounding electromagnetic
field, is given by:

λc =
vth,e

νc

∝ T
3/2
e

niln(Λ)
(2.15)

The mean free path is small in collision dominated plasmas, such as in MHD, while it
can be very large in collisionless plasmas such as those of the solar corona, implying
that a kinetic treatment is essential to understand their properties. For further details,
see Boyd and Sanderson (2003, Sec. 1.4.1), Krall and Trivelpiece (1973, Chap. 6) and
Somov (2013, Chap. 8).

Under very general conditions in the frame of one-particle kinetic theory, it is possible
to show (see, e.g., Baumjohann and Treumann (1997, Chap. 7), Stix (1992, Sec. 8.7), or
Bittencourt (2004, Chap. 21)) that the single-particle distribution function f satisfies the
Boltzmann or kinetic equation:

[
∂

∂t
+ ~v · ∂

∂~x
+

qα

mα

(
~E(~x, t) + ~v × ~B(~x, t)

)
· ∂
∂~v

]
fα(~x,~v, t) = C

∂ fα

∂t

∣∣∣∣∣
c

(2.16)

Note that the electromagnetic fields in the left hand side are macroscopic, in the sense of
not including micro-scale fields due to particle collisions (Cravens 1997). The term in
the right hand side is proportional to the inter-particle collisions, involving higher order

1 This fact has a critical consequence when a plasma is simulated with Particle-in-Cell codes. Due
to computational constraints, the amount of computational particles is always less than in a real plasma,
implying that the collisional effects will be greatly enhanced. This will be described in Sec. 6.8.3 and
one chapter of this thesis is devoted partially to study the numerical collisional effects on CS instabilities
(Chapter 7)
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2.1 Kinetic theory

correlations of the distribution function. Usual explicit expressions for this term are the
Krook or Fokker-Planck collision models. In summary, Eq. (2.16) states that the total
derivative of f evolves according to the time rate of its change due to the collisions.

Finally, it is interesting to mention that the asymptotic solution (for long times) of the
Boltzmann equation Eq. (2.16) (together with the Maxwell equations) always converge to
an unique distribution function: a drifting Maxwellian VDF:

fα(~v) = n0 j

(
m

2πkBT j

)3/2

exp

−
mα(~v − ~U j)2

2kBT j

 (2.17)

characterizing thus the thermodynamic equilibrium.

2.1.4 Collisionless approach and closure: Vlasov-Maxwell system

Under the assumption of a collisionless plasma, suitable for the low β plasmas found,
e.g., in the solar corona, the right hand side of the kinetic Boltzmann equation vanishes.
Thus, the equation describing the evolution of f on dependence on the electromagnetic
fields is the so called Vlasov equation (Vlasov 1938): 2

[
∂

∂t
+ ~v · ∂

∂~x
+

qα

mα

(
~E(~x, t) +~v × ~B(~x, t)

)
· ∂
∂~v

]
fα(~x,~v, t) = 0 (2.19)

When we introduced the distribution function instead of a single particle description,
the sources of the Maxwell equation, the charge ρ(~x, t) and current density ~J(~x, t) can be
obtained from the momenta of order 0 Eq. (2.3) and 1 Eq. (2.4) of the VDF, adding them
up over all the plasma species.

ρc(~x, t) =
∑

α

qα

∫
dv3 fα(~x,~v, t) (2.20)

~J(~x, t) =
∑

α

qα

∫
dv3~v fα(~x,~v, t) =

∑

α

qαnα(~x, t)Vα(~x, t) (2.21)

The set of the previous Vlasov and Maxwell equations, plus the previous sources ρ
and J as function of the VDF, constitute a complete set of non-linear integro-differential
equations in the variables ~E, ~B and f , with very few known analytical solutions.

2 This equation states the conservation of f along the orbit followed by an element in the phase space
(~x, ~v), or in short conservation of phase space volume :

d f (t, ~x, ~v)
dt

=
∂ fα

∂t
+ ~v ·

∂ fα

∂~x
+ ~a ·

∂ fα

∂~v
= 0 (2.18)

with~v = d~x/dt, ~a = d~v/dt, and the acceleration ~a = ~FL/m given by the Lorentz force Eq. (2.11). As a con-
sequence, we have the Liouville’s theorem: any stationary (∂/∂→ 0) exact solution of the Vlasov-Maxwell
system fα is a function of the constant of motions along the non-perturbed particle orbits. Then, solving
Vlasov equation can be reduced to find these constants of motion via a Hamiltonian approach. Note that
the same non-perturbed particle orbits are used to find linearized solutions of the Vlasov-Maxwell system
via the methods of characteristics. For details, see e.g., Swanson (2003, Sec. 4.3) or Krall and Trivelpiece
(1973, Sec. 8.10).
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2 Plasma physics background: an overview of plasma models (used in this thesis)

2.2 Multi-fluid models

Often the solutions of the Vlasov equation provide more information than the neces-
sary to describe reliably a plasma: it more than enough just to have a few macroscopic
quantities. By integrating the Vlasov equation in the velocity space with an appropriate
weight, it is possible to derive equations describing the evolution of macroscopic mea-
surable quantities, such as density, velocity, temperatures, heat flux, kurtosis and so on.
This standard procedure is well explained in most of the aforementioned textbooks (e.g.:
Baumjohann and Treumann 1997, Chap. 8).

Thus, the moment of order zero is obtained integrating the Vlasov equation in the
velocity space (symbolically:

∫
fαdv3 Eq. (2.19)), resulting in

∂nα

∂t
+
∂(nαVα, j)

∂x j

= 0 (2.22)

corresponding to the continuity equation (conservation of mass).
The moment of order one is obtained multiplying by ~v and then integrating the Vlasov

equation in the velocity space (symbolically:
∫

fα~vdv3 Eq. (2.19)), resulting in

mαnα
dVα,i

dt
= mαnα

(
∂Vα,i

∂t
+ Vα, j

Vα,i

∂x j

)
= qαnαEi + εi jk Jα, jBk −

∂Pα,i j

∂x j

(2.23)

where Jα, j = qαnαVα,i and d/dt = ∂/∂t+ Vα, j∂/∂x j is the advective derivative (also known
as convective, Lagrangian or comoving derivative). This is the momentum equation. Note
that the moment of order zero has one unknown quantity: Vα, j , with their evolution given
by the next moment of order one. But in the latter, it appears a new unknown, the tensor
pressure Pα,i j . Their evolution is given by the moment of order two, obtained multiply-
ing the Vlasov equation by the tensor product viv j and integrating in the velocity space
(symbolically:

∫
fαviv jdv3 Eq. (2.19)):

dPα,i j

dt
+
∂Qα,i jk

∂xk

+ Pi j

∂Vα,k

∂xk

+ P jk

∂Vα,i

∂xk

+ Pki

∂Vα, j

∂xk

− qαBk

mα

[
εilk P jl + ε jlmPli

]
= 0 (2.24)

(written in the form by Walker (2005, Eq. 5.28) or Schindler (2007, Eq. 3.44)) In
Eq. (2.24)3 appears a new unknown, the heat tensor Qi jk . We can already notice the trend:
the next higher order moment is always necessary to have the full solution of the previ-
ous one. This is an infinity hierarchy, called BBGKY (after Bogoliubov, Born, Green,
Kirkwood, Yvon. See Baumjohann and Treumann (1997), Krall and Trivelpiece (1973)).
For having practical solutions, it is necessary to close the system by assuming a suitable
Ansatz, such as an equation of state, on dependence on the physical properties of the
system to be described. The ones that will be used in this thesis will be given next.

3 This expression is not often used in this very general form, but instead as an energy evolution equation
by assuming isotropic pressure. We will not give that equation here because it will not be used. See any of
the textbooks listed at the beginning of this section for further details.
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2.2 Multi-fluid models

2.2.1 Two-fluid theory and Generalized Ohm’s law

In the plasmas to be analyzed in this thesis we consider two species: electrons e and
ions i. The corresponding set of equations for both species Eq. (2.22) and Eq. (2.23),
with the Maxwell equations and a suitable closure for the pressure tensor will form the so
called two-fluid equations. It is possible then to obtain a per species Ohm’s law (Johnson
2011) by solving Eq. (2.23) for the electric field. For the case of electrons, we get:

Ei + εi jk Ve, jBk︸    ︷︷    ︸
convective/ideal

= − 1
ene

∂Pe,i j

∂x j︸     ︷︷     ︸
pressure/ambipolar/polarization

− me

e

dVe,i

dt︸   ︷︷   ︸
inertia

(2.25)

Below each term is indicated their standard name by which they are called in the context
of magnetic reconnection theories. In particular, the convective electric field,

~Econvective = −~Ve × ~B, (2.26)

represents the electric field produced by the electron flow motion: it vanishes in the elec-
tron frame of reference ~E′ = ~Econvective + ~Ve × ~B = 0. Note that this change of reference
frame only affects the components of ~E perpendicular to the flow motion, while the com-
ponents along ~Ve do not change. It is also interesting to mention that from the basic theory
of electrodynamics, it is not possible to find a frame of reference where ~E = 0 if ~E · ~B , 0
or c2B2 > E2 (a condition rarely satisfied in magnetized plasmas, where the magnetic
energy is dominant).

The two fluid Ohm’s law Eq. (2.25) reveals the electric field necessary to keep the
plasma quasineutral (Cravens 1997). Note that changing to a reference frame comoving
with electrons, the electric field will be equal to the pressure and inertia term.

For application to 2D magnetic reconnection, it is also useful to give the explicit z

component (the out-of-plane direction in our standard geometry. See Appendix A.2) of
the previous Eq. (2.25):

Ez +Ve,x By−Ve,y Bx = −
1

ene

(
∂Pe,xz

∂x
−
∂Pe,yz

∂y

)
− me

e

(
∂Ve,z

∂t
+ Ve,x

∂Ve,z

∂x
+ Ve,y

∂Ve,z

∂y

)
(2.27)

2.2.2 One fluid variables

MHD (Magnetohydrodynamics) is one of the most used plasma models of Plasma
Physics, especially suitable for large scale models. It does not distinguish between plasma
species: it assumes a single fluid component moving with the center of mass (very close
to the motion of the heaviest specie, the ions for an electron-proton plasma). The single
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2 Plasma physics background: an overview of plasma models (used in this thesis)

fluid variables (without subscript) are defined as follows:

n =

∑
α mαnα∑
α mα

(2.28)

ρm =

∑

α

nαmα ≈ nemi (2.29)

ρc =
∑

α

qαmα (2.30)

~V =

∑
α mαnα~Vα∑
α nαmα

≈ ~Vi (2.31)

~J =
∑

α

nαqαJα (2.32)

P =
∑

α

pα, with pα = Pα, j j/3, assuming Pα,i j = pαδi j (2.33)

where the approximations in the right hand side of the equations have been done consid-
ering and electron-proton plasma and me ≪ mi . Now, assuming the following approxima-
tions (Boyd and Sanderson 2003):

• me ≪ mi (relevant for simulations with artificially reduced mass ratio)

• Quasineutrality |ωΩce/ωpe|2 ≪ 1 or ni ≈ ne (from the Gauss law). Note that this
implies strictly zero net charge, and therefore it is not possible to determine the
electric field ~E from Eq. (2.7). That is why the electron momentum equation can be
used to obtain the electric field, as discussed below in the context of the Ohm’s law.

• Strong collisions: ν−1
c ≪

√
me/miτ, with νc the collision frequency τ the typical

time scales.

• Non relativistic: ω/k ∼ L/τ ∼ V ≪ c. Neglect displacement current in Ampère’s
law Eq. (2.10).

• Large length scales L ≫ ρi, λc = vth,eν
−1
c , with λc the mean free path.

• Slow time scales ω < Ωci .

it is possible to combine the per-specie momenta of Vlasov equation (adding the per-
species contributions with a given weight) and get the MHD equations for continuity
(conservation of mass), conservation of mass

∂n

∂t
+
∂(nVα)
∂x j

= 0 (2.34)

mn
dV i

dt
= mn

(
∂Vi

∂t
+ Vα

Vi

∂x j

)
=✟

✟✟ρcEi + εi jk JαBk︸   ︷︷   ︸
Lorentz force

−
∂P

∂xi︸︷︷︸
Pressure force

(2.35)

Neglecting the Lorentz force, the latter is nothing else than the Navier-Stokes of hydro-
dynamics (HD). Note that we also need an equation of state, where the most common
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2.2 Multi-fluid models

approach is assuming an ideal gas law P = nkBT and then relating P with either the den-
sity or temperature (in order to reduce the unknown variables from 3 to 2). Two commonly
used are the adiabatic (negligible heat flux):

P = P0

(
n

n0

)γ
(2.36)

where γ is the adiabatic or polytropic index (5/3 for a 3D plasma). This is valid for
vth ≪ L/T (Bellan 2006), where L and T are typical length and time scales. We also have
the isothermal for γ = 1

P = nkBT0 (2.37)

valid for vth ≫ L/T (dominant heat flux). These equations can also be applied for the
respective per-specie pressures in the framework of multifluid theory.

2.2.3 One-fluid Generalized Ohm’s law

The multifluid momentum Eq. (2.23) was derived in the framework of collisionless
Vlasov theory. But a single fluid theory assumes thermodynamic equilibrium (i.e.: Maxwellian
distribution functions), and for that it is required a process capable to bring the plasma to
that state: collisions. This adds a friction or drag term proportional to the current (and
resistivity η)

~R = ηne ~J (2.38)

to the right hand side of the equation, representing phenomenologically a momentum
transfer between electrons and ions (and consequently, with opposite sign in each equa-
tion). Here, the resistivity is defined in terms of the collision frequency νc as follows:

η =
meνc

ne2
(2.39)

As we will see, this term can couple the current ~J (an unknown in the system Eq. (2.34)-
Eq. (2.35)) with the electromagnetic field. In fact, subtracting the momentum equations
for species Eq. (2.23) with a given weight, one can derive the following equation (Johnson
2011):

Ei + ǫi jk

(
V j −

mi − me

enm
J j

)
Bk = ηJi +

1
enm

∂(me Pi,i j − miPe,i j)

∂x j

(2.40)

+
mime

e2nm

[
∂Ji

∂t
+
∂(vi J j + v jJi − mi−me

enm
Ji J j)

∂x j

]

Now, assuming the aforementioned MHD approximations (in particular quasineutral-
ity), it is possible to neglect most of the terms in the right hand side (e.g. the derivatives
of the second order terms in velocity) and get the equation known as one-fluid generalized

Ohm’s law:

Ei + ǫi jkV jBk︸   ︷︷   ︸
ideal/convective

= ηJi︸︷︷︸
resistive

+
1
en
ǫi jk J jBk

︸      ︷︷      ︸
Hall

− 1
en

∂Pe

∂xi︸ ︷︷ ︸
pressure/ambipolar

− me

e2n

dJi

dt︸  ︷︷  ︸
inertia

(2.41)

This (and in general, any other version of) generalized Ohm’s law gives the evolution of
the current ~J in terms of the electric field ~E.
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2 Plasma physics background: an overview of plasma models (used in this thesis)

2.3 Hall-MHD

Comparing Eq. (2.41) with the two-fluid (electron) Ohm’s law Eq. (2.25), we can
easily identify each term with their respective approximation, excepting two additional
ones only appearing Eq. (2.41): the resistive and the Hall term. The first one can be
understood since no collisions were assumed in Eq. (2.25). On the other hand, the Hall
term appears if we replace the MHD approximation for velocity Eq. (2.31) into Eq. (2.32)
for an electron-proton plasma, we get

~Ve = ~V −
~J

en
(2.42)

relating thus the electron velocity ~Ve (a two-fluid variable) with the MHD variables ~V
and ~J. Assuming negligible electron mass, this is precisely the second term in the left
hand side of Eq. (2.40). Thus, the Hall term ~J × ~B, associated with the second term in
Eq. (2.42), arises from a differential motion between the bulk velocity and electron flows.
This Hall term is especially important for current sheets where there are transverse cur-
rents to the magnetic field. Now, we can neglect the remaining pressure and inertia terms
in the right hand side of Eq. (2.41) (balancing the terms) under the following conditions
(Baumjohann and Treumann 1997, Boyd and Sanderson 2003):

1. ρe

L
≪ V

vth,e
or ρi

L
≪ V

cs
(from the ratio between pressure and convective terms). L

and V are typical length and velocity scales. This is equivalent to the small Larmor
radius approximation. It allows to neglect the pressure term. It can be well satisfied
for cold plasmas and also for β≪ 1.

2. ω ≪ νc (from the ratio of inertia to resistive terms) It allows to neglect the inertia
term.

3. ω≪ Ωce (from the ratio of inertia to Hall terms) It allows to neglect the inertia term.
This is easily satisfied in most cases.

Thus, we get the Hall-MHD Ohm’s law:

~E + ~V × ~B︸︷︷︸
ideal/convective

= η ~J︸︷︷︸
resistive

+
~J × ~B
en︸︷︷︸
Hall

(2.43)

The Eq. (2.43) plus the MHD equations form the so called Hall-MHD model.

2.4 Resistive MHD

In order to neglect the Hall term in Eq. (2.43), we require

• Ωce ≪ νc (from the ratio between Hall and resistive term). This condition is not
satisfied in many cases where MHD it is usually applied, since νc is usually large in
collision dominated plasmas. It will be satisfied more easily in weak magnetic field
with high collisionality, a scenario not so feasible to find in space plasmas.
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2.5 Ideal MHD and Alfvén theorem

• c
V

de

LB

Ωce

Ωpe
= 1

β

ρi

L
cs

V
≪ 1 (from the ratio between Hall and convective term). This is

equivalent to the first condition for getting the Hall-MHD equations if β ∼ 1: the
small Larmor approx. Otherwise, for β ≪ 1, the small Larmor approx. becomes
even more stringent: ρi

L
≪
√
β. Since in many space plasmas β can be very low, to

neglect the Hall term is not justified.

under such conditions, we have the usual MHD’s Ohm law.

~E + ~V × ~B = η ~J (2.44)

Sometimes, instead of an expression for the electric field, the Ohm’s law is used implicitly
to derive the induction equation, by replacing ~E in Faraday equation Eq. (2.9), using
Ampère’s law Eq. (2.10) neglecting displacement current plus some vectorial identities,
obtaining thus an expression for the evolution of the magnetic field:

∂~B

∂t
= ∇ × (~V × ~B)︸        ︷︷        ︸

convection

+
η

µ0
∇2~B

︸ ︷︷ ︸
diffusion

(2.45)

The second term in the right hand side represents the diffusion of the magnetic field in a
frame of reference comoving with the fluid (~E′ = ~E +~V× ~B), while the first one represents
the convection of magnetic field due to the fluid motion. The relative importance between
both terms can be calculated by means of the ratio of the typical scaled between the
convective to the diffusive term, resulting in the magnetic Reynolds number Rm:

Rm =
µ0

η
LBV (2.46)

where LB is the length scale of variation of ~B and V a characteristic fluid velocity. If
Rm ≪ 1, the diffusive term dominates and we get:

~E′ = ~E + ~V × ~B = η ~J (2.47)

∂~B

∂t
=

η

µ0
∇2~B (2.48)

The first equation indicates that the electric field in the velocity frame of reference is
proportional to the current, while the second is a diffusion equation for the magnetic field.
The typical timescale in which this process develops is τd = L2/η. See Chapter 4 for a
comparison of these times in space plasma environments.

2.5 Ideal MHD and Alfvén theorem

In an ideally conducting fluid we can get a much more simplified set of equation by
assuming:

• Rm ≫ 1 (from the ratio between resistive and conductive terms). A condition satis-
fied in most of space plasmas, as can be seen in Table 1.1.
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2 Plasma physics background: an overview of plasma models (used in this thesis)

• If β ≪ 1, Rm ≫ 1/β. This more stringent condition over Eq. (2.46) comes from
balancing the terms in the pressure evolution equation, obtained from the pressure
evolution equation (∼ second moment of the Vlasov equation) not shown here.

In these cases, the resistive term in Eq. (2.44) and the magnetic field will evolve only due
to the fluid velocity. Thus, we get the equations:

~E + ~V × ~B = 0 (2.49)

∂~B

∂t
= ∇ × (~V × ~B) (2.50)

The first equation indicates that the electric field is always zero in a reference frame co-
moving with the fluid 4. Moreover, taking the dot product with the unitary vector in the
magnetic field direction: b̂ = ~B/B, we get:

E‖ := ~E · b̂ = 0 (2.52)

i.e.: an ideal MHD plasma cannot have parallel electric fields. Recall from the discussion
following Eq. (2.26) that if the previous condition is not satisfied ~E · ~b , 0 (a non-ideal
plasma), it is not possible to find a reference frame where ~E = 0 or ~B = 0. On the other
hand, the consequence of the (equivalent) second equation in Eq. (2.49) is the so called
Alfvén or frozen-in flux theorem (Alfvén 1942): the magnetic field lines (more precisely:
magnetic flux tubes) are “frozen” into the plasma, they always move together (more pre-
cisely, any transverse plasma motion). We also can say that the fluid (or more precisely
the ions or any other specie involved) is magnetized. This implies that the magnetic field
lines cannot change their topology: they cannot break. This result is of central importance
for the purposes of our thesis: magnetic reconnection involves a change in the topology

of the plasma, and thus a violation of the Alfvén theorem. Due to Eq. (2.52), this is equiv-
alent to the existence of non-vanishing parallel electric fields E‖ , 0. When this happen,
we say that the fluid or the corresponding specie (ions and/or electrons) are unmagnetized.

Therefore, the violation of Alfvén theorem with their associated consequences re-
quires that any of the assumptions that led to that equation do not hold. In resistive
MHD, the only way is that the resistive term cannot be neglected in going from Eq. (2.44)
to Eq. (2.49) (high Rm). Reconnection driven by this term will be discussed in Sec. 4.1.
In Hall-MHD, the Hall term can also be responsible for this in going from Eq. (2.44) to
Eq. (2.49), which requires ω & Ωci among other assumptions. Reconnection driven by this

4 Note that the previous condition requires neglecting the Hall term in Eq. (2.43). Actually, if it is keep
(so, working in the Hall-MHD model) in addition to the same condition Rm ≫ 1, we realize that is the
electron fluid the quantity that is actually frozen into the plasma. Indeed, we can replace Eq. (4.5) into
Eq. (2.41) (coming back to two fluid variables), yielding:

~E + ~Ve × ~B = 0 (2.51)

The same is automatically also seen from Eq. (2.27). Then, the electric field in the electron frame of

reference vanishes. Only under the assumption of ~Vi ≈ ~V in Eq. (4.5) (i.e.: neglecting Hall term) we can
get the condition of vanishing electric field in the bulk flow velocity frame of reference Eq. (2.49). Note that
Eq. (2.51) do not imply that the plasma is frozen-into the magnetic field, since the bulk mass flow is still
carried by the ions. It is often the case in space plasmas that the Hall term turns out to be more important
than the resistive one, and that is why Eq. (2.51) is specially important in these scenarios.
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2.6 Double adiabatic approximation (CGL)

term will be discussed in Sec. 4.2.1. Finally, MHD with the one-fluid generalized Ohm’s
law Eq. (2.41) opens another two possibilities: either the pressure/ambipolar term or the
electron inertia. Their associated effects on reconnection will be discussed in Sec. 4.2.3
and Sec. 4.2.4. We will see that especially the last two terms become critical in our studies
of magnetic reconnection.

2.6 Double adiabatic approximation (CGL)

When a plasma is magnetically dominated, the assumption of isotropic pressure is
not justified anymore, even in strongly collisional plasmas. In these cases, it is useful to
assume that the pressure tensor is diagonal:

Pi j = P‖b̂i b̂ j + P⊥(δi j − b̂ib̂ j) =



P⊥ 0 0
0 P⊥ 0
0 0 P‖


 (2.53)

where b̂i = ẑ in the last pressure tensor matrix (without loss of generality). Each diagonal
term in the pressure tensor obey separately an equation of state of the kind Eq. (2.36).
It is possible to prove that in this case, the adiabatic indices relating P{‖,⊥} with T{‖,⊥}
are different for each direction and functions of the position for inhomogeneous plasma.
For this reason is called “double-adiabatic theory”. Then, we can derive the correspond-
ing momentum equation by replacing the scalar pressure P with the previous anisotropic
pressure tensor in Eq. (2.35)

ρ
dVi

dt
= −∂i

(
P⊥ +

B2
m

2µ0

)
+

Bl∂l

µ0

[(
1 +

P⊥ − P‖

B2
m/µ0

)
Bi

]
(2.54)

with the perpendicular and parallel components:

ρ
dV⊥

dt
= −∂⊥

(
P⊥ +

B2
m

2µ0

)
+

Bl∂l

µ0

[(
1+

P⊥ − P‖

B2
m/µ0

)
B⊥

]
(2.55)

ρ
dV‖

dt
= −∂‖P‖ − (P⊥ − P‖)

∂‖B‖

B
(2.56)

Under equilibrium conditions d/dt → 0, the first previous equation generalizes the con-
dition Eq. (3.3) to this case of anisotropic pressure (to be used for anisotropic initializa-
tions):

∂

∂x⊥

(
P⊥ +

B2
m

2µ0

)
=

Bl

µ0

∂

∂xl

[(
1 +

P⊥ − P‖

B2
m/µ0

)
B⊥

]
(2.57)

The equations Eq. (2.55) are known as Chew-Goldberg-Low (CGL) (Chew et al. 1956).
This plasma model, valid for strong guide field, assumes the constants

C1 :=
Pe,‖B

2

ρ3
, (2.58)

C2 :=
Pe,⊥

Bρ
(2.59)
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2 Plasma physics background: an overview of plasma models (used in this thesis)

for electrons and similarly for other components. These constants are derived from a
general equation for the evolution of an anisotropic (but gyrotropic) pressure tensor, ne-
glecting the heat flux (which contributes to the pressure transport along the magnetic field
lines). The second constant has a relatively simple interpretation: the average energy per
particle is proportional to the magnetic field strength. This is equivalent to say that the
magnetic moment,the ratio of perpendicular particle kinetic energy to the magnetic field
strength:

µ =
K⊥

B
=

mv2
⊥

2B
, (2.60)

of a particle in conserved, valid under the adiabatic approximation. This approach will
prove to be useful to model some phenomena in the low β regime in the Chapter 9.
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3 Current sheet equilibria

3.1 MHD equilibria and magnetohydrostatics

It is possible to rewrite the Lorentz force in the MHD momentum equation by combin-
ing it with the Ampère’s law (as used in MHD, without displacement current), obtaining:

~J × ~B = −∇
(

B2

2µ0

)

︸︷︷︸
Pb=magnetic pressure

+
1
µ0

(
~B · ∇

)
~B

︸        ︷︷        ︸
magnetic tension

(3.1)

We have identified each term with their usual name. The right hand side is called magnetic
tension, since it acts as an effective force when the magnetic field lines are curved. The
term inside of the parenthesis in the left hand side with dimensions of pressure is usually
called magnetic pressure, proportional to the magnetic field energy. It produces a force
from the regions with high to low magnetic pressure.

Now, under stationary conditions d/dt → 0, we can introduce Eq. (3.1) in the momen-
tum equation Eq. (2.35), and obtain the equilibrium equation:

∇
(

B2

2µ0
+ P

)
=

1
µ0

(
~B · ∇

)
~B (3.2)

This is valid assuming an isotropic pressure tensor. If the magnetic field is mostly ho-
mogeneous, we can neglect the right hand side (magnetic field lines weakly curved) and
obtain:

∇
(

B2

2µ0
+ P

)
= 0 ⇔

(
B2

2µ0
+ P

)
= const. (3.3)

This is the pressure equilibrium condition in magnetohydrostatics. From the previous
expression we can also define a very useful quantity, the total plasma beta β

β =
Pth

PB

=
2µ0P

B2
=

2µ0nkBT

B2
(3.4)

where it can also be specialized for each specie adding the corresponding subscript e or
i in n and T . This parameter tell us the relative importance of the magnetic to thermal
effects in a plasma. Low beta plasmas β ≪ 1 are magnetically dominated, while high beta
plasmas β & 1 are gas dominated.
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3 Current sheet equilibria

3.1.1 Force free fields

Under the same stationary conditions discussed before, sometimes it is useful to ap-
proximate the momentum equation Eq. (2.35) for cases where the pressure force can be
neglected in comparison with the Lorentz one. The order of magnitude of this ratio turns
out to be the same as beta. Therefore, pressure can be neglected for low β plasmas, mag-
netically dominated, very well suited for the solar corona, for example. In this case, we
obtain

~J × ~B = 0 ⇔ µ0 ~J = α~B (3.5)

i.e.: the currents in a plasma always flow parallel to a magnetic field. α is a constant
that can depend on the position. If α does not vary/varies from one magnetic field line
to other, the force-free magnetic fields are called linear/non-linear. Linear force free
fields are globally constant (Harrison and Neukirch 2009b). This relation also implies a
coupling between the strength of the current density J and the magnetic field B.

Note also that Eq. (3.5) , by using Ampère’s law, is equivalent to:

~B ×
(
∇ × ~B

)
= 0 (3.6)

i.e.: the topology of the magnetic fields are governed by themselves.

3.2 Kinetic equilibria of current sheets

Any theoretical or numerical investigation of instabilities and other kinetic processes
in plasmas should start from plasma kinetic equilibria: exact solutions of the Vlasov-
Maxwell system in stationary state ∂/∂t → 0. It is interesting to notice that different
from the Boltzmann equation that has an unique equilibrium for a given system for long
timescales (due to the thermalizing effect of collisions), the Vlasov equation has an infinite

number of solutions (see, e.g., Krall and Trivelpiece 1973, Sec. 7.7). But in practice, there
are very few analytical known equilibria, because of the difficulty of solving exactly the
nonlinear integro-differential system of equations. The standard methods are based on
Hamiltonian approaches and constant of motion (see discussion in Sec. 2.1.4 for further
details). Now, we show two families of solutions of the Vlasov-Maxwell system for CS,
necessaries to initialize our simulations.

3.2.1 Harris type equilibria

By using the aforementioned method, Harris (1962) found the first exact kinetic equi-
librium for an antiparallel magnetic field configuration, and since then it has been the
most used equilibrium for magnetic reconnection studies. It assume quantities varying in
the direction x with a net current in z direction, with the three constants of the motion for
the system: the canonical momentum in the current direction z, y and the Hamiltonian:

pα,z = mαvz + qAz(x) (3.7)

pα,y = mαvy (3.8)

Hα =
mα

2
v2 + qαφ (3.9)
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3.2 Kinetic equilibria of current sheets

Then, the solution f = f (H, pα,y, pα,z) consists in drifting Maxwellian distribution func-
tion along z with spatially constant drift speed Uz,α and temperatures Tα for each plasma
specie:

fα = n0α

(
mα

2πkBTα

)3/2

exp
(
−Hα − Uz,αpz,α

kBTα

)
(3.10)

= nα(x)
(

mα

2πkBTα

)3/2

exp
[
− mα

2kBTα

(
v2

x + v2
y + (vz −Uz,α)

2
)]

(3.11)

Note the spatially varying density nα(x). Assuming a quasi-neutral electron-proton plasma
with n(x) = ni(x) = ne(x) (and n0 = n0α), it can be shown that the density, pressure and
current profiles (per specie and total) are respectively given as:

n(x) = n0 exp
(
eUz,α

kBTα
Az(x)

)
=

n0

cosh2(x/L)
(3.12)

Pα(x) = n(x)kBTα =
n0kBTα

cosh2(x/L)
(3.13)

P(x) = Pi(x) + Pe(x) =
n0kB(Ti + Te )

cosh2(x/L)
(3.14)

~Ji(x) = n0eUz ,α exp
(

eUz ,α

kBTα
Az

)
ẑ =

2en0Uz,α

cosh2(x/L)
ẑ (3.15)

~J(x) = ~Ji(x) + ~Je(x) =
en0 |Uz,i − Uz,e|

cosh2(x/L)
ẑ (3.16)

while the vector potential1 and magnetic field are:

~A(x) = Az(x)ẑ = LB∞y log cosh
(

x

L

)
ẑ (3.17)

~B(x) = By(x)ŷ = −
dAz

dx
ŷ = B∞y tanh

(
x

L

)
ŷ (3.18)

The respective magnetic and current density profiles are shown in Fig. 3.1.

1 The reason for expressing these solutions in terms of the vector potential Az is the convenience when
they are applied to solve the linearized Vlasov equation for instabilities such as the tearing mode (see
Sec. 5.1).
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Figure 3.1: Magnetic field ~B, density n and current density ~J profiles for a Harris CS,

given by Eq. (3.18) and Eq. (3.16), respectively. Note that n0 is the peak central density,

while B∞y is the asymptotic Harris magnetic field. ne/n0 and Jz/J0 have identical profiles

due to the uniform drift speed assumption.

The Harris solution has also to satisfy the pressure equilibrium condition Eq. (2.57)
(with the right hand side equal to zero), in the more general case of anisotropic distribution
functions (different parallel and perpendicular temperatures). Then, the magnetic pressure
at the infinity has to be balanced by the transverse thermal pressure at the center of the
CS.

|B∞y|2

2µ0
= n0(kBTe,⊥ + kBTi ,⊥). (3.19)

In this more general case, all the previous expression where the temperature is involved
have to be changed by considering only the perpendicular one. For details about the
extension of Harris equilibrium for anisotropic distributions and their consequences, see
Quest et al. (2010). By means of the previous expression, it is possible to prove that the
halfwidth L is related with the asymptotic magnetic field and drift speed via:

L =
B∞y

µ0en0 |Uz,i − Uz,e|
=

2
eB∞y

kBTe + kBTi

|Uz,i − Uz,e|
, or

|Ui |
vth,i

=
2ρi

L
(3.20)

Note the inverse proportionality between the halfwidth and drift speed: this expression
implies that thinner CS (ρi ∼ L) will have larger drifts speed in terms of vth,i. This relation
can be understood since the gradients in pressure will produce a diamagnetic drift, per-
pendicular to both magnetic field (ŷ) and gradient direction ( x̂), i.e.: in the out-of-plane
direction ẑ:

~Uz ,α = −
∇Pe,⊥(x) × ~B(x)

n0qαB(x)2
(3.21)

For further details, see, e.g., the textbooks Bellan (2006, Sec. 4.4) or Baumjohann and Treumann
(1997, Sec. 7.4). In obtaining these solution it has been used φ = 0, absence of initial
electric fields. This gives a constraint between drift speeds and temperatures:

Uz,i

Ti

= −Uz ,e

Te

. (3.22)

42



3.2 Kinetic equilibria of current sheets

i.e.: for equal temperatures the drift speeds of each specie sustaining the CS will be equal
(but oppositely directed), as well as the currents and the pressures for both electrons and
ions.

An important point to mention is that the addition of a constant magnetic guide field
in the form:

~B(x) = By(x)ŷ + Bzẑ = B∞y tanh
(

x

L

)
ŷ + Bz ẑ (3.23)

do not alter the Harris solution, it is still an exact solution of the Vlasov-Maxwell system
and it does not change Eq. (3.19). It is also important to mention that the inclusion of a
constant background pressure Pback:

P(x) =
n0kB(Ti + Te)

cosh2(x/L)
+ Pback (3.24)

do not change the equilibrium Eq. (3.19) as well. This is especially useful in simulations
using this kinetic equilibrium as initial equilibrium state.

For details about the specific choice of the minimum set of parameters to initialize a
PIC simulation of Harris CS, in addition to other useful relation between parameters, see
Appendix A.3.3.

After the original discovery of the Harris solution, Hoh (1966) generalized the Harris
equilibrium for relativistic regimes using Maxwellian distribution functions. Fu and Hau
(2005) showed that a kappa distribution function also satisfies the same magnetic field and
current profiles Eq. (3.18) and Eq. (3.16) as the classical Harris sheet solution. Balikhin and Gedalin
(2008) generalized the work of Hoh (1966) by deriving fully relativistic non-Maxwellian
distribution functions solutions of the Harris sheet profile. See also Treumann and Baumjohann
(2013a) for other details.

3.2.2 Force free equilibria

There are also other kinetic equilibria in plasmas which directly address the CS fea-
sible to find in the low β (≪ 1) solar coronal plasma. In these strongly magnetized
environments we can consider force free magnetic fields, discussed in Sec. 3.1.1. Note
that force free magnetic fields do not require necessarily low beta plasmas (but the op-
posite is always true), instead, the plasma beta can be arbitrary (thermal and magnetic
pressures can be chosen independently), as well as the ratio of drift to thermal speeds
(Bobrova et al. 2001). This is opposite to the Harris equilibrium (Harris 1962), where
magnetic and thermal pressures have to be of the same order, implying that the ratio of
drift to thermal speeds has to be fixed. Another important consequence of the plasma equi-
libria satisfying the force-free condition is that they have constant density and pressure
(Harrison and Neukirch 2009b).

It is important to notice that a Harris equilibrium with a strong enough guide field
(Bg ≫ B0y) can be used to mimic a force free magnetic field. In a force free configuration,
due to Eq. (3.5) ~J ‖ ~B. In the Harris case with guide field, since the direction of the total
magnetic field ~B = B∞yŷ + Bg ẑ will be mostly in the direction of the guide field ẑ, we
have that ~B is approximately parallel to ~J = Jẑ. But different from the latter, the strength
of J and B are decoupled. Another difference is that in force free equilibria an increase

43



3 Current sheet equilibria

in the shear of B implies a higher free energy in the system, while in Harris equilibrium
an increase in the constant guide field strength do not add any additional energy into the
system (Neukirch et al. 2009).

3.2.2.1 Linear kinetic force free equilibria

In MHD, many force free equilibria can be found, both linear and non-linear. Recall
that from Eq. (3.5) a linear force free field has a constant α in µ0 ~J = α~B that does not vary

from one magnetic field line to another (globally constant, see Harrison and Neukirch
2009b). But a MHD equilibrium is not justified in collisionless plasmas often present
in astrophysical scenarios. On the other hand, there are very few exact force-free ki-
netic equilibrium (Neukirch et al. 2009). The difficulty in finding solutions of the Vlasov-
Maxwell system is because is an inverse problem: for a given magnetic field and current
configuration, one has to find the distribution function as solution of the Vlasov equation.
The first solutions to be discovered were 1D and linear, based on the following sinusoidal
dependence on the magnetic field (Sestero 1967), sometimes called a “sheet pinch”:

By = −B0 sin(kx) (3.25)

Bz = ∓B0 cos(kx) (3.26)

Note that the total magnetic field is constant, with their components being rotated in a he-
lix of constant angle between them of φ = 2π/k. The density is also constant, identical for
both electrons and ions. Because of this, the electric field vanishes, in the same way as the
Harris equilibrium. This is one of the most simple examples of sheared force-free mag-
netic field configurations, and it has been a popular choice in many studies of magnetic
reconnection (Bobrova et al. 2001), especially those with the gyrokinetic framework. In
addition, it has also the computational advantage of being suitable without further mod-
ifications for periodic boundary conditions, widely available in simulation codes. Other
linear force free equilibrium with sheared magnetic field were found by Channell (1976),
although not with constant density, and Bobrova et al. (2001). The latter also found the fol-
lowing distribution function satisfying Eq. (3.25) (different from the found one by Sestero
1967).

fα =
n0α

(2πmα)3/2Tα,‖T
1/2
α,⊥

exp
{
−mα

2

[
(vy − Uy,α)2 + (vz − Uz ,α)2

Tα,‖
+

v2
x

Tα,⊥

]
(3.27)
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T 2
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]}
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with the drift speed Uy,α and inhomogeneity scale of the magnetic field k given by

~Us(x) =
qα

mαc

∆Tα

Tα,⊥

~B(x)
k

(3.29)

k =
ωpe

c

(
∆Te

Te,⊥
+

me

mi

∆Ti

Ti,⊥

)1/2

(3.30)

Here, the equilibrium exists only if there is a non zero temperature anisotropy ∆Tα =

Tα,⊥ − Tα,‖ between the parallel Tα,‖ and perpendicular Tα,⊥ components to the local mag-
netic field. A higher temperature anisotropy is associated with a smaller length scale
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3.2 Kinetic equilibria of current sheets

for the inhomogeneity in the magnetic field. The big advantage of using the distribution
function by Bobrova et al. (2001) is that they derived kinetic growth rate of the tearing in-
stability in this configuration, finding that is only dependent on the shape of the magnetic
field in the region away from the reversal point, and not on the details of the distribution
function (see Sec. 5.1.3.1). As a consequence, the same solution is valid in collisional
regimes, suitable for some laboratory plasmas. This solution has been used to study
streaming/Buneman micro-instabilities (Nishimura et al. 2003, Li et al. 2003), with the
field aligned current as their source of free energy. Sakai et al. (2001) also studied these
processes with the magnetic field given Eq. (3.25) but with Maxwellian distribution func-
tions instead of the exact solution Eq. (3.27). Later, 3D PIC simulation for relativistic
flows also used the same previous approach (Sakai and Matsuo 2004).

3.2.2.2 Non-linear kinetic force free equilibria: the force free Harris sheet

Only recently the first force-free Vlasov Maxwell equilibrium distribution function
was found by Harrison and Neukirch (2009b) (see also Neukirch et al. 2009) by extend-
ing the Fourier transform method first developed by Channell (1976). This method of
solving the Vlasov-Maxwell equation is based in an analogy of following the trajectory
of a pseudo-particle in a conservative potential. It was first applied by the same authors
(Harrison and Neukirch 2009a) to derive the linear force-free equilibrium Eq. (3.25). Fi-
nally, the result for the (non-relativistic) distribution function for the specie α is:

fα =
n0α

v3
th,α

exp

(
−

Hα

kBTα

) [
exp

(
−

U0z,αpzα

kBTα

)
+ aα cos

(
U0y,αpyα

kBTα

)
+ bα

]
(3.31)

with U0z,α = U0y,α, aα and bα are constants with the constraint 0 < aα < bα. The magnetic
field is given by:

By = B0 tanh(x/L) (3.32)

Bz = B0 cosh−1(x/L) (3.33)

Similar to Eq. (3.25), the total magnetic field is constant (B0). Note that the By component
is the same as in the Harris sheet, but in this case the force balance is sustained by a
magnetic shear instead of the plasma pressure. For that reason the authors called this
equilibrium as “force free Harris sheet”. The components of the current density are given
by:

Jy =
B0

µ0L

sinh(x/L)

cosh2(x/L)
= en0(U0z,i − U0z,e)

sinh(x/L)

cosh2(x/L)
(3.34)

Jz =
B0

µ0L

1

cosh2(x/L)
= en0(U0z,i − U0z,e)

1

cosh2(x/L)
(3.35)

while the drift speeds for each specie are given by

Uy,α(x) =
U0z,s sinh(x/L)(

1
2 + b

)
cosh2(x/L)

(3.36)

Uz,α(x) =
U0z,s(

1
2 + b

)
cosh2(x/L)

(3.37)
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3 Current sheet equilibria

Different from the Harris case, we note that the density current is sustained for a spatially
varying drift speed of electrons and ions, while the density is constant everywhere. The
macroscopic and microscopic parameters are related by

B2
0

2µ0
=

Te + Ti

Te Ti

n0 (3.38)

L =

√
2(Te + Ti)

µ0e
2Te Tin0(U0z,i − U0z,e)2

(3.39)

a =
1
2

(3.40)

b =
TeTi

n0(Te + Ti)
Pb (3.41)

where Pb is the background pressure. Note the similarity in the relation for the halfwidth
in terms of other parameters in comparison with the Harris case. Harrison and Neukirch
(2009b), Neukirch et al. (2009) also investigated a family of kinetic equilibrium with a
smooth transition between the Harris equilibrium and the force free case previously de-
scribed. Wilson and Neukirch (2011) generalized the Harrison’s force free solution for a
different dependence on the particle energy, but with the same dependence on the canon-
ical momenta. Later, Stark and Neukirch (2012) generalized this force free solution for
the relativistic regime. Finally, Abraham-Shrauner (2013) generalized the hyperbolic spa-
tial dependence of the magnetic fields Eq. (3.32) to Jacobian elliptic functions, with the
previous solutions as particular cases.

It is important to remark that none of the works about this new non-linear force free
equilibrium have analyzed thoroughly their stability properties so far (no calculation of
growth rates). Only some conditions about the number of maxima of these distributions
functions have been established. Different from the single peaked Maxwellian distribution
function, the force free solution Eq. (3.31) or its generalizations may display multiple max-
ima in vx or vy directions, which have implications for velocity space micro-instabilities
such as two-stream or bump-on-tail (besides of macro-instabilities such as tearing mode.
See Neukirch et al. (2009) for further details). A more complete stability analysis would
be an interesting topic for future research.

Finally, it interesting to notice that is expected that the development of reconnection
changes in force-free configuration in comparison with Harris sheet equilibrium. This is
because many micro-instabilities found in density gradients of the Harris equilibrium will
change radically in force-free configuration, affecting the reconnection process.

3.2.2.3 Force free configuration used in this work

The magnetic field configuration to be used in the force free results to be shown in
this thesis, unless stated otherwise, is the following:

By = B∞y tanh
(

x

L

)
, (3.42)

Bz = B∞y

√
b2

g + cosh−2
(

x

L

)
=

√
B2

T
− B∞y tanh−2

(
x

L

)
, (3.43)
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3.2 Kinetic equilibria of current sheets

where the relative guide field is bg = BG/B∞y, the total magnetic field has constant mag-

nitude BT = B∞y

√
1 + b2

g. Noticing that the magnetic field is given asymptotically by

~B = ±B∞yŷ+Bg ẑ, we can calculate the total rotation shear angle with respect to the center
of the current sheet

θ = acos


b2

g − 1

1+ b2
g

 (3.44)

The magnetic field Eq. (3.42) reduces to the kinetic equilibrium Eq. (3.32) for bg = 0.
The force free magnetic field Eq. (3.42) is sustained by the following expression for the
current density (calculated to fulfill the Ampère’s law):

Je,y = −
1
µ0

∂Bz

∂x
=

B∞y

µ0L

tanh(x/L) cosh−2(x/L)
√

b2
g + cosh−2(x/L)

(3.45)

Je,z =
1
µ0

∂By

∂x
=

B∞y

µ0L
cosh−2(x/L) (3.46)

with ~Je = ~J , assuming stationary ions. Je,z is the out-of-plane current with the same
form as in the Harris equilibrium. But different from the Harris case, now we have in
addition an in-plane current Je,y, parallel to the reconnected magnetic field, that will be an
important fact to compare with. The respective profiles are shown in Fig. 3.2.
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Figure 3.2: Magnetic ~B and current density ~J profiles for a force free current sheet with

bg = 2, given by Eq. (3.45) and Eq. (3.45), respectively.

To the best of our knowledge, there is no known equilibrium distribution function for
the configuration given by Eq. (3.42) and Eq. (3.45). Since we do not know the exact
form of the VDF, we will be using the known one from the Harris equilibrium: drifting
Maxwellians Eq. (3.11) but with constant density. This approach is valid assuming that
the force free magnetic field Eq. (3.42) is close to the given by the exact Harris solution
plus a guide field Eq. (3.23), which is true for strong enough guide field strength. Thus,
we have the following VDF:

fff =
n0

(
√

2πvth,e)3
exp


−

1
2v2

th,e

(
v2

x + (vy − Vy,e(~x))2 + (vz − Vz,e(~x))2
) (3.47)

47



3 Current sheet equilibria

where, following the Ampère’s law, V{y/z},e = −J{y/z},e/(en0) are spatially varying drift
speeds and n0 = ne = ni is the constant background density. Also note the constant
temperatures vth,e. Because of this, we will have a constant thermal pressure everywhere,
in addition to the constant magnetic pressure due to the form of Eq. (3.42). This implies
that the MHD pressure equilibrium condition is satisfied trivially initially (although with
the magnetic pressure being much larger than the thermal pressure).

For details about the specific choice of the minimum set of parameters to initialize a
PIC simulation of this force free CS, in addition to other useful relation between parame-
ters, see Appendix A.3.2.

The force free magnetic field Eq. (3.42) has been used by Drake et al. (2003), Che et al.
(2011) for studies of anomalous resistivity triggered by Buneman instability, in the context
of magnetic reconnection with strong guide field. Hesse et al. (2005b) also used a similar
configuration for 3D studies of the role of pressure term in sustaining the reconnected
electric field. They used that setup in order to avoid the fast growth of LHDI and kink
modes in comparison with tearing mode in 3D configurations, but with the trade-off of the
appearance of some artifacts originating from the lack of initial exact kinetic equilibrium.
Recently, it has also been used by Liu et al. (2013) for magnetic reconnection studies
in 3D with a similar setup to the previous two references but much larger simulations
boxes. They found that the streaming micro-instabilities do not play an important role
in comparison with the macro-instability tearing mode. Two recent 2D PIC simulations
using the same setup are Liu et al. (2014), TenBarge et al. (2014).
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4 Magnetic Reconnection

Magnetic Reconnection is one of the essential mechanisms in the universe for the
conversion of magnetic energy into particle energy (heating, bulk flows and particle ac-
celeration, etc). This takes places due to a rearrangement of magnetic field lines (they
“reconnect”), something not allowed in ideal MHD due to the Alfvén theorem or frozen-
in condition (see Sec. 2.5). It is in some way the opposite of dynamo processes, in which
the bulk flow energy can be converted to magnetic energy. The condition for its exis-
tence in solar flares was first pointed out by Giovanelli (1946), while its mechanism first
proposed and explained by Dungey (1953). The term “reconnection” was first coined by
Parker (1957). The latter work pointed out that diffusion of magnetic field lines can also
convert magnetic energy into other forms of energy (the diffusion Eq. (2.47) for Rm ≪ 1),
and rearrange magnetic field lines, but at a much larger timescales (in magnetotail and
solar flares, diffusive timescales are typically on the order of τdiff ∼ 1014 s ∼ 107 years,
while the release of energy is on timescales of minutes). Thus, the key characteristic of
magnetic reconnection that differentiates it from diffusive processes are their “fast” time
scales (how fast will be defined later), although in principle many different mechanisms
can lead to the same macroscopic result: the breaking of the frozen-in condition Eq. (2.49)
with their associated parallel aligned electric fields Eq. (2.52).

Nowadays, the basic theory of magnetic reconnection is routinely explained in text-
books (Biskamp 2000, Priest and Forbes 2000, Birn and Hesse 2007), while some recent
reviews indicating the modern challenges in the current understanding of this process can
be found in Zweibel and Yamada (2009), Yamada et al. (2010), Treumann and Baumjohann
(2013b) and Karimabadi et al. (2013).

Magnetic reconnection involves two separated time-scales (Cassak and Shay 2011).
One is slow (weeks in solar active regions / 3 hours in between magnetospheric sub-
storms), during which the magnetic energy is build-up and concentrated in curved mag-
netic field lines, with a very high magnetic tension. This process prepares the onset of
magnetic reconnection, and it is associated with the tearing mode, to be discussed in
Sec. 5.1. The second time-scale is the “fast” one (2 minutes in solar flares/ 10 minutes
in substorms), during which all that stored energy is suddenly released and the effects
of reconnection can be easily observable. In general, it has been found than this second
fast phase is much simpler to describe theoretically than the first spontaneous one of slow
build-up (known as tearing mode).

The key parameter that quantifies how fast develops the second (fast) phase of recon-
nection, and thus the rate of energy release (the parameters that it is actually observable),
is the reconnection rate. It is the out-of-plane electric field Ez in the upstream of the
current sheet, being normalized to VAB (in S.I. units. In CGS, the normalization is with
respect to (VA/c)B), with VA the Alfvén speed calculated with the asymptotic magnetic
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4 Magnetic Reconnection

field. By using Faraday’s law and Stokes theorem, this is equivalent to the rate of change
of magnetic flux Ψ across the boundaries of the reconnection region. In a 2D configu-
ration with no variations in the z direction, it can be shown Somov (2013) that given a
magnetic island with known X and O points (see scheme of tearing islands with X and O
points in Fig. 5.1) will have the following reconnected flux density ψ′:

ψ′ (x = center, t) =
ψ

∆z
=

1
∆z

"

~B · d~S = 1
∆z

"

~B · ~x dzdy =

∫ X

O

Bx(x = center) dy

(4.1)

where S is a surface between the X and O points, which can be identified as the extrema
of the vector potential (maximum and minimum). Its normal is pointing in the x direction
(it can be defined as d~S = dzẑ × dyx̂). We have assumed that the size of this surface in
the z direction is ∆z→ 0, and that Bx does not change in this direction. Since now on, we
will identify the reconnected flux density ψ′ simply as the reconnected flux ψ (omitting ′).
The previous expression is equivalent to:

dψ

dt
=

d

dt

(∫ X

O

Bx(x = center) dy

)
=

1
∆z

∮
~E · d~l = Ez(X) − Ez(O) (4.2)

One key open problem in magnetic reconnection study, even nowadays (Cassak and Shay
2011, Karimabadi et al. 2013), it is to find what determines the reconnection rate Eq. (4.2).
In this subsection we briefly describe the two first proposed mechanisms of steady mag-
netic reconnection that gives scaling relations for the reconnection rates, in the context of
the MHD plasma model.

4.1 MHD reconnection

4.1.1 Sweet-Parker reconnection model

The first model of 2D steady state magnetic reconnection was proposed by Sweet
(1958) and Parker (1957). It assumes antiparallel magnetic field lines supported by a
current sheet, with a rectangular non-MHD region where the dissipation (η , 0) and the
rearrangement of magnetic field lines takes place, i.e: an X point (the definition of X
and O points is given in Fig. 5.1). This non-ideal region has a length of L in the outflow
direction and a half-thickness of δ in the inflow direction, as shown in Fig. 4.1.
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4.1 MHD reconnection

Figure 4.1: Sweet Parker reconnection. δ is the half-thickness of the diffusive region

along the inflow direction, while L its length along the outflow region. Adapted from Fig.

1 of Zweibel and Yamada (2009)

In steady state, by simple 2D geometric arguments and conservation of mass (in ad-
dition to incompressibility), one can show (Zweibel and Yamada 2009) that the outflow
plasma moves at the Alfvén speed VA and the electric field ~E points in the out-of-plane
direction, being conductive outside of the reconnection region (second term in the left
hand side of Eq. (2.44)), while is resistive inside of the non-ideal region. This has as a
consequence that the reconnection rate is equal to the aspect ratio of the diffusion region
(its width divided its length). The latter, in turn, is equal to the ratio between the inflow
Vin to outflow speed VA, scaling with the Lundquist number as:

dψ

dt
= Ez =

δ

L
=

Vin

VA

= S−1/2 ∝ R
−1/2
M ∼ tan θ (4.3)

where tan θ is the opening angle of the separatrices, the region around the X point with and
X shape, separating magnetic domains. The second equality means that the inflow speed
is the precisely the width δ of the diffusion region, a consequence from the fact all the in-
coming flow has to pass through that region (due to the conservation of mass). In addition,
there is an equipartition of the magnetic energy in equal amounts for both bulk outflow
plasma and electron heating (Zweibel and Yamada 2009). Then, faster reconnection rates
imply a high aspect ratio (shorter layers), high inflow speeds and more open separatrices.
As we will see, these three consequences will still be good approximation much beyond
the MHD models, providing a good first order estimation about reconnection speed.

However, the scaling of these quantities with S −1/2 would make reconnection too slow
in many space environments where S (or RM) is very large. Indeed, it cannot explain the
observed rates of energy release in many space environments (see Sec. 1.1). In order to
match with the observational constrains, it is thus required that the dissipation region has
to be much smaller than the system size δ≪ L. This can be understood because only thin
diffusive regions can provide the high currents (since ∇B ∝ J by Ampère’s law) necessary
to dissipate the magnetic energy stored in this configuration.
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4 Magnetic Reconnection

4.1.2 Petschek reconnection

The first improvement to solve the issue with the slow reconnection rates predicted
by Sweet-Parker mechanism was proposed by Petschek (1964). The idea is to avoid
the bottleneck that produce all the incoming flow passing through the width δ and thus
limiting the reconnection rates given by Eq. (4.3). Instead of the full length L, Petschek
proposed a shorter diffusive region L∗, possible due to the deflection of the incoming
flow by slow shock modes. This is in some sense equivalent to an increasing resistivity
closer to the X point (not uniform like in Sweet-Parker model). By applying the MHD
jump conditions at the shock fronts, it is possible to prove the existence of an additional
acceleration and current due to the Lorentz force compared to the Sweet-Parker model,
and thus the reconnection rates are given by

Ez =
Vin

VA

≈ π

8 log S
(4.4)

Thus, the reconnection rates decay much slower with the Lundquist number than in the
Sweet Parker model, thanks to the inverse logarithmic dependence on S . Typical estimates
provides reconnection rates of the order of (Ez/B0) ∼ 0.01 − 0.1VA (Koskinen 2011).
Thus, the Petschek model is considered the first fast magnetic reconnection mechanism
proposed, enough to explain the observations in space environments. It is interesting to
mention that in this model the transfer of energy goes mostly to outflow bulk energy of
ion, not producing an efficient electron heating like in the equally distributed energy of
Sweet-Parker model (Zweibel and Yamada 2009).

However, although phenomenologically correct in this sense, there are many puzzling
questions about the mechanism (and also about the numerical implementation) in the
Petschek model that produces these enhanced reconnection rates. In particular, because
the Petschek reconnection rate have a very weak dependence on S and so Rm and the
resistivity η, it is practically independent on the physics of the diffusion region. But this
is precisely the key problem in magnetic reconnection: determining what violates the
frozen-in condition (see discussion in Sec. 2.5) allowing the breaking of magnetic field
lines. Therefore, it is necessary to go beyond MHD to address this issue.

4.1.3 Non-stationary reconnection model: Plasmoid instability

Other factor that recently was found to be able to enhance and modulate reconnection
rates in the resistive MHD approach are plasmoids, proposed by Loureiro et al. (2007).
Also known as secondary magnetic islands, they are generated in very elongated (long
and thin) current sheets, producing a time dependent and “bursty” reconnection. This is
an alternative way of getting fast magnetic reconnection even for very high Lundquist
numbers, and very different from the classical models such as Petschek reconnection. It
has become a very active topic of research during the last years (see Loureiro et al. 2013a,
and references therein). They have also been observed in full 3D PIC simulations with
very large simulation boxes (see Daughton et al. 2011a, and references therein).
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4.2 Collisionless magnetic reconnection

4.2 Collisionless magnetic reconnection

In the present thesis we address collisionless magnetic reconnection in the solar corona,
with negligible collisional resistivity η → 0. Therefore, the aforementioned MHD mod-
els do not apply and specific collisionless plasma mechanisms are necessary to allow
magnetic reconnection. They provide faster reconnection rates than Sweet-Parker model,
matching better with the observations (see the review, e.g., Uzdensky 2006). As we dis-
cussed in Sec. 2.5, any term in the generalized Ohm’s law in its two-fluid Eq. (2.25) or
one-fluid Eq. (2.41) version provides the necessary ingredient to rearrange the magnetic
field lines. Now, we will briefly describe the effects of each one of these terms: Hall,
pressure and inertia, in the reconnection process. But keep in mind, however, that the
Hall term or anisotropic pressure tensors (but otherwise gyrotropic) cannot by themselves
break the frozen in condition (Egedal et al. 2013). Only the non-ideal terms in the right
hand side of the generalized Ohm’s law allow this kind of mechanism.

4.2.1 Hall effects

As discussed in Sec. 2.3 and Sec. 2.4, the Hall term,

~EHall =
1
en
~J × ~B, (4.5)

in the 1-fluid Ohm’s law Eq. (2.41) 1 describes the consequences of the differential motion
of electrons and ions. It is important for low β plasmas, and CS sustained by transverse
currents (to the magnetic field). It can be shown that is is especially relevant for CS
on the order of di. Different from the aforementioned MHD models with only out-of-
plane current, when the Hall term dominates over the resistive one, it introduces in-plane
currents due to the decoupling between electrons and ions. As a result, the diffusion region
is divided in two regions: an electron diffusion region of the order of de embedded in a
larger ion diffusion region of the order of di. In between the ions become demagnetized,
while the electrons are still magnetized on the reconnecting magnetic field. The incoming
ion flow is stopped and deflected at distances di from the X point, while something similar
for the electrons but a distances de. This was predicted theoretically and confirmed with
simulations at the end of the 90s (see Shay et al. (1998, 2001) or Biskamp (2000) for a
general review).

1note that it does not appears in the per-specie or two-fluid Ohm’s law Eq. (2.25) since it involves two
species.

53



4 Magnetic Reconnection
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Figure 4.2: Hall-MHD reconnection. The typical length scale of the electron diffusion re-

gions is de (shown in red color), where the electron motion (shown in red dashed lines) de-

couple from ions (in red dashed lines). Outside of the red region, the electrons are magne-

tized. The ion diffusion region is much larger, on the order of di and shown in green color.

Outside of this regions, the ions are magnetized and frozen-into the plasma. In between

these regions is where most of the Hall effects take place. This charge motion induces

in-plane currents (shown in continuous blue lines), generating an out-of-plane magnetic

field Bz with opposite polarity at each other side of the X point, forming a characteristic

quadrupolar pattern (shown in olive color). Adapted from Fig. 4 of Zweibel and Yamada

(2009).

In this reconnection model, the characteristic outflow speeds from the X point are of
the order of the in-plane Alfvén speed VA for ions and in-plane electron Alfvén speed VAe,y

for electrons (Shay et al. 2001), in contrast to MHD models where the maximum outflow
speed is always on the order of VA. Only inside of the smaller electron diffusion region
they become demagnetized (breaking the frozen-in condition).

A key feature of the Hall mediated reconnection is a characteristic quadrupolar shape
of the out-of-plane magnetic field (already found in 1979 by B. Sonnerup). This can be
seen by rewriting Eq. (4.5) using the decomposition in Eq. (2.11) and specializing to the
z component:

1
en

(~J × ~B)z =
1

enµ0

(
~B · ∇

)
Bz (4.6)

And due to the characteristic direction of the incoming and outcoming electron flows de-
picted in Fig. 4.2, it is possible to prove that this magnetic field has a quadrupolar struc-
ture: Bz ∝ xy (see details in Zweibel and Yamada 2009, Uzdensky and Kulsrud 2006).

The importance of the Hall term facilitating fast magnetic reconnection was high-
lighted by the famous GEM (Geospace Environmental Modeling) challenge (Birn et al.
2001), which showed that all simulation models that incorporated this term (full PIC by
Pritchett (2001), hybrid and two fluid) developed fast reconnection rates, in agreement
with the observations2 . Only the MHD simulation model, without Hall term, showed
slow reconnection rates (Sweet-Parker like Eq. (4.3)). Then, they inferred that the recon-
nection rate should be practically independent on the physical mechanism breaking the
frozen-in-condition, either fluid or kinetic. These results imply than the ion behaviour al-
ways determine the reconnection rates, but the inclusion of electron dynamics is essential

2 Note that, fortunately for the simulation studies that are restricted to reduced mass ratios, it was shown
that reconnection rates are more or less insensitive to the value of this parameter mi/me (Shay et al. 1998).
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4.2 Collisionless magnetic reconnection

for the mechanism (Treumann and Baumjohann 2013b). This result was also confirmed
by another similar benchmark study of forced magnetic reconnection for different codes:
the “Newton challenge” described in Birn (2005) (with fully PIC simulations by Pritchett
(2005b)). However, many questions remained unanswered after the publication of these
results. Especially what is the physical reason behind these enhanced reconnection rates.
The most popular explanation is based on the waves that can be developed in this system,
to be explained next.

4.2.2 Role of dispersive waves in collisionless reconnection

4.2.2.1 Traditional explanation

Rogers et al. (2001) proposed a model to predict the parameter regime in which a col-
lisionless plasma can develop fast reconnection rates, based in the waves that the system
can support. This has become the mainstream explanation since those years, although
recently there have been some works that have challenged it, finding that fast magnetic re-
connection can take place even in regimes where was predicted to be slow (TenBarge et al.
2014, Liu et al. 2014, Stanier et al. 2015). Let us first analyze the assumptions and predic-
tions of the model by Rogers et al. (2001).

The Hall term that appears in two fluid plasma models brings the dynamics of whistler
and kinetic Alfvén waves to magnetic reconnection. Both are dispersive waves, with
frequencies that increases quadratically for smaller wavelengths ω ∝ k2 (or phase speeds
proportional to ω/k ∝ k). Before of a proper description of both waves, we need to define
some characteristic speeds and length scales:

Bk = ~B · k̂, VAk =
Bk√
µ0n0mi

=
Bk

B
VA, β jk =

2µ0n0mikBT j

B2
k

, βk =
2µ0n0mikB(Ti + Te)

B2
k

(4.7)

C2
s =

kB(Ti + Te )
mi

, CM = V2
A + C2

s , C2
Mk =

V2
A

1 + (kde)2
+ C2

s

ρs =
Cs

Ωci

, dk = di

VAk

CM

= di

1
√

B2

B2
k

+C2
s /V

2
Ak

, ds = di

Cs

CM

= di

√
β/2

1+ β/2
=

ρs√
1 + β/2

with j = i, e for ions or electrons. CS and CM are the sound and magnetosonic speeds,
respectively. The subscript k indicates quantities calculated with the magnetic field in the
propagation direction of the wave. If the waves propagates on the reconnection plane,
then Bk ∼ B∞y . dk can be interpreted as an “effective ion inertial length”: di reduced by
a ratio of speeds that depends on the relative guide field and total plasma beta, while ds

the ion inertial length reduced by the ratio between thermal to magnetosonic speeds. ρs

is the ion Larmor radius calculated on the sound speed based in both electron and ion
contributions. Now, the properties of the aforementioned waves can be summarized as
follows:

1. Whistler waves. ω = k2diVAx. Amplitude ∝ kVA.
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They have short wavelengths and high phase speeds:

de < k−1 < dk, ω/k ≫ CM (4.8)

from where the condition for their existence can be deduced:

µk :=
d2

e

d2
k

=
me

mi

C2
M

V2
Ak

=
me

mi

B2

B2
k

(
1 +

β

2

)
≪ 1 (4.9)

i.e: µk can be interpreted as an “effective mass ratio”: mi/me reduced by a factor
depending on the relative guide field and total plasma beta. Assuming the geometry
~B = B∞y(ŷ+bgẑ), with bg = Bg/B∞y the relative guide field and ~k = kŷ, the condition
becomes:

µk ≈
me

mi

(
1 + b2

g

) (
1 +

β

2

)
=

me

mi

(
1+ b2

g +
βk

2

)
≪ 1 (4.10)

Whistlers are mostly seen in antiparallel reconnection in high beta plasma regimes(β &
1. Note that βi ∼ 1 implies similar scales for the ion diffusion region compared to
the ion Larmor radius di ∼ ρi) : they are suppressed for strong enough guide fields.
Note that in the low beta plasma regime, µk ≈ (me/mi)(B/B∞y)2, which allow to
rewrite the whistler condition as B2

∞y ≫ (me/mi)B2
g in the strong guide field case.

One known theoretical prediction is that a quadrupolar structure in the out-of-plane
magnetic field should be observed in regimes where whistler are present. This has
been seen in many previous works (see, e.g., the 2D PIC simulations by Ricci et al.
2004).

2. Kinetic Alfvén waves. (KAWs) ω = kρsk‖VA for kρs ≫ 1. Note the typical length
scale of KAWs ρs: the ion Larmor radius based on the electron temperature. When
they operates, this quantity replace the typical length scale of the diffusion region
di (Ricci et al. 2004). They have larger wavelengths but lower phase speeds than
whistlers

max(de, dk ) < k−1 < ρs , VAk ≪ ω/k ≪ CS (4.11)

Note that ρs ∼ ds in the low beta regime β ≪ 1 due to the relations in Eq. (4.7).
Assuming additionally low frequencies ω < Ωci, they have to satisfy:

βk

2
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d2
s

d2
k

=
C2

s

V 2
Ak

=
2µ0n0kB(Ti + Te )

B2
k

=
1
2

(βik + βek) =
βk

2
> 1 (4.12)

Assuming the same geometry as for whistlers before, we have the condition:

βk

2
:=

β∞y

2
= (1 + b2

g)
β

2
≫ max {µk , 1} (4.13)

where β∞y is the plasma beta calculated with the asymptotic magnetic field. Then,
KAWs are expected in environments with strong enough guide field and/or high
plasma betas. The first condition make feasible to describe them by means of re-
duced MHD models or EMHD. One prediction of these models is a quadrupolar

electron density structure in regimes where KAWs should be present. This signa-
ture was first observed in 2D PIC simulations by Ricci et al. (2004). See Sec. 4.3.1
for more details.

56



4.2 Collisionless magnetic reconnection

Therefore, the values of the parameters βk and µk determine which waves can be present.
Note that this is equivalent to the relative value of the three characteristic scale lengths de,
dk and ds . There are four possible regimes shown schematically in Fig. 4.3.

No quadratic

waves

(slow)

Whistler

waves

(fast)

Whistler + KA

waves

(fast)

KA

waves

(fast)

Figure 4.3: Parameter regime for waves expected in two fluid magnetic reconnection, as

function of the parameter µk and βk. Adapted from (Rogers et al. 2001).

These dispersive waves are expected to form quasi-steady structures in the electron
outflow regions and along the separatrices (Treumann and Baumjohann 2013b). Now,
in the regimes where these waves are present, it should be expected fast magnetic re-
connection. Rogers et al. (2001) argued that this is because the dispersive nature of
whistler/kinetic Alfvén waves can keep constant the acceleration in the outflow region
if they behave as standing waves in that region, opening up the reconnection layer. The
latter process takes place by assuming that the electron outflow speed is on the order of
the phase wave speed Ve,out ∼ ω/k ∝ k. Since typically k ∼ 1/L, this results in a constant
mass flow LVe,out from the reconnecting layer even though L decreases. As a result, when
the length scales are compressed in the ion diffusion region, the electron outflow speed
has to increase above VA in order to balance the higher whistler wave speed for these
small scales. Thus, the reconnection rate, proportional to the inflow speed, is not limited
anymore to the Alfvén speed VA as in Sweet-Parker model of resistive MHD, reaching the
higher values observed in many space environments. This is equivalent to have a scale
invariant reconnection rate (Ricci et al. 2004).

The previously described process is in opposition to models without Hall term where
no dispersive waves are allowed, such one fluid MHD. Only the (ordinary) Alfvén waves
can exist in these models. The dispersiveless character of these standing waves can pro-
duce the collapse of the open outflow layer away from the X point, leading to a reduction
in the reconnection rates. This is the so called “slow” regime, characterized by µk & 1
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and βk/2 . µk, equivalent to β

2 (1 − me

mi
) . me

m i
. The second condition for non-existence of

KAWs implies a very small plasma β ≪ me/mi in such a way that the first condition for
the non-existence of whistlers becomes B2

∞y . (me/mi)B2
g. One can understand intuitively

the absence of fast magnetic reconnection in low plasma betas, since ions/electrons are
tightly coupled in strongly magnetized environments, and do not allow the decoupling
necessary to produce the Hall effect source of the dispersive waves (Ricci et al. 2004).

Rogers et al. (2001) tested this prediction by means of two fluid simulations. In
regimes where was expected both whistler and KAW to be present (right bottom cor-
ner of Fig. 4.3), they found the highest reconnection rates (ψ̇/ψ̇N ∼ 0.12). These rates
were reduced when only one of these waves were present, but they were still substantial
(ψ̇/ψ̇N ∼ 0.06). Consequently, a reduction in the opening angle of the separatrices was
seen. And finally, in the parameter regime where no dispersive waves were allowed (left
top corner of Fig. 4.3), reconnection was slow (ψ̇/ψ̇N ≪ 0.05) and it was observed that
the separatrices were barely open.

4.2.2.2 Recent works showing opposite evidence

Several recent works have challenged the traditional explanation of fast magnetic re-
connection ( (dΨ/dt)/Ψ̇N ∼ 0.1) based in the presence of dispersive waves. One reason
is because the corresponding linear theory is rigorously valid only for homogeneous plas-
mas, while magnetic reconnection develops highly non-homogeneous structures. In any
case, many of those studies agree that this process is possible in parameter regimes with-
out the presence of fast dispersive waves. For example, in electron-positron (pair) plas-
mas (equivalent to the limit mi = me) the Hall term is absent, then no dispersive waves
such whistler or KAWs are allowed and thus reconnection should always be slow3. This
also implies that there is no quadrupolar structure of the out-of-plane Bz. However, 2D
PIC simulations of pair plasmas (antiparallel configuration) by Bessho and Bhattacharjee
(2005) have shown fast reconnection rates, due to the still active off-diagonal terms of
the pressure tensor (analogous to a localized resistivity). Similar results were seen in the
large scale 2D PIC simulation carried out by Daughton and Karimabadi (2007), due to
the production of plasmoids (related with secondary magnetic islands) in the large exten-
sion of their simulated current layer. It is interesting to notice at this point that secondary
magnetic islands and plasmoids are also seen in electron-proton plasmas, modulating tem-
porally the reconnection rates in large systems (see Daughton et al. 2011a, and references
therein). Later, Chacón et al. (2008) developed an analytical model for explaining the fast
reconnection rates in large guide field and low beta pair plasmas, but in the framework of
a fluid model with a viscous closure for the pressure tensor. On the other hand, hybrid
simulations by Karimabadi et al. (2004) where the Hall term is imposed to be zero also
showed fast magnetic reconnection rates, although the interpretation of these results faced
some criticism afterwards (Malakit et al. 2009).

Coming back to electron-proton plasmas, the recent work by TenBarge et al. (2014)
also confirmed fast reconnection rates by means of gyrokinetic and PIC simulations of
force free current sheets with guide fields up to bg = 50 (and low plasma beta βi = 0.01).

3 In general, there is no other electromagnetic wave of dispersive nature in pair plasmas. This is
valid for a wave-number regime of weak damping and even allowing arbitrary propagation angle. See
Gary and Karimabadi (2009) for rigorous proof.
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Our results to be shown in Chapter 9 also support this conclusion. Liu et al. (2014) also
reported fast reconnection rates by means of 2D PIC simulations of force free current
sheet with guide fields up to bg = 80. The latter study also demonstrated that the dominant
terms in the Ohm’s law, which can support the reconnected electric field, do not change
significantly between parameter regimes with or without the presence of these waves.
There was no fully satisfactory explanation given there, but it was speculated that the
reason for the persistence of fast magnetic reconnection rates is the invariance of the
most unstable (collisionless) tearing mode at kL ∼ 0.5. Although the fast waves can be
suppressed by changing the guide field, the latter parameter does not. And kL fixes the
aspect ratio that can explain the fast reconnection rates.

Very recently, Stanier et al. (2015) showed that even two fluid Harris sheets simula-
tions can display fast reconnection rates in low beta plasma regimes (not allowing dis-
persive waves). They proposed a mechanism and scaling laws with the same theoretical
framework to explain the simulation results without resorting to the presence of disper-
sive waves. However, it is still unclear why the previous two-fluid simulations based in
the work by Rogers et al. (2001) reported slow reconnection rates.

Another even more recent work by Cassak et al. (2015) proposed an alternative mecha-
nism for fast magnetic reconnection in regimes that do not allow whistler or kinetic Alfvén
waves, i.e.: without significant contribution of the Hall term. By means of a two fluid
analysis using the CGL equations of state (discussed in Sec. 2.6, for anisotropic pressure
tensor in the large guide field limit), these authors showed that another kind of dispersive
waves can exist in magnetic reconnection scenarios only due to an electron temperature
anisotropy (consistent with some former studies, somehow ignored, by Ambrosiano et al.
1986, Guo et al. 2003). These temperatures anisotropies are self-generated by the follow-
ing process. Similarly to the Hall model plus guide field by Kleva et al. (1995), the model
by Cassak et al. (2015) also predicts a quadrupolar structure of the out-of-plane Bz but
due to the magnetic flux convected by ions instead of electrons. As a result, Bz has op-
posite polarity to the one predicted by the Hall model. Correspondingly, Pe,⊥ develops a
quadrupolar structure of opposite polarity to preserve the pressure equilibrium condition,
as well as the density ne. Density gradients will produce parallel electric fields ∇‖ne = E‖
in the same way as these one explained in Sec. 4.3.1. Because they are directed from
low to high density regions, this electric field has to sustained by a Pe,‖ with opposite po-
larity to Pe,⊥ and ne, generating the required electron temperature anisotropy. The latter
contributes to the reconnected electric field in a similar way to the pressure term in the
standard generalized Ohm’s law Eq. (2.25) or Eq. (2.41):

Eanisotropy,z := − 1
ene

∂P
z j
e

∂x j

= − 1
eneµ0

∂Bl

∂xl

[(
Pe,⊥ − Pe,‖

B2/µ0

)
Bz

]
(4.14)

Thus, this mechanism of fast magnetic reconnection is important in low plasma beta envi-
ronments (strong guide field) or regimes with high in-plane plasma beta and high enough
electron temperature anisotropy (but with an special form, otherwise reconnection turns
out to be slow again). It is also dominant over the traditional Hall term in low beta plas-
mas with Te > Ti (instead of the KAW parameter regime according to Rogers et al. 2001).
It is important to note that the guide field cannot be too high, otherwise ρi < de preventing
the separation of scales needed for fast reconnection. The predictions of the latter model
might explain several recent simulation results of magnetic reconnection in the strong
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guide field regime, as those reported in the previous paragraphs and also our results to be
shown in Chapter 9.

4.2.3 Non-gyrotropic pressure effects

The pressure or ambipolar term in Eq. (2.41) becomes important when its typical gra-
dient length scale (the inhomogeneity scale) becomes comparable with ρi (see Sec. 2.3),
i.e.: when the finite Larmor radius (FLR) approximation is not valid anymore. This is the
case of thin CS. The pressure term can be written for the out-of-plane direction (support-
ing thus the reconnected electric field) as

Ez ,pressure := − 1
ene

(
∂Pe,xz

∂x
−
∂Pe,yz

∂y

)
(4.15)

We can notice that only the off-diagonal terms of the electron pressure tensor contributes
for breaking the frozen-in condition (a gyrotropic, even anisotropic, pressure tensor is not
enough). This was first pointed out by Vasyliunas (1975). In an antiparallel configuration,
a large number of fully-kinetic PIC simulation studies over the last two decades have
confirmed that the pressure term is the dominant one to sustain the reconnected electric
field (see Yamada et al. 2010, Hesse et al. 2014, Treumann and Baumjohann 2013b, and
references therein). This is still true in 3D cases (see, e.g., Hesse et al. 2005a) and with
the addition of a guide field (see, e.g., Ricci et al. 2004).

In the traditional HD Navier Stokes-equation, the non-gyrotropic terms in the pressure
tensor are considered as a pseudo-viscosity. As pointed out by Treumann and Baumjohann
(2013b, and references therein), they can be produced due to the bouncing or meandering
motion of electrons around the neutral sheet line when they are trapped in the Speiser or-
bits (Büchner and Zelenyi 1987). A physical interpretation on how the electrons perform-
ing these orbits can generate the off-diagonal terms in the pressure term can be found in
Yamada et al. (2010). The final result is that the electron become demagnetized, allowing
the breaking of frozen-in condition, for distances less than their typical meandering length
(bounce width) given by (Biskamp and Schwarz 2001, Kuznetsova et al. 2000, Ricci et al.
2004):

λx,e :=




2mekBTe

e2
(
∂By/∂x

)2




1/4

(4.16)

and under these circumstances the electron pressure will become non-gyrotropic. For a
Harris sheet in antiparallel configuration, this typical length scale can be approximated as
(Hesse et al. 2014):

λx,e ≈ de

√
βe (4.17)

where the quantities in the right hand side are calculated at the boundary of this region:
the diffusion region. Note that this distance can becomes much smaller than de for a low
beta regime. It is interesting to notice that by replacing the derivatives in each term of
Eq. (4.15) by the typical meandering length Eq. (4.16), it is possible to approximate both
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terms as derivatives of lower order momenta: only bulk velocities are required (see, e.g.,
Hesse et al. 2011, 2014, or references therein):

Pyz,e ≈
Pe

Ωce

∂Ve,y

∂y
(4.18)

Pzx,e ≈ −
Pe

Ωce

∂Ve,x

∂x
(4.19)

where Pe =
∑

i P ii,e/3 is the isotropic part of the tensor pressure. Then, plugging this back
to Eq. (4.15), one can find an approximate expression for the reconnected electric field Ez ,
and so the reconnection rate, when magnetic reconnection is dominated by this term:

Ez ≈
1
e

∂Ve,y

∂y

√
2mekBTe (4.20)

This expression can be generalized, revealing a very interesting physics about the diffu-
sion region, when it is written in the following form (see, e.g., Hesse et al. 2014):

Ez ≈
1

2ene

Λ2 ∂Ve,y

∂y
∇2(meneVe,z) (4.21)

where Λ is the typical length scale of the diffusion region: de for antiparallel reconnection
or ρe in case of guide field reconnection. The right hand side is a diffusion term related
with the out-of-plane current density Jz , suggesting that the reconnected electric field is
opposing to the decay of Jz by accelerating particles inside of the diffusion region. .

On the other hand, as pointed out by Hesse et al. (2004) (see also Hesse et al. (2014)),
the non-gyrotropy of the pressure tensor is closely related with the heat flux, which was
usually neglected in many former two-fluid models. They could show, analytically and
by means of 2D PIC simulations, that an appropriate description of that term require the
inclusion of the heat tensor in the pressure evolution equation in the immediate vicinity
of the X point, especially in the guide field case. Indeed, the generalization of Eq. (4.22)
for guide field case is

Pyz,e ≈ −
Pxx,e

Ωce

∂Ve,z

∂x
+ (Pzz,e − Pxx,e)

By

Bz

+
1
Ωce

∂Qxzy,e

∂x
(4.22)

Pzx,e ≈
Pyy,e

Ωce

∂Ve,z

∂y
+ (Pzz,e − Pyy,e)

Bx

Bz

+
1
Ωce

∂Qyzx,e

∂x
(4.23)

(4.24)

In any case, the non-gyrotropy of the electron pressure tensor can be used as a proxy
of the locations where magnetic reconnection is being driven by the pressure term (see Ap-
pendix B.2.6 for the method of calculation). This has been applied by Hesse et al. (2014)
(and references therein) to PIC simulations of magnetic reconnection. They found that
in many cases non-gyrotropic distributions cannot locate precisely neither the X points
nor the separatrices. Instead, they indicate intrinsic kinetic features of the reconnection
process that cannot be attributed to a fluid behavior.
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4.2.4 Effects of electron inertia

The electron inertia term in Eq. (2.41) can be written for a 2D configuration as:

Ez,inertia := −
me

e

(
∂Ve,z

∂t
+ Ve,x

∂Ve,z

∂x
+ Ve,y

∂Ve,z

∂y

)
(4.25)

This term becomes important only inside of the small electron diffusion region de, due to
the small electron mass. It has been shown (see Yamada et al. 2010, Treumann and Baumjohann
2013b, and references therein) that the most important parts are the non-linear terms (spa-
tial gradients) in comparison with the time derivative. Overall, the electron inertia also
contributes significantly to the reconnected electric field compared to the pressure term,
at least in an antiparallel configuration. But the inclusion of a strong enough guide field
magnetizes the electrons, making their pressure tensor more gyrotropic and leading to a
loss of its importance in sustaining the reconnected electric field. This was first pointed
out in 2D PIC simulations by Horiuchi and Sato (1997). More precisely, the guide field
reduces the length scales for which the pressure tensor can be non-gyrotropic, while not
affecting significantly the electron inertia term (Ricci et al. 2004, Pritchett 2005a). There-
fore, in these cases, the electron inertia term becomes dominant over larger scales than
the pressure term which is reduced to ρe on the guide field. However, some recent studies
(Horiuchi et al. 2014) have pointed out that this is not always the case, even for strong
guide fields. This might be related with the choice of temperatures in former studies fa-
voring Ti ≫ Te (for magnetospheric applications), which makes the ratio de/ρe ≫ 1 (for
βi constant!) due to the relations in Appendix A.3.1. This reduces the importance of the
pressure inertia term that should dominate on length scales ρe.

4.2.5 Anomalous dissipation effects

So far, all the previously mentioned mechanism for breaking the frozen in condition
were derived in the framework of the collisionless Vlasov theory or MHD with constant
scalar resistivity η. But it is also possible to take into account electromagnetic fluctuations
over the mean fields in all the terms in the Vlasov equation. For example,

~E = 〈~E〉+ δ~E (4.26)

where terms in brackets indicate an ensemble average and δ the fluctuations (with short
time and spatial scales) with respect to the mean value 〈~E〉 (varying over long time and
spatial scales). It is possible to show that the Vlasov equation Eq. (2.19) for the mean
distribution function 〈 f 〉 has an non-zero right hand side4 , that can be interpreted as a
form of collisions (Yoon and Lui 2006):

[
∂

∂t
+ ~v ·

∂

∂~x
+

qα

mα

(
〈 ~E〉+ ~v × 〈~B〉

)
·
∂

∂~v

]
〈 fα〉 = −

qα

mα

〈(
〈 ~E〉 +~v × 〈~B〉

)
·
∂δ fα

∂~v

〉
(4.27)

The remaining Maxwell equations have the same standard form, but expressed in terms
of the ensemble averaged quantities. It is also possible (see Yoon and Lui 2006) to obtain

4 Note that this separation of scales introduced by the mean and fluctuating quantities in the electro-
magnetic fields is not unique, implying that the collision term in Eq. (2.19) do vary for different choices,
affecting the macroscopic description. See also Schindler (2007, p. 32).
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analogous equations for the fluctuating distribution function 〈 f 〉 and Maxwell equations
via a quasilinear analysis (neglecting second order terms). By taking the momenta of the
previous equations, one can recover the usual resistive MHD equations for the ensemble
average quantities. In this case, the resistive or collisional terms in the momentum and
energy equations arise as result of a transfer of momentum and energy between a self-
generated wave field (represented by the fluctuating fields). The waves can be generated
by many different micro-instabilities. Finally, the net effect is seen macroscopically as an
effective drag on the plasma particles, a kind of “anomalous” resistivity (in the sense of
not based in collisions like the MHD resistivity). This can be better seen by combining the
ensemble averaged two-fluid equations in a generalized one-fluid Ohm’s law Eq. (2.41)
for the ensemble averaged quantities:

〈Ei〉+ εi jk〈V j〉〈Bk〉 = ηi j J j︸︷︷︸
anomalous

+
1

e〈n〉
ǫi jk〈δJe, jδBk〉 −

1
e〈n〉

∂〈Pe〉
∂xi

− me

e2〈n〉
d〈Ji〉

dt
(4.28)

where correlations higher than second order has been neglected. The additional “anoma-
lous” resistive term5 can be written as (Yoon and Lui 2006):

Ei,anomalous := −ηi jJ j (4.29)

= − 1
ne

∫
dv3

(
〈δEiδ fe〉 + 〈εi jk v jδ feδBk〉

)
(4.30)

= − 1
〈n〉

(
〈δneδEi〉+ 〈εi jkδ(neV j)δBk〉

)
(4.31)

Note that the resistivity is now a tensor instead of a scalar ηi j: the electric field does
not have to be parallel to the current. Thus, this formalism can incorporate the effects
of micro-turbulence in macroscopic MHD equations by means of “anomalous” transport
coefficients, from which we have given only the example of anomalous resistivity. But
in order to calculate theoretically the right hand side of Eq. (4.29), it is necessary to
determine the saturation levels of the micro-instabilities driving the fluctuations. The most
important ones are current aligned streaming instabilities such as Buneman (along ẑ), and
also cross-field instabilities such as MTSI. For further details, see the early review about
electrostatic fluctuations Davidson and Krall (1977), the textbooks Treumann (2001, Sec.
12.1), Biskamp (2000, Sec. 7.1.4), the articles Treumann (2001), Büchner and Elkina
(2006), Yoon and Lui (2006), the recent review Treumann and Baumjohann (2013b) and
all the references therein.

4.3 Influence of guide field on Hall-MHD reconnection

As we discussed in Chapter 4, the classical picture of 2D magnetic reconnection in-
volves antiparallel magnetic fields in, e.g., a Harris equilibrium (see Sec. 3.2.1) , in such
a way that the direction of the total ~B reverses in 180◦. However, it is often the case that

5 It is interesting to mention that the contribution of this anomalous term to the balance of terms in the
Ohm’s has been measured applying explicitly this expression to observations of magnetic reconnection in
the Earth’s magnetotail by Lui et al. (2007).
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an out-of-plane magnetic field is present (and this does not alter the Harris equilibrium).
This produces two main effects in the magnetic field configuration: 1) the center of the
CS become magnetized: it is not a neutral line anymore and 2) the rotation or shear of the
total ~B across the CS is by an angle θ smaller than 180◦ (the larger the bg, the smaller θ). A
specific example of the magnitude of this angle for a force free case is given in Eq. (3.44).
Only one component of the magnetic field reverses sign at the center, and that is why
guide field reconnection is sometimes called “component reconnection” (Lapenta et al.
2010).

There are many unique features consequences of the previous two effects. The first one
is closely related with 1) and the build-up phase of magnetic reconnection. The tearing
instability, the spontaneous instability leading to magnetic reconnection to be discussed
extensively in Sec. 5.1, is severely quenched if bg is strong enough. That is because, at
the kinetic level, it relies on resonant wave-particle interactions depending on the particle
orbits close to the unmagnetized center of the CS (in an antiparallel configuration). These
orbits are very sensitive to any perturbation, such as a guide field that can magnetize these
particles, destroying the resonant condition driving the tearing mode. The analytical the-
ory and mechanism of the tearing instability in this case are less clear theoretically, rely-
ing mostly in numerical solutions of the linearized dispersion relations (Karimabadi et al.
2005). For details, see discussion in Sec. 5.1.3.

At a more macro-level, the effect 2) of a guide field on the fully-developed or steady
state magnetic reconnection (the second phase) can be analyzed with a two-fluid approach
in terms of the symmetries of the system, based on the work started by Kleva et al. (1995)
and then developed by Rogers et al. (2001). This is related with the properties of disper-
sive waves that the system allows, affecting the reconnection rates on dependence on the
corresponding parameter regime. This is going to be discussed next.

4.3.1 Effects on the symmetries of steady-state magnetic reconnec-

tion

For clarity in the terminology that will be used in the rest of this work, we will de-
fine the parity of all relevant quantities with respect to the y axis along the current sheet.
This means that a quantity with even/odd symmetry (or symmetric/antisymmetric) will
keep/reverse sign under the transformation of coordinates (x − Lc) → −(x − Lc), where
Lc is the location of the left or right CS. This is valid for regions around the separatrices,
away from both X and O points.

It has been known since some time ago that the fluctuations in the plasma pressure
generated by magnetic reconnection are symmetric in absence of guide field (Rogers et al.
2003). This is the characteristic quadrupolar signature of the out-of-plane magnetic field
Bz in an antiparallel configuration (see discussion of Eq. (4.6)). This comes from the
intrinsic symmetry in the 2D solutions of the two fluid equations (invariance under the
transformation x → −x and y → −y). The presence of a finite guide field breaks these
symmetries. But the symmetries of some quantities (all except density n, thermal pressure
Pth and out-of-plane magnetic field Bz) reappear again in the strong guide field regime

Bg ≫ B∞y (Rogers et al. 2003) , according to the predictions of reduced MHD models
(Kleva et al. 1995). These models predicts that the density n and the total thermal pressure
Pth should have odd symmetry in this regime, due to a compression of electrons along
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4.3 Influence of guide field on Hall-MHD reconnection

the magnetic field lines on the reconnection plane ( ~B
Bg
· ∇Ve,z ≈ ∇‖Ve,‖). This generates

parallel electron pressure gradients ∇‖ne via the 1-fluid generalized Ohm’s law Eq. (2.41)
neglecting the inertia and Hall terms (so, in between the two and 1 fluid model) in the
isothermal limit:

E‖ = ηJ‖ −
1
en

dPe

∂x‖
= ηJ‖ −

kBTe

en
∇‖ne (4.32)

where we have written the non ideal parallel component of the electric field as E‖ (i.e.: in
the framework of reference of the moving fluid (~V × ~B)‖). This E‖ allows the decoupling
of ion/electrons at the length scale ρs (defined in Eq. (4.7)) when this length scale is larger
than the resistive one, producing fast magnetic reconnection by breaking the frozen in
condition Eq. (2.52). Note that this is mechanism is different from the standard picture
of Hall-driven reconnection Sec. 4.2.1 (due to the Hall term ~J × ~B) or the pressure-term
driven reconnection Sec. 4.2.3 (due to the non-gyrotropy of the pressure tensor Pe).

The previous process can be understood in physical terms as follows (see Kleva et al.
1995, Ricci et al. 2004, for further details). By assuming quasineutrality, the compression
of electrons has to be equal to the ion one ∇‖Ve,‖ = ∇‖Vi,‖. Then, the main contribution to
the gradients in Vi has to come from polarization drifts ~Vp = (1/(BΩci))d ~E/dt, since the
ion E ×B drift do not allow variations in this simplified model and no initial gradients are
assumed (that may contribute to a possible diamagnetic drift. Note also that the electron
polarization drift is negligible in comparison to the ion one). The polarization drift makes
∇‖ne change of direction across the CS close to the X point, because the rotation of the
asymptotic magnetic field along that direction. This results in a quadrupolar structure of
ne and so in the total thermal pressure.

The previous model is valid under the assumption of small fluctuations on the order
O(Vi,x/VA)2, i.e.: the ion inflow speed into the diffusion region should be much smaller
than the Alfvén speed, or equivalently, the opening angle of the separatrices should be
small. It is also required that the plasma beta calculated with respect to the asymptotic
magnetic field be βy = 2µ0n0kBTi/B∞y & 1 (although there are recent opposite evidence
that this is not necessary, such as Hosseinpour and Mohammadi (2013). See more details
at the end of this section). Thus, the magnitude of the pressure fluctuations under this
ordering is given by (see Rogers et al. 2003, Eq. 17):

δPth

Pth,0
∼ di

lx

1
bg

(4.33)

where P th,0 = Pth(t = 0) = 2n0kBTi is the total initial thermal pressure (with contributions
of both electrons and ions) and lx is the typical length scale of variation of these quantities
across the current sheet, away from the X points, with an order of magnitude lx/di ∼√
βi/2. The fluctuations are defined as δPth = Pth(t) − 2n0kBTi . Therefore, Eq. (4.33)

predicts that the fluctuations in thermal pressure goes down with increasing guide field, if
this is strong enough.

It is also possible to get a relation analogous to Eq. (4.33) for the magnetic pres-
sure. Assuming that the pressure equilibrium condition (in the general anisotropic case
Eq. (2.57), with the right hand side equal to zero) should hold even in the non-linear stage
of magnetic reconnection (this assumption is valid under the previously mentioned order-
ing), we have in the strong guide field limit the following condition for the fluctuating
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quantities

δP th +
Bg

2µ0
δBz +

B2
∞y

2µ0
= constant (4.34)

with Pth,⊥ := nekBTe,⊥ + nikBTi ,⊥ (note that it is required the perpendicular component of
the thermal pressure). From Eq. (4.34) it follows that δPth will necessarily have antisym-
metric or odd parity: a quadrupolar structure, in agreement with the argument following
Eq. (4.32). All the other terms should be balanced separately. Following Rogers et al.
(2003), the dominance of regimes with different parity of δBz is given by the ratio of both
terms:

δBodd
z

δBeven
z

∼
βy

2
di

lx

B∞y

Bz

∼
√
βy

2
ρs,e

lx

(4.35)

where ρs,e =
√

kbTe/mi/Ωci =
√
β/2di is the ion gyroradius calculated with the elec-

tron temperature. Note that ρs is the typical length scale of kinetic Alfvén waves (see
Sec. 4.2.2), signatures of guide field reconnection. Eq. (4.35) means that the specific
symmetry of δBz will depend on βy. In the low beta case βy ≫ 1, and thus δBz will be
predominantly antisymmetric, being given by the following estimation:

δBz

Bg

∼ − δPth

B2
g/µ0

∼ di

lx

βi

bg

(4.36)

Then, similar to δPth, δBz also scales linearly with the guide field, assuming βi constant.
What it is more important is the prediction about the quadrupolar structure of the δBz

in the limit of strong guide field. And due to the pressure equilibrium condition, δPth

will also have a quadrupolar structure but with opposite polarity. We have to remark that
this mechanism is only possible in the strong guide field regime, being different from

the classical quadrupolar structure of δBz due to the Hall term in an antiparallel mag-
netic reconnection configuration (recall discussion of Eq. (4.6)). The signatures of these
predictions were found first in two fluid (Rogers et al. 2003) and later also in PIC code
simulations (Ricci et al. 2004, Pritchett 2005a).

It is important to mention that recently, it has been shown by Hosseinpour and Mohammadi
(2013) that the assumption βy ≫ 1 is not necessary for the appearance of an odd-parity
magnetic field structure. This can happen even in the opposite limit, providing that exists
a shear flow parallel to the reconnected magnetic field. This study came up with that
conclusion by taking into account the electron inertia in the dispersion relation for the
collisionless tearing mode.

4.3.2 Consequence: Cavities and electron acceleration

Several simulation studies have confirmed the previous theoretical prediction: in pres-
ence of a guide field, the diffusion region becomes asymmetric or tilted. Basically, this
is due to the fact that the ~E × ~B drifts change the symmetric pattern of electrons and ions
flow motion compared with the antiparallel case (Ricci et al. 2004), where ~B only have in-
plane components. This results in the aforementioned quadrupolar structure, manifested
in the region close to the X points as a pair of separatrices with alternate enhanced and
depleted density (see Lapenta et al. 2010, and references therein). The dynamics in the
low density pair of separatrices is quite interesting. Indeed, these regions also known as
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4.3 Influence of guide field on Hall-MHD reconnection

cavities, are sites of electron acceleration due to the generation of strong parallel electric
field E‖, make them prone to streaming instabilities such as Buneman when their speed
exceed the vth,e . In the non-linear stage, they become electron holes and the electrons can
be accelerated efficiently until relativistic speeds (Pritchett 2006). Note that his electron
acceleration mechanism is only possible with a guide field, and specially efficient in 3D
reconnection, a fact that it has been reported since Drake et al. (2003). This is because the
guide field points in the same direction as the reconnected electric field. Although over-
all magnetic reconnection is globally less efficient with guide field (see below), it opens
the opportunities for this kind of very energetic process leading to strong heating, turbu-
lence and even radiation, although in very localized regions (Treumann and Baumjohann
2013b).

4.3.3 Effects on reconnection rate

The arguments related with the presence of dispersive waves by Rogers et al. (2001)
(see Sec. 4.2.2) can also explain a reduction in reconnection rates with increasing guide
field. For example, a system initially without guide field (antiparallel configuration) and
low β < 1 will allow only whistler waves since µk ≪ 1 and βk/2 < 1. The dispersive
properties of whistler waves in the outflows allow fast magnetic reconnection. As the
guide field increases while βk is kept constant, the system increases µk towards values
higher than 1. This suppress whistler waves and so the mechanism that allows the opening
of the reconnection layers. Therefore, reconnection turns out to be slow. Similarly, let
a system with initially high plasma β > 1 but no guide field. This will support both
KAW and whistler, allowing even higher reconnection rates than in the previous case.
As the guide field increases whistler can be suppressed in cases with µk > 1, but the
mechanism that support KAWs will still be active. As a result, a reduction in reconnection
rates will also be seen but their values will still be significant (“fast”), in the sense of
ψ̇/ψ̇N . 0.1). Finally, in a strongly magnetized regime where only KAWs are allowed, an
increase in the guide field bg (with the associated increase in µk) will reduce the electron
gyroradius on the guide field ρe,bg. Since this is the typical length scale of KAWs and
proportional to their phase speed, the mechanism allowing the opening of the separatrices
and fast magnetic reconnection will be reduced, resulting in a decrease of reconnection
rates for higher bg (see Sec. 4.2.2). This was confirmed by Rogers et al. (2001) via two-
fluid simulations.

The previous explanation can also be understood in more basic physical terms (Yamada et al.
2010) by considering that the inflows from the X point become slower (and so dψ/dt de-
creases according to Eq. (4.3)) because of the additional magnetic pressure exerted by
the guide field (equivalent to the gradual suppression of whistler waves). In addition, a
strong guide field make the plasma more incompressible, confining them in a smaller re-
gion than in the antiparallel case (equivalent to the appearance of KAWs dynamics at ρe

lengths scales).
This mechanism for explaining the reduction in reconnection rate was already re-

ported by Biskamp et al. (1997) with two fluid simulations. However, they incorrectly
predicted a strong drop in reconnection rates (practically suppression) in the strong guide
field regime, switching to the “slow” regime. That was because they neglected the con-
tribution of KAWs in sustaining reconnection rates, by not allowing parallel compression
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of the electron pressure ∇‖Pe. The reduction in reconnection rates was confirmed on that
same year by Horiuchi and Sato (1997) via 2D PIC simulations of driven reconnection,
which took into account that mechanism, although without explicit mention.

After the discovery of the KAWs allowing fast magnetic reconnection by Rogers et al.
(2001), several 2D PIC simulations studies confirmed the reduction, but not suppression,
of reconnection rates in presence of a guide field. This was already reported by Pritchett
(2001) in the PIC version of the GEM challenge (Birn et al. 2001), including the initial per-
turbation. They showed that a slight reduction ofΨ for guide fields up to bg = 2, conclud-
ing that for bg < 1 the antiparallel reconnection rate is very weakly affected. This almost
negligible reduction in reconnection rates for the low guide field regime bg < 1 was also
confirmed later by a 2D PIC simulation evolving only from initial noise (Karimabadi et al.
2005).

Ricci et al. (2004) carried out simulations (with both implicit and explicit codes) of
Harris CS with initial perturbation (similar to the GEM challenge ), finding this reduction
for several guide field cases ranging from bg = 0 → 5. The onset of reconnection was
similar for a similar time in all the cases, however.

Pritchett and Coroniti (2004) also found in 3D PIC simulation a monotonous decrease
in reconnection rates with guide field up to bg = 5, but different from the previous study,
they noticed a delay in the reconnection onset for higher bg. They carried out these simu-
lation in the “whistler only regime” βk/2≪ 1 and µk ≪ 1. A recent study confirming the
same finding is Horiuchi et al. (2014).
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background

Because we will present only 2D simulation results (in the reconnection plane x-y),
we review only the CS instabilities that can grow in this reduced geometry (ruling out
instabilities propagating along the out-of-plane current direction ẑ).

5.1 Tearing mode instability of CS

The most fundamental instability of CS is the tearing instability. As we already men-
tioned in Chapter 4, this instability characterizes the build-up phase of magnetic reconnec-
tion. It slowly changes the magnetic field topology by forming magnetic islands, growing
initially from perturbations like noise (thermal in real environments or numerical in sim-
ulations). It is called “tearing” because its growth leads to “tear” the CS. The tearing
growth prepares the global topology for the fast release of energy in magnetic reconnec-
tion. As pointed out by Schindler (2007): “The situation is similar to phase transitions
in equilibrium thermodynamics, where quasi-static changes drive the system toward the
point at which the phase transition takes places spontaneously”

It is important to mention that although the field topology in the X points of these mag-
netic islands may resemble steady state magnetic reconnection (like in the Sweet-Parker
model), the tearing instability is essentially a different process (see discussion in Schindler
2007, Sec. 11.2.10). Steady state magnetic reconnection is always forced: it is necessary
to have a finite electric field at the boundaries to drive it (e.g.: the conductive electric field
~V × ~B due to the inflow). On the other hand, tearing is a spontaneous instability: it does
not require such electric fields: all the components of ~E should be zero at the boundaries.

However, a theory that can predict the observed timescales of this process in space
plasmas is difficult. This is because, as mentioned by Cassak and Shay (2011), the tearing
instability is strongly dependent on the specific initial conditions and parameters of the
system, which are mostly unknown. These can be the initial perturbation, resistivity, the
presence of normal or guide magnetic fields, the initial thickness of the current sheet,
the size of the system, the boundary conditions, the specific kinetic equilibrium, pressure
anisotropies (and even numerical parameters such as the mass ratio in kinetic simulations),
etc. Indeed, as written by Priest and Forbes (2000): “The tearing-mode instability appears
to be a rather delicate creature, which can easily be switched by other effects (such as a
flow, a normal magnetic field component, or a pressure anisotropy).... ”. This has lead to
a very rich field of study since it was first proposed in the 60s by Furth et al. (1963).
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5.1.1 Physical mechanism and fluid approach

Let us discuss now the physical mechanism behind the development of the tearing
instability in CS, first with a fluid approach. The magnetic field configurations given by
the Harris Eq. (3.18) or force free solutions Eq. (3.25) or Eq. (3.42) are stable in the ideal
MHD limit (due to the frozen-in condition or Alfvén theorem. See Sec. 2.5). In colli-
sion dominated plasmas, this configuration can become unstable to small perturbations
by adding finite resistivity (Furth et al. 1963) in the form of electron collisions. These
perturbations will propagate along the antiparallel magnetic field By(x) with a wavevector
ky. In presence of an out-of-plane magnetic guide field, the antiparallel magnetic con-
figuration Eq. (3.18) will be sheared, and the tearing perturbations will propagate in the
direction normal to the equilibrium magnetic field (Priest and Forbes 2000):

F := ~k · ~B = 0 (5.1)

the so called resonant layer. The instability condition is that the length scale gradient
of the current Jz has to be smaller that the typical length scale of the perturbations k−1

(Zweibel and Yamada 2009). This requirement is necessary to overcome the stabilizing
effect of the magnetic tension. The development of tearing mode driven by the current
shear reduces the stored magnetic energy transforming it into ion bulk motion and overall
heating. This growth of tearing mode is stopped when the magnetic islands width get
larger than the resistive layer, due to the restoring Lorentz force ~J × ~B.

In order to carry out the analytical analysis of tearing mode, Furth et al. (1963) divided
the geometry of the problem in two domains. The first correspond to the (internal) region
inside of the resistive layer, where it is necessary to solve the linearized resistive MHD
equations, while outside (external region) the solution can be obtained by using the ideal
(non-resistive) MHD approach. This is very similar to the boundary layer method used in
hydrodynamics1. One can solve the equations independently in each region. If ψ̃1(x) is
the (Fourier transform of) perturbed vector potential in 2D geometry satisfying ~B = ∇ψ
for the in-plane components of the magnetic field (in our notation, Az = ψ), the equation
to be solved is of a Grad-Shrafanov type:

d2ψ̃1

dx2
− k2ψ̃1 = −µ0 J̃z1 (5.2)

where k = |kyŷ+ kz ẑ|. By assuming a simplified form of the perturbed current J̃1 expressed
in terms of ψ̃1, it is possible to express to get a second order differential equation in ψ̃1 in
terms of F given by Eq. (5.1)

d2ψ̃e,1

dx2
−

[
k2 +

1
F

d2F

dx2

]
ψ̃e,1 = 0 (5.3)

Specializing to the Harris equilibria where F = ky B∞ tanh(x), one can find the following
equation in the external region:

d2ψ̃e,1

dx2 −
[
k

2
y −

2

cosh2(x)

]
ψ̃e,1 = 0 (5.4)

1However, in resistive MHD and different from the kinetic approach, the width of the internal region can
only be known a posteriori, depending on the solution of the problem, turning out to be ǫ ∼ γ1/4/(k1/2S 1/4)
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Note that a constant out-of-plane guide field in the Harris equilibrium will not change
this equation (but it will affect the internal solution). This has the form of a Schrödinger
equation in a Teller potential (Galeev and Sudan 1984). Its (eigenfunction) solution is
known from quantum mechanics, and after applying the appropriate boundary conditions
(e.g.: tearing solutions are always of even parity and ψ̃e,1(∞) = 0), it can be expressed in
the more general form of a gradient of the vector potential evaluated at the center of the
CS x = 0 (jump across the resistive layer), called delta stability parameter

∆′ :=
[
ψ′e(x)
ψe(x)

]0+

0−
=

1

ψ̃e,1(x = 0)
lim
ǫ→0



dψ̃e,1

dx
(ǫ) − dψ̃e,1

dx
(−ǫ)


 (5.5)

with the index e indicates the external solution and
′

the spatial derivative d/dx. For this

Harris geometry, the solution of Eq. (5.4) can be expressed ∆′ =
1−k2

y

ky
. This Delta ∆′

stability parameter represents the driver of tearing perturbations, a measure of the free
energy stored in the magnetic field configuration (independent of the plasma model, valid
even with fully-kinetic approaches), since is proportional to the gradient of ~B, and thus
proportional to the current J via the Ampère’s law. Because of that, note that small/large
∆′ regime refers to large/small ky. In the framework of MHD, Furth et al. (1963) proved
that tearing is unstable if and only if ∆′ > 0. This implies that only modes with ky < 1 will
be tearing unstable. Note that all these expressions are in units of the halfwidth x → x/L,
a convenient choice since (ideal) MHD is scale-free.

For the internal solution ψi(x), it is necessary to use the resistive MHD model and thus
the equation to solve is much more involved than Eq. (5.4). In order to simplify the prob-
lem, the usual method is recurring to the so called constant ψ approximation: to consider
ψ constant throughout the internal region, equivalent to have a perturbed current density
Jz constant (valid assuming the internal region width much smaller than the resistive skin
depth

√
η/γ, and therefore inappropriate for thin CS or short-wavelengths).

Now, in order to get a dispersion relation γ(k), the usual method 2 is matching the loga-
rithmic derivatives of the external solution Eq. (5.5) with the internal solution (not shown
here) in the limit of a resistive layer of infinite width (analogous to the Born approxima-
tion in quantum mechanics considering the constant ψ approximation), thus assuring a
smooth transition across the boundary, i.e.:

∆′ =

[
ψ′e(x)
ψe(x)

]0+

0−
= lim

x→∞

ψ′i(x)

ψi(x)
(5.6)

By means of this method, the results obtained by Furth et al. (1963) showed that the
growth rate of the most unstable mode is ∼ τAS −3/5, while the aspect ratio between the
width of the resistive layer compared and the total length of the system is ∼ S −2/5. Both
results are similar to the obtained for steady state Sweet-Parker reconnection: ∼ τAS−1/2

for both parameters. It is also interesting to mention the dependence of the growth rates
on the wavevector: γ ∝ (1 − k2)4/5

2First applied to this problem by Furth et al. (1963). See further details in the textbooks Schindler (2007,
Sec 10.3) or Priest and Forbes (2000, Sec. 6.2).
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5.1.2 Kinetic approach

The theory of resistive tearing mode continued being developed after Furth et al. (1963),
extending these results by taking into account a host of different effects and geometries.
However, most of the space plasmas are collisionless, as evidenced by their large mag-
netic Reynolds numbers (see Table 1.1), in such a way that any theory based in an MHD
approach turns out to be invalid for their application to these environments. In this con-
text, the first study of tearing mode using a collisionless kinetic approach was carried
out by Coppi et al. (1966), as a proposed mechanism for magnetic reconnection in the
Earth’s magnetotail during substorms. They proved that this instability is due to a cou-
pling between a negative energy perturbation (associated with the tearing of the CS) and
the electrons energized by Landau resonance in a small region close to the neutral point
in a CS (the aforementioned resonant layer ~k · ~B = 0), with typical size of di . As ex-
plained by Li et al. (2003), in this diffusive region magnetic perturbations induce electric
fields. They produce, in turn, induced localized currents J in a region close enough to the
resonant layer |x| < ∆NS , because only there the electrons have Doppler frequency shift
smaller than the growth rate γ (Landau damping or Cherenkov interaction). The internal
region,

∆N S =

√
2

vth,eme

e

dx

dBy

∣∣∣∣∣∣
0

=
√

2ρeL (5.7)

is usually called electron singular layer thickness, where most of the electron perform
“exotic” orbits (more precisely: “meandering” across the center of the CS). The last
equality is valid assuming a Harris equilibrium where the magnetic field length scale
is dx

dBy

∣∣∣∣
0
= L/B∞y

Later, other works were completing the kinetic theory of tearing mode (Schindler
1974, Drake and Lee 1977b, Galeev 1979, Lembege and Pellat 1982), especially dealing
with the stabilizing effect of a normal magnetic field to the CS, important for explaining
the onset of substorms in the Earth’s magnetotail. The idea is that tearing requires a
normal (in-plane) magnetic field Bx to be driven unstable, but it cannot be too high in order
to not be stabilized, in such a way that will exist if and only if the following condition is
satisfied (Galeev 1979, Treumann and Baumjohann 2013b):

(kL)3

(1 − (kL)2)(1 + Ti/Te )
<

Bx

B∞y

<
(1 − (kL)2)(1 + Ti/Te)√

πTi/Te

(
ρi

L

)3/2

(5.8)

assuming (kL)2 < L
ρi
. 1. The lower bound is due to Landau damping: the growth rates

(as given, e.g., in Eq. (5.13)) have to overcome the ion gyration on this normal magnetic
field γ > ΩciBx/B∞y, tending to stabilize the tearing mode. The upper bound is due to the
electron magnetization: tearing islands cannot grow beyond the halfwidth kL ∼ 1 because
the electrons become gyrotropic. This stabilization issue if of central importance, because
at the beginning, Coppi et al. (1966) proposed that only electrons are the resonant particles
driving the tearing mode. Later, Schindler (1974) realized the upper bound in Eq. (5.8),
concluding that since the electrons can easily become magnetized suppressing tearing, the
ions should be the resonant particles driving the instability, with electrons acting simply
as a background. But Galeev (1979) found that both species play an essential role: if one
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of them is stabilized by the conditions in Eq. (5.8), tearing mode can still exist by the
resonance effects of the another specie. The controversy remained, however, due to the
difficulty of treating analytically the response of both species in a dispersion relation.

All these works used the same matching method of inner and external solutions as
the MHD approach given by Eq. (5.5), but with the internal (kinetic) solution obtained
by solving the linearized Vlasov equation inside of ∆NS (Drake and Lee 1977b, see). The
solution of Vlasov equation requires the integration of the unperturbed orbits of the par-
ticles in the equilibrium magnetic field, the so called “characteristics method” (see de-
tails in the discussion of Eq. (2.19)). The first approximation was just using straight
lines (Dobrowolny 1968). But later it was realized than this approximation is too simplis-
tic to describe the complicated and chaotic orbits of the particles around the center of the
CS (Büchner 1986, Büchner and Zelenyi 1991): some of the particles cross the center of
the CS, other do not, besides of the existence of gyrotropic and meandering populations.

5.1.2.1 Linear instability

Now, let us talk about the main results obtained by these studies regarding the pre-
dicted growth rates of the collisionless tearing mode (details about these calculations can
be found, e.g, in Schindler 2007, Sec. 10.4). An important assumption for the analytical
solutions is choosing the mass ratio mi = me, since the difference in the electron/ion re-
sponse disappears, with the corresponding electrostatic effects due to charge separation
neglected. This is equivalent to consider only one resonant specie (e.g. the ions) while
the other (electrons) are added just as neutralizing background. The solution of the ki-
netic equations in the external region x > ∆NS is the same as in the resistive MHD case
by Furth et al. (1963), being given (in the Harris case) by Eq. (5.5) replacing ky → kyL

to translate from the dimensionless units of MHD (and adding an extra factor 1/L in the
right hand side to compensate for the units of d/dx. Explicitly,

∆′ = 2
1 − (kyL)2

ky L2
(5.9)

Note that in this region the solution is simple because all particles have gyrotropic orbits,
and thus the form of J̃z1 in Eq. (5.2) is the same as in MHD.

But for the internal region x < ∆NS , the idea is to write the distribution function
as a function of the vector potential f = f (A1z) and for that it is necessary an exact
kinetic Vlasov equilibrium, like the Harris one in the form Eq. (3.17). Then, one can get
the perturbed current by integrating f (A1z) via Eq. (2.21) to get J̃1z . Thus it is possible
to obtain a second order differential equation for the eigenfunctions Ã1z, with solutions
that can be found by assuming appropriate boundary conditions and the same constant ψ
approximation as in MHD. Finally, one matches with the previous external solution ∆′

via Eq. (5.6). By neglecting diamagnetic drifts (equivalent to thick CS ∆NS ≪ ρi, L) and
assuming kL . 1, this procedure followed by Laval et al. (1966), Drake and Lee (1977b),
Quest and Coroniti (1981a) and Galeev and Sudan (1984) gives growth rates:

γ

kyvth,e

=
1

2
√
π

∆′

∆NS

d2
e (5.10)
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This expression is geometrically general, in the sense that it is not only for Harris equi-
libria, but it can also be applied to any other geometry by knowing the specific form of
the external solution encoded in ∆′, besides of the electron singular layer thickness ∆NS .
It is also possible to derive a expression identical except by numerical factors just by a
heuristic argument highlighting the physical mechanism of the tearing mode via Landau
resonance (see Drake and Lee 1977b, for further details). Specializing to the Harris case
with the external solution ∆′ given by Eq. (5.9), the full growth rates can be written in the
following normalized way (Karimabadi et al. 2005):

γ

Ωci

=

(
me

mi

)1/4 (
Te

Ti

)5/4 (
1+

Ti

Te

)
1 − (ky L)2

√
8

(ρi

L

)5/2
(5.11)

Note that this expression is not valid close to kL = 0 or kL = 1 (marginal stability) and
the maximum growth rate is reached at kL = 0.5. These properties are very similar to the
ones obtained with the resistive MHD solution by Furth et al. (1963). In this context it is
interesting to mention that the first fully-kinetic PIC simulations of collisionless tearing
mode trying to test the prediction Eq. (5.11) was carried out by Katanuma and Kamimura
(1980).

However, we would like to have a more accurate expression, valid also for thin CS, the
purpose of this thesis. In this context, Pritchett et al. (1991) found an equation for Ã1z in
the inner region x < ∆NS including diamagnetic drift effects on the particle orbits, being
thus suitable for thin CS (since they are related by Eq. (3.20) or Eq. (A.4)):

d2Ã1z

dx2
−

[
k2

y −
2 − 2γM(1+ 4ρ2

i /L2)

L2 cosh2(x/L)

]
Ã1z = 0 (5.12)

with M =
√
πL2/(4ρ2

i vth,eky) and assuming Ti = Te . Analytical expressions can be found
in the limit of thick CS, with ∆NS /L ≪ 1 (equivalent to L/ρi ≫ 1). If one additionally
assumes γM ∼

√
L/∆NS , (kL)2 < 1, and the same constant ψ approximation as in MHD, it

is possible to perform an expansion in terms of
√
∆NS /L. Then, matching with the known

external solution via Eq. (5.6), it is possible to obtain (to a first order) the following
dispersion relation:

γ

Ωci

=

√
π

8


√

2ρi

L


5/2

(1 − (ky L)2). (5.13)

This expression is very similar to Eq. (5.11), except by some numerical factors. On the
other hand, for the more interesting case of thin CS ∆NS /L ≈ 1, a simple expansion in√
∆NS /L is not possible. But by making the change of variable ζ = tanh(x/L) in Eq. (5.12),

this expression becomes the Legendre equation, with known solutions. In this case, the
final result for the dispersion relation can be written as (Pritchett et al. 1991):

γ

Ωci

=
2
√

2√
π

(
ρi

L

)3 kyL(2 + kyL)(1 − kyL)

1 + 4
(
ρi

L

)2 (5.14)

Note that for ∆NS /L ≈ 1, the maximum growth rates given by this expression, as can be
expected, are much larger than for thicker CS Eq. (5.13). Also, the maximum growth
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5.1 Tearing mode instability of CS

rate is shifted towards values a little bit higher than these of thick CS: kL ≈ 0.55. Some
years after this expression was obtained, Brittnacher et al. (1995) extended the solution
of Eq. (5.12) for arbitrary thickness of the CS ∆NS /L, although in the following implicit
form:

∆N s

L
Z


γ

ky

√
2vth,i

 =
1√
π

(
di

L

)2 (2 + ky L)(1 − ky L)

1+ 4
(
ρi

L

)2 (5.15)

where Z is the plasma zeta function (Fried and Conte 1961):

Z(ξα) =
1
√
π

∞∫

−∞

exp(−x2)
x − ξα

dx, Im(ξα) > 0 (5.16)

with argument:

ξα =
ω

k
√

2vth,α

=
ωr + iγ

k
√

2vth,α

(5.17)

All the previous results so far were based on the assumption of mi = me, equivalent to
one resonant specie. When this assumption is lifted, the perturbations cannot be described
any longer by a single function Az

3. since it is also necessary to consider the electrostatic
perturbations φ. This also introduces additional complications, such as in-plane electric
fields due to charge separation. In this case one has to rely on numerical solutions of the
linearized Vlasov equation to find the particle orbits, besides of solving the eigenfunction
problem given by the integro-differential Maxwell equations Eq. (5.2) for Az1 (same as in
the limit mi = me) and the Poisson equation for φ and ρc (electric charge). By means of
a Hermite expansion of the eigenfunctions, Daughton (1999) (see also Daughton 2003)
implemented a solver of this kind, finding that for realistic mass ratios mi = 1836me,
the maximum growth rates predicted by Eq. (5.15) are reduced by a factor of 1.5 to 2.
This agrees with earlier studies about the stabilizing electrostatic effects on the tearing
mode in an antiparallel configuration (Hoshino 1987). It is interesting to mention that
the previous study also found that for strong guide fields, the electrostatic effects enhance
tearing mode growth rates. Daughton (1999) also showed that tearing mode growth rates
are practically unchanged when in a Harris CS is superimposed a stationary background
population. Silin et al. (2002) also investigated the tearing mode, among other CS instabil-
ities, for mi , me including both electromagnetic and electrostatic perturbations, although
in the large wavelength limit and assuming straight-line particle orbits, confirming the
finding of Daughton (1999).

5.1.2.2 Non-linear evolution: coalescence, size and saturation of tearing islands

The coalescence of neighboring magnetic tearing islands can be understood intuitively
due to the attraction of parallel currents in their O points. However, a theoretical descrip-
tion is much more involved, because it is part of the non-linear development of tearing

3Note that this Az component of the vector potential is the only one relevant for the tearing mode insta-
bility analysis. It has been shown, by means of kinetic simulations by Daughton (1999) that the in-plane
components Ax and Ay are usually negligible, even in 3D geometries.
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mode, depending on many other factors (see further details in Priest and Forbes (2000,
Sec. 6.5.3) for the MHD case and Karimabadi et al. (2005) for a discussion about this
issue in kinetic PIC simulations). Something similar happens with their saturation level:
even much before of reaching this stage, tearing mode growth rates are severely affected
by a host of non-linear effects (see Biskamp 2000, Sec. 4.1.2). Both processes are closely
related with the growth and limit size of these magnetic islands when they reach the linear
marginal stability condition kL ∼ 1 (see, e.g., Eq. (5.13)). Nevertheless, some simple argu-
ments allows to understand the width of these magnetic islands and their relation with the
reconnected flux. Indeed, following Karimabadi (2005) (based on Drake and Lee (1977a).
See also the textbook Bellan (2006, Sec. 12.6)), during the linear stage where the islands
are small enough, one can assume a sinusoidal perturbation due to the tearing mode in the
normal direction to the asymptotic magnetic field: δBx exp(−i(ωt + kyy)), while the vec-
tor potential due to a Harris reversal magnetic field can be approximated by a quadratic
dependence on x/L if the islands are small enough, in such a way that:

Az(x, y) = Az,harris(x) + δAz(y) = −
B∞y

2L
x2 − δBx

ky

cos(kyy) (5.18)

Figure 5.1: Scheme of tearing islands with the vector potential Eq. (5.18). Note that both

X and O points satisfy δBx = By = 0, but in the X points the perturbed potential δAz = 0
is a local minimum, while in the O points is a local maximum.

With this simplified model, the X point will be located at the origin (x, y) = (0, 0) and
thus Az(x) = −δBx/ky, while the nearest O point will be located at (x, y) = (0, kyπ) and
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5.1 Tearing mode instability of CS

thus Az(O) = δBx/ky. Then, the reconnected flux will be given by ψ = 2 δBx

ky
. Since in

2D the magnetic field lines will be given by Az = constant, we have the equation for the
magnetic field lines which pass through the X points:

2
kyL

δBx

B∞y

(1 − cos(kyy)) =
(

x

L

)2
(5.19)

Therefore, the halfwidth Ws (across x) of the magnetic islands is given by the distance
along x for which y = π/ky. Replacing in the previous equation, we get:

Ws

L
= 2

√
δBx/B∞y

kyL
=

√
2Ψ

B∞y L
(5.20)

Thus, during the course of tearing evolution, the island halfwidth will increase as the
square root of the normal magnetic field δBx or the reconnected flux ψ. Since the most
unstable tearing mode will have kyL ≈ 0.5, an island of this size will have a width

∣∣∣Ws

L

∣∣∣
max
=

2
√

2δBx/B∞y. For completeness (although straightforward from the definition) the height
of the tearing islands Hα (along y) will be given by the distance between neighboring X
points:

Hα

L
=

2π
kyL
=
λy

ky

(5.21)

For the most unstable tearing mode, an island of this size will have a height
∣∣∣ Hα

L

∣∣∣
max
=

4π ≈ 12.6. Note that the tearing islands will be much more elongated along y than x,
since δBx/B∞y ≪ 1. From this simple model we can find a physical explanation for the
electron singular layer width ∆Ns and the stabilization of tearing mode due to trapping of
electrons (as first proposed by Drake and Lee 1977a). Indeed, in order for an electron to
be trapped in closed orbits inside of the magnetic islands, we require that its gyroradius
on the perturbed normal magnetic field,

δρe =
mevth,e

eδBx

=
∆2

N s

2LδBx/B∞y

, (5.22)

has to be less than the half-height of the island δρe . Hα/2 = π/ky. Note that during
the tearing evolution, ρe decreases due to the increase of ψ and so δBx. Therefore, the
minimum island halfwidth required to keep the electrons trapped inside can be obtained
by using Eq. (5.20) and the previous requirement, turning out to be on the order of the
electron singular layer width (Karimabadi 2005):

|Ws|trapping

L
=

√
2
π
∆N s ∼ 1.13

√
ρe

L
(5.23)

Tearing islands larger than |Ws |trapping will contain mostly gyrotropic electrons, and thus
tearing mode will get suppressed: ∆N s represents the maximum allowed size. This elec-
tron trapping is the most known saturation mechanism for the tearing instability (see fur-
ther details in Drake and Lee (1977a) and in the textbook Biskamp (2000, Sec. 7.5.2)).
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On the other hand, Eq. (5.23) also allows to estimate, by combining with Eq. (5.20),
the maximum amount of reconnected flux before tearing gets saturated:

ψ

B∞ydi

=
1
2
∆2

N s

Ldi

=
2
π

ρe

di

=
2
π

vth,e

c

ωpe

Ωce

(5.24)

for Ti = Te . In a Harris CS, due to the constraint Eq. (A.7), the last equality becomes
0.5
√

me/mi . This also imposes a severe constraint in any simulation of tearing mode:
the initial numerical noise has to be lower than this quantity, a stringent requirement if
more realistic (higher) mass ratios are used. However, the evolution of reconnection can
proceed beyond this limit without too much trouble, as it has been demonstrated by means
of PIC simulations (Pritchett 2005a).

Another recent proposed saturation mechanism for the tearing instability is due to
temperature anisotropies. The non-linear evolution of the tearing mode leads to a parallel
(ky) heating of electrons, due to the Landau resonance (transfer of energy from the tearing
wave field to the particles). It can be shown than this effects lead to a maximum island
halfwidth of (Treumann and Baumjohann 2013b):

|Ws|anisotropy

L
∼ 3

ρe

L
(5.25)

It has been shown by Karimabadi (2005) that this process will dominate over electron
trapping for islands of size around ∆N s for most of the parameter range found in realis-
tic plasmas, allowing a larger saturation amplitude (compare with Eq. (5.23)). In general,
temperature anisotropy (due to preferential electron parallel heating) will be the dominant
saturation mechanism for thin CS and large mass ratios. They found that electron trapping
becomes important for saturation of tearing only when the temperature anisotropy is sup-
pressed. This can be caused, e.g., by excitation of Weibel instability producing turbulence
and the consequent pitch angle scattering isotropizing the distribution function.

5.1.3 Influence of a guide field

The presence of an out-of-plane magnetic guide field alters dramatically the particle or-
bits in a current sheet: they become gyrotropic. Consequently, the dispersion relation and
associated growth rates describing this instability will change accordingly (since they will
modify the particle response in the linearized Vlasov equation). This depends, however,
on the guide field strength Bg. The first studies about guide field tearing by Drake and Lee
(1977b), Quest and Coroniti (1981b) argued that if ρe based on Bg is smaller than ∆NS ,
the electrons inside of the singular layer will still be unmagnetized, with their orbits deter-
mined by B∞y like in the antiparallel case. Therefore, a thermal electron will be affected
significantly by the guide field when ρe,Bc

= mevth,e/(eBc) = ∆NS , with the critical guide
field Bc expressed as (Daughton 2005):

Bc

B∞y

=
1
√

2

(
ρi

L

)1/2
(
Te me

Timi

)1/4

(5.26)

This quantity, measuring how much the electron orbits will be modified by the guide field,
allows to identify different three guide field regimes and their respective tearing growth
rates dependence on Bg.

78



5.1 Tearing mode instability of CS

• Weak: Bg < Bc.

• Intermediate: Bc < Bg < 3Bc. The fastest growing modes will have a component
in the current direction kz: a drift-tearing mode (Daughton 2005). In the other two
limits (weak and strong), the fastest tearing mode always is in the reconnection
plane (kz = 0)

• Strong: Bg > 3Bc.

The “3” in the last relation is in order to magnetize practically all the electrons (since
Bc will magnetize v . vth,e, roughly 68% of the total electron population, while 3Bc

will magnetize v . 3vth,e, roughly 99.7%). The last expression for the growth rates also
indicates the stabilizing effect of a strong enough guide field. However, the dependence
is weak, and tearing instability can still exist for a large range of guide fields. For weak
guide fields, Daughton (2005) demonstrated via 2D PIC simulations that a change from
Bg = 0 to Bg = B∞y can reduce growth rates by a factor of 3.75.

In the strong guide field limit, Drake and Lee (1977b) derived an expression anal-
ogous to Eq. (5.10) for the strong guide field case, assuming additionally ∆GF ≫ ρe

(with ∆GF to be defined in Eq. (5.39)), equivalent to low beta plasmas βe ≪ ρe/L. Later,
Quest and Coroniti (1981b) lifted that assumption, allowing finite β plasmas βe ∼ 1 find-
ing the expression

γ

kyvth,e

=
1

2
√
π

∆′

ls
d2

e (5.27)

with ls the shear scale of the magnetic field:

ls =

(
1
Bz

dBy

dx

∣∣∣∣∣
0

)−1

(5.28)

For the Harris case, ls = LBg/B∞y, and thus:

γ

kyvth,e

=
1

2
√
π

∆′

L

B∞y

Bg

d2
e (5.29)

It is interesting to mention that the growth rates in antiparallel reconnection Eq. (5.10)
will become equal to these on the guide field Eq. (5.27) when ls = ∆N S , which for a Harris
equilibrium becomes

Bg

B∞
=

√
2ρe

L
. (5.30)

Eq. (5.29) can be specialized to the Harris case by using the external solution for ∆′ in
Eq. (5.9), being possible to write it in the form (Karimabadi et al. 2005):

γGF

Ωci

=

(
me

mi

)1/2 (
Te

Ti

)3/2 (
1 +

Ti

Te

)
1 − (kyL)2

√
π

B∞y

Bg

(ρi

L

)3
(5.31)

This inverse dependence on the growth rates of the tearing mode vs the guide field strength
is theoretically expected, as it has been shown in many previous simulation studies, such
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5 Instabilities in CS: Theoretical background

as Pritchett et al. (1991). Note that all the previous discussions and analytical formulas in
presence of a guide field have been about the electron tearing mode. Büchner et al. (1991)
showed that an ion tearing mode can become unstable for large values of Bg. Much
later, numerical solutions of the linearized Vlasov equation by Karimabadi et al. (2005)
have shown a slightly weaker dependence of the growth rates on the guide field than
the predicted by Eq. (5.31): γ ∝ (Bg/B∞y)−2/3. But even recently, the approximation
Eq. (5.31) has been used as an analytical benchmark for guide field tearing mode (see, e.g.
Lin et al. 2011, Wang et al. 2011).

5.1.3.1 Fluid approach in the low beta limit

A kinetic (Vlasov) approach is not the only way of obtaining tearing mode growth
rates for collisionless plasmas, where only electron inertia provides the mechanism for
the violation of frozen-in condition. Fluid models can also be used, especially in the limit
of strong guide field. In this sense, Porcelli (1991) derived tearing growth rates under the
assumption of a semi-kinetic approach for ions (first order finite Larmor radius effects)
and a fluid treatment (or drift-kinetic) for electrons by using the generalized Ohm’s law
(see Sec. 2.2.1). This requires ρs ≫ de, with ρs = (vth,i + vth,e)/

√
mi/me)/Ωci the ion

sound Larmor radius (by Eq. (4.7) and the relations in Appendix A.3.1, this is equivalent
to β≫ 2me/mi). In this region, the electrons behave as an isothermal, non-adiabatic fluid.
Besides of that, it is also necessary to assume γ ≫ k‖cs (no sound-wave coupling), equiva-
lent to β ≪ 2(me/mi)1/4 (Pueschel et al. 2011). These authors obtained approximations for
both small and large ∆′ parameter regimes. The last one corresponds to the mode m = 1 in
the terminology used in magnetically confined plasmas. Both expressions are particular
cases of the (implicit) dispersion relation derived later by Rogers et al. (2007) (with the
purpose of studying gyrokinetic simulations of magnetic reconnection. See Sec. 9.1.2 for
further details):

γτA

kyρs

=

[
2
π

de

ρs

(
1 − π

de∆′
γτA

kyρ s

)]1/3

(5.32)

In the small ∆′ parameter regime (wide magnetic shear length scale or large normalized
wavenumber kyρs), it can be shown that this relation is identical to the fully-kinetic dis-
persion relation for thick CS on guide field Eq. (5.27), except by numerical factors and
Ti = Te, confirming the suitability of the fluid model in this regime. On the other hand,
in the large ∆′ parameter regime (narrow magnetic shear length scale or small normalized
wavenumber kyρs), the growth rates can be written as (Rogers et al. 2007, Pueschel et al.
2011):

γ

kyvth,e

=
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2
π

)1/3
de

ls

(
βemi

2me

)−1/6 (
1 +

Ti

Te

)1/3

(5.33)

5.1.3.2 Tearing growth rates in a linear force free configuration

Bobrova et al. (2001) worked out the linear tearing theory for the sheet pinch force
free equilibrium given by the (sinusoidal) magnetic field Eq. (3.25). The ∆′ parameter
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5.1 Tearing mode instability of CS

Eq. (5.5) for this geometry in the external region is:

∆′ = −2
√

1 − κ2
cos(
√

1 − κ2π)

sin(
√

1 − κ2π)
(5.34)

with κ = ky/α. For the internal region, it is necessary to consider the corresponding
(anisotropic) distribution function Eq. (3.27), since the particle orbits will be greatly mod-
ified compared to the Harris case with guide field. Finally, matching external and internal
solution via Eq. (5.6), the dispersion relation is:

γ = 2
1 − cos(

√
1 − κ2π)

sin(
√

1 − κ2π)
κ
√

1 − κ2(deα)2αvth,e (5.35)

Later, Li et al. (2003) corrected the previous result, finding a smaller γ by a factor 2
√
π.

This expression implies that only modes with wavelength greater than 2π/α (shear mag-
netic field scale) are unstable. But there is no upper limit. This unphysical results indicates
additional process not taken into account for large wavelength (or small k), that should
keep finite growth rates.

5.1.3.3 Tearing growth rates in non-linear force free configuration

A two fluid treatment of the tearing instabilities in force free magnetic configuration
Eq. (3.42) was worked out by Mirnov et al. (2004), in the limit of strong guide field
Bz = BG = constant. However, in these case the mechanism that breaks the frozen
in condition is both the electron inertia (a collisionless mechanism) and the resistivity.
Ahedo and Ramos (2009) extended that work by including finite guide fields, but also
considering massless electrons. They identified six different parameter regimes giving
explicitly the corresponding dispersion relations and growth rates, although in the limit
of small ∆′ . Recently, Liu et al. (2013) analyzed the stability properties for the force free
magnetic configuration Eq. (3.42) and Maxwellian distribution function with a fully ki-
netic treatment in a 3D geometry. By solving Eq. (5.3) for this geometry4, they found the
following ∆′ parameter:

∆
′ ≈ 2

1 + b2
g tan2 θ − (kL)2

kL2 (5.36)

where the tearing mode is assumed to have a wavevector ~k = kyŷ + kzẑ with the angle

θ = tan−1(kz/ky). The resonance layer is located at x0/L = − tanh−1
[√

1 + b2
g sin θ

]
. This

expression becomes identical to the Harris case Eq. (5.9) if no out-of-plane tearing prop-
agation is allowed (kz = 0). The growth rate is then found by the matching of internal
to external solutions in this guide field case: the Eq. (5.27) obtained by Drake and Lee
(1977b):

γ

kvth,e

≈
d2

e∆
′

2
√
πls[1 +

√
meTe/(miTi)]

(5.37)

4Note that this is an approximation: it is necessary to match asymptotic solutions in the limit of large
and small k. See Baalrud et al. (2012) for details. For the case of Harris sheet with guide field and allowing
obliquely propagating tearing modes, see Daughton et al. (2011b).
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with ls is the shear magnetic field strength, generalization of Eq. (5.28) to this 3D geome-
try:

1
ls

=
1
k

(
dk‖

dx

)

x=x0

=
cos2 θ − b2

g sin2 θ

L cos θ
√

1 + b2
g

(5.38)

with k‖ = ~k·~B/B. Again, we recover the result Eq. (5.29) in case of an in-plane propagating
tearing mode ~k = kyŷ.

5.1.3.4 Saturation mechanism in the presence of a guide field

Now, let us talk about the saturation mechanism in presence of a guide field, in gen-
eral much less understood than in the antiparallel case. If it is strong enough, electrons
become highly gyrotropic, inhibiting any saturation mechanism related to temperature
anisotropies. Then, only electron trapping can be responsible for tearing mode saturation.
Drake and Lee (1977b) and Quest and Coroniti (1981b) showed that the region where this
effect can take place, different from the antiparallel case ∆N S , becomes significantly mod-
ified in presence of a guide field, depending not only on the geometry, but also on the
growth rates and wave vector number:

∆GF =
γGFls

kyvth,e

=
γGF L

kyvth,e

Bg

B∞y

(5.39)

where the last equality is valid assuming Harris equilibria by using Eq. (5.28).
Later, Karimabadi (2005) showed that in the strong guide field regime, this mechanism

leads to a maximum tearing island amplitude (halfwidth) comparable to the predicted in
the antiparallel case due to temperature anisotropy (Eq. (5.25), unless the guide field is
too strong Bg≫ B∞y), and larger than the one due to electron trapping Eq. (5.23)

|Ws|trapping,GF

L
∼ 1.8

ρe

L
(5.40)

This value is higher than the calculated by previous works (Drake and Lee 1977b), due
to the inclusion of finite Larmor radius effects. But it is still too low to explain the
observed saturation amplitudes of tearing mode in the magnetosphere (Karimabadi et al.
2004, Karimabadi 2005, Karimabadi et al. 2005). These authors proposed another mech-
anism: multimode tearing, allowing the magnetic islands to grow to much larger ampli-
tudes to these predicted by single mode tearing.

5.1.4 Influence of anisotropy

Different effects can affect the evolution of the tearing mode. In our simulations of
Harris CS (to be shown in Chapter 7), one of these effects, the pressure anisotropy, will
turn out to be essential to explain the stabilization of tearing mode. That is why we are
going to describe its theoretical framework in this subsection.

The first studies of the temperature anisotropy effects on the tearing mode by Laval and Pellat
(1967) and Forslund (1968) found that the instability is stabilized if the electron parallel
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temperature (along the tearing direction y) is greater than the perpendicular ones, with the
following threshold:

Ae =
Te,‖

Te,⊥
&

1 −
√

2ρe

L


−1

. (5.41)

Note that this threshold is more restrictive (higher) for thin CS (small L/ρe). The reason
is because an electron anisotropy will drive unstable a Weibel instability (see discussion
in Sec. 5.2.1) in a CS with a fast growth rate γ/Ωce ∼ (1 − 1/Ae)5/4 when the following
conditions is satisfied:

Ae =
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Te,⊥
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√

2ρe

L




2

−1

. (5.42)

This implies that in thin CS ρe/L ≪ 1, Weibel becomes unstable always for lower
anisotropy levels than the ones required for tearing stabilization. Providing Ae > 1, or
Te,‖ > Te,⊥ , this mode will propagate perpendicular to the magnetic field (“colder” direc-
tion ⊥, across the CS in x) and it is damped and does not propagate along the warmer
direction y =‖. Following Karimabadi et al. (2004) and Karimabadi et al. (2005), this di-
rection is the same as the propagation of tearing mode ky. Then, they can couple5 and
the resulting “hybrid” mode gets damped as well, besides of a reduction in the range of
unstable wavenumbers kyL. On the other hand, under opposite conditions of anisotropy,
Ae < 1, Forslund (1968) found that tearing growth rates will be greatly enhanced, be-
sides of extending the range of unstable wavenumber ky L (usually between 0 and 1 in
the standard isotropic case), and thus allowing the interaction of multiple tearing modes,
increasing the saturation level (Karimabadi et al. 2005). In this case, both Weibel and tear-
ing instabilities have wavevectors along ky (since now the “colder” temperature is Te,‖). In
addition, this enhanced tearing mode will shift its fastest growing mode towards shorter
wavelengths (higher ky). This anisotropy enhanced tearing mode has been observed in
2D PIC simulations with an initially imposed anisotropy by Karimabadi et al. (2004) and
Haijima et al. (2008). The latter work also noticed a critical halfwidth Lc, below which
this boosted tearing instability can transfer energy towards large wavelengths mode during
the non-linear evolution.

Note that the evolution of tearing mode in a CS leads naturally to a preferential elec-
tron heating along the parallel direction, developing anisotropies Ae > 1. This is because
the tearing mode develops an electric field along its propagation direction: Ey , allowing
free streaming of electrons parallel to the asymptotic magnetic field (B∞y), resulting in an
overall increase in the electron heating Te,‖ (Karimabadi et al. 2004). Hirabayashi and Hoshino
(2013) argued this preferential heating should also take place in a CS as a consequence
of the CGL equations Eq. (2.58): the reduction in the magnetic field strength as the re-
connection proceeds (due to conversion into other forms of energy) produces a drop in
Te,⊥ because of the second adiabatic invariant (magnetic moment), while an increase in
Te,‖ due to the conservation of the first one, with a final result of Te,‖ > Te,⊥. Therefore,
if these anisotropies get larger than the threshold Eq. (5.41), the tearing mode will tend
to suppress itself during the course of its evolution. This is in someway opposite to the

5note that this is valid only in an antiparallel geometry. A guide field will suppress these effects, because
it make electrons gyrotropic inhibiting the Weibel instability. Then, guide field tearing mode it is expected
to be weakly affected by the presence of anisotropies (Karimabadi et al. 2005).
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5 Instabilities in CS: Theoretical background

conclusion about enhancing of tearing growth rates by Vainshtein and Mazur (1982), be-
ing thus one of the mechanisms of saturation of tearing instability (see Sec. 5.1.2.2). If
Weibel instability is triggered as cause of this anisotropy, it can produce pitch angle scat-
tering tending to isotropize again the electron distribution function, counteracting tearing
and allowing saturation via electron trapping, at much lower amplitudes.

However, the destabilizing effect of electron temperature anisotropies Ae < 1 re-
mained for a long time not actively investigated, because it was thought (see, e.g., Burkhart and Chen
1989, and references therein) that any electron temperature anisotropy should be quickly
isotropized in realistic plasmas due to the several temperature driven instabilities, with
time scales much shorter than those typically found in magnetic reconnection (see Sec. 5.2).
In this context, the attention changed to the effects of ion anisotropies. Chen et al. (1984)
carried out an study of tearing mode focusing mostly in anisotropic ions and weakly
anisotropic electrons. By using a straight orbit approximation for both species and the
usual matching between internal and external solution Eq. (5.6), they found an expres-
sion analogous to Eq. (5.10) (and thus only valid for very thick CS) with the following
additional terms due to anisotropies (in a Harris sheet geometry):
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with α j = 1 − 1/A j. From this expression one can infer that linear tearing growth rates
will be increased for anisotropies Ai = Ti ,‖/Ti,⊥ < 1 (in agreement with Forslund 1968),
while in the opposite case they will have a stabilizing effect (reducing γ). The same
enhancement in the tearing growth rates takes place for electron temperature anisotropies
Ae < 1, being dominant over the ion contribution for similar levels of anisotropy. This
is due to their smaller gyroradius compared to the electron one (by a factor equal to the
mass ratio me/mi). Note also that this effect will be stronger for thicker CS L/ρi > 1.

Interestingly, Chen et al. (1984) realized that the usual method of finding solutions in
the two internal and external regions (as applied in Furth et al. (1963) and Drake and Lee
(1977b)) does not give accurate results when the species have anisotropic temperatures.
It is necessary to use additionally an intermediate region (∆NS =

√
2ρe L < x <

√
2ρiL),

where the ions orbits make the most significant contribution to the dispersion relation.
Then, by solving numerically the resulting dispersion relation, Chen et al. (1984) found
that the ion contribution to γ is much larger than the predicted by Eq. (5.43): very weak
ion anisotropies are sufficient to destabilize tearing mode. The difference between the
analytical numerical solutions were found to be as high as one order of magnitude. Part
of this disagreement is due to the assumption of very thick CS. Later, Burkhart and Chen
(1989) confirmed this fact by improving this three-region treatment using numerically ex-
act particle orbits, founding that for Ae < 1, the anisotropic tearing growth rates increases
even more (factor of 5).

Later, there were other works that questioned the lack of importance in magnetic re-
connection of the anisotropic tearing when Ae < 1. 2D PIC simulations carried out by
Ricci et al. (2004), Daughton et al. (2004) found that LHDI (see Sec. 5.4.2.4) can gener-
ate precisely this condition at the edges of a CS (perpendicular electron heating), possibly
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5.1 Tearing mode instability of CS

enhancing tearing growth rates and helping thus to the reconnection onset. This also has
another interesting effect, to be discussed in Sec. 5.1.4.1. However, due to 2D constraints,
these simulations could not address simultaneously the development of tearing mode due
to this effect (LHDI develops in the out-of-plane direction).

Recently, there have been studies improving the analytical calculation about the anisotropic
tearing by Chen et al. (1984) as expressed in Eq. (5.43), such as Karimabadi et al. (2004).
By means of these improved relations, the latter work found that, for Ae < 1, the hybrid
mode generated by the coupling between tearing and Weibel instabilities (anisotropic tear-
ing) will always have growth rates in between the “slow” tearing (ion timescales) and the
fast Weibel (electron timescales), besides of allowing modes with kyL > 1. Quest et al.
(2010) carried out a detailed analytical study of all the modes driven by both electron and
ion anisotropy in a Harris CS. They used a semi-analytical framework called “exact drift”,
calculating analytically the particle orbits to obtain some relevant quantities (bounce pe-
riod and mean drifts), and then solving numerically the dispersion relation. Assuming
Ai = 0 and weakly electron anisotropies Ae (“classical tearing limit”), they derived the
following anisotropic tearing relation in the approximation of straight-line orbits for thin
CS, improving thus Eq. (5.43):
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Many interesting properties can be derived from this expression. First, note that the sec-
ond term in the right hand side, associated with the anisotropy, does not depend on the CS
thickness like the first one, associated with tearing. Thus, if the growth rate is dominated
by the electron anisotropy term, it becomes more or less independent on the thickness.
On the other hand, maximizing Eq. (5.44), one can get the maximum growth rates and
corresponding unstable wavenumber (Quest et al. 2010):
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From Eq. (5.45), it is possible to estimate the minimum anisotropy level required for
which this effect (second term) dominates over the isotropic tearing (first term):
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(5.47)

with a value usually small in most of the cases of interest. Note that electron anisotropy
effects are more important for thick CS, but only weakly. In the regime of anisotropic
tearing Ae < 1 with enhanced growth rates, Eq. (5.44) predicts a wider width of unstable
wave numbers between 0 < kyL < kmax L ≈ 2kmaxL. In the opposite case, Ae > 1, an im-
proved version of the tearing stabilization threshold Eq. (5.41) can be obtained by finding
the value of Ae in Eq. (5.44) that makes to vanish the width of unstable wavenumbers kyL:
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. (5.48)
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Quest et al. (2010) also derived a analogous expression to Eq. (5.44) but only for ion
anisotropies, founding that this effect is more important for thicker CS than an equivalent
electron anisotropy. This is because, in this case, it is not possible to separate the free
energy source terms related with the current and anisotropy like in the case of pure elec-
tron anisotropy: both are coupled, and therefore the growth rates will increase for thicker
CS for the anisotropy dominated regime (not being independent like in the case of pure
electron anisotropy). In addition, by means of an expression similar to Eq. (5.47), they
showed that the ions anisotropy effects will dominate over the electron anisotropy if:

1 − 1/Ai

1 − 1/Ae

>

(
Te,⊥

Ti ,⊥

)1/4 (
mi

me

)3/4

(5.49)

which is a requirement difficult to fulfill. Then, ion anisotropy effects will be significant
only if Ai is very high and the electron anisotropy is negligible.

5.1.4.1 Relation with CS bifurcation

There are some observational evidence in the Earth’s magnetosphere of current sheets
with bifurcated structure (Runov 2003), i.e.: double peak in Jz: a depletion of current
density at the center of the CS. In these cases, the peak in the current does not coincide
with the minimum in the magnetic field strength. For example, Greco and Taktakishvili
(2002) suggested that chaotic electron scattering (Büchner and Zelenyi 1987) can lead to
the formation of bifurcated CS. Several models have been built on this idea, generaliz-
ing Harris sheet equilibria (see Sitnov 2003, Zelenyi et al. 2004, and references therein).
The last two works emphasize the key role of temperature anisotropy (in the electrons
or ions) for the construction of these kind of double peaked solutions. Mok et al. (2006)
and Janaki et al. (2012) also found the same relation for a two-fluid model of a bifurcated
CS (extended to the kinetic regime by Yoon et al. 2014), demonstrating the requirement
of an anisotropic and non-gyrotropic tensor pressure for the construction of such solu-
tions. On the other hand, temperature anisotropies generated by instabilities have also
been associated with bifurcation. Indeed, as we already mentioned, Ricci et al. (2004),
Daughton et al. (2004) found that LHDI (in the current aligned plane) can produce Ae < 1,
leading to a bifurcation of the CS. This effect is caused by the generation of an electro-
static potential and their associated resonant scattering, being more efficient for thin CS
L < 2ρi (and therefore, bifurcation caused by LHDI would not be seen for thicker CS).
They noticed that this bifurcation becomes weaker when lower mass ratios are used.

The previous mechanisms were all specific for thin CS, where the electron dynamics is
essential. In the opposite case, Schindler and Hesse (2008) showed that an initially thick
enough CS (L≫ ρi) can bifurcate via quasi-steady compression (driving boundary condi-
tions: a temporally varying plasma inflow, equivalent to a conductive electric field applied
to the boundaries). This was demonstrated via 1D PIC simulations. They noticed bifurca-
tion in both electron and ion current densities. The electron bifurcation was explained as
a result of an electric shielding (of the convective incoming Hall electric field in a region
close to the center of the CS), while the ion bifurcation due to momentum conservation
(considering the incoming driving plasma flow). The resulting bifurcated CS has both ion
and electron temperature anisotropies. Schindler and Hesse (2008) correlated this with
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5.2 Temperature anisotropy driven instabilities

the simple fact, as derived from the momentum equations, that both quantities are pro-
portional to the gradients in the out-of-plane bulk flows dVe,z/dx (see Eq. (7.2)), and thus
to the density current gradients dJe,z/dx. Therefore, bifurcated CS necessarily must have
temperature anisotropies.

Coming back to thin CS, Camporeale and Lapenta (2005) noticed that a bifurcated
CS becomes stable against the tearing instability. They studied bifurcated CS equilibria
(also relying on anisotropic temperatures) analytically and with 1D and 2D implicit PIC
simulations, and even for cases initialized with an initial perturbation, a bifurcated CS
did not evolve towards the formation and merging of magnetic island nor reach any stage
of explosive magnetic reconnection. This process showed almost no dependence on the
mass ratio. They proposed an heuristic explanation for that: a bifurcated CS can be seen
as the non-linear saturation of tearing mode, based on the fact that these structures arise
naturally in the late stages of the evolution of this instability. Indeed, it has been observed
that bifurcation can take place in the reconnection outflow, in magnetotail observations
(Hoshino et al. 1996) and both 2D hybrid (Hesse et al. 1998, Shay et al. 1998) and fully-
kinetic 2D PIC simulations (Karimabadi et al. 2005). The last work identified that only
multimode tearing allow this process.

Later, Matsui (2008) (see also Matsui and Daughton 2008, for a more extended dis-
cussion) complemented the previous investigations by developing the linear stability anal-
ysis of the tearing mode in bifurcated current sheets. They constructed generalizations of
the Harris equilibrium, allowing both bifurcated Jz and arbitrary temperature anisotropy.
They found that both growth rates and range of unstable kyL of the tearing instability are
strongly reduced (short wavelength mode are stabilized) in presence of an initially bifur-
cated Jz (compared to the pure Harris case) as consequence of a reduction in the delta
stability parameter ∆′ Eq. (5.5). This parameter operates as a positive driver for tearing
when the slope of the current profile Jz increases in the direction to the center of the CS,
but it has an opposite (stabilizing) effect on tearing when the slope has opposite sign, like
in the case of bifurcated Jz. The class of kinetic equilibria developed by Matsui (2008)
shows a bifurcated Jz due to the effects of a non-zero electrostatic potential φ, producing
an ~E × ~B drift in the out-of-plane electron bulk velocities (the same reason of the observed
bifurcation in the reconnection outflows). They also investigated the effects of an electron
temperature anisotropy Ae < 1 in one of the populations for the considered equilibrium,
with parameters fitting the late stages evolution of the LHDI, as seen in the simulations by
Daughton et al. (2004). They confirmed the strong destabilizing influence of Ae < 1 on
the tearing mode, counteracting the stabilization due to bifurcation when both are present.

5.2 Temperature anisotropy driven instabilities

A temperature anisotropy is a important source of free energy for instabilities. Con-
sequently, there are many kinetic instabilities driven by temperature anisotropies, such as
the whistler, mirror, firehose, etc. (see, e.g., Gary 1993, Sironi and Narayan 2015). Under
some circumstances, our simulations of Harris CS without guide field to be presented in
Chapter 7 can become unstable to several of these instabilities. That is why in the rest of
this section, we are going to describe briefly their most important properties in the same
framework.
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5 Instabilities in CS: Theoretical background

5.2.1 Unmagnetized Weibel instability

The Weibel instability is an electromagnetic instability first discovered for unmagne-
tized plasmas by Weibel (1959). It is driven just by an anisotropy in the distribution func-
tions, leading to the growth of the (electromagnetic) ordinary O mode (Treumann and Baumjohann
2001). Note that an anisotropic distribution function is stable against electrostatic pertur-
bations. The linear theory for a homogeneous and unmagnetized plasma (Krall and Trivelpiece
1973) predicts a propagation in the “colder” direction (or more correctly, perpendicular
to the “warmer” temperature), with the associated electric field in the “warmer” direc-
tion. Assuming propagation direction in kx and a temperature anisotropy Te,y > Te,x in a
bimaxwellian distribution function, we have the following dispersion relation for electro-
magnetic waves (Krall and Trivelpiece 1973):
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with thermal speed vth,e =
√

kBTe,x/me, indices α = i, e representing ions and electrons,
and Z(ξα) is the plasma zeta function (see Eq. (5.16)). Now, in the low frequency regime
ω/(kxvth,e ) ≪ 1 and weak anisotropy γ < kxvth,e, it is possible to derive the following
estimate for the growth rates:
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The results for strong anisotropyω/(kxvth,e)≫ 1 can be found, e.g., in Krall and Trivelpiece
(1973). In the expression Eq. (5.51), the ion contribution has been neglected because it
is smaller by a factor mi/me. Thus, Weibel instability is mostly driven by electrons. It
can also exist due to an anisotropy in the ion distribution function, but it has to be very
large with a negligible electron temperature anisotropy to be noticed, something unrealis-
tic in most of the plasmas in nature or simulations (Baumjohann et al. 2010). Now, from
Eq. (5.51) we can derive the maximum growth rate

γmax =

√
8

27π
ωpe

vth,e

c

Te,x

Te,y

(
Te,y

Te,x

− 1
)3/2

. (5.52)

with the corresponding wave number

kx,max =
ωpe

c

√
1
3

(
Te,y

Te,x

− 1
)
, (5.53)

This implies that the associated wavelength λx,max = 2π/kx,max gets larger for smaller
anisotropies. Note that the growth rate is zero in the limit of large wavelengths kx = 0 and
also at kx =

√
3kx,max. From Eq. (5.51) we can also determine the minimum temperature

anisotropy for the triggering of this instability, its threshold:
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One characteristic signature of Weibel instability is its ability to produce quasy-stationary
and propagating magnetic fields perpendicular to the direction of the “warmer” tempera-
ture. These structures have a short length scale on the order of λ = 2πde (Baumjohann et al.
2010), being located in adjacent cells with alternate (antiparallel) polarities of ~B (in “fila-
mented” structures) due to the requirement of zero divergence of the magnetic field, lead-
ing potentially to small scale reconnection (see Treumann and Baumjohann 2012, and ref-
erences therein) They are generated via a (turbulent) non-dynamo mechanism described
in Fried (1959), Medvedev and Loeb (1999), due to the release of free energy in form
of waves, reducing the anisotropy of the distribution function via pitch angle scattering
(see also Tautz and Shalchi 2008, Medvedev and Loeb 1999). However, the theoretical
description of the mechanism behind this ~B generation (potentially amplified to very high
values due to the aperiodic nature of Weibel ω ∼ 0) is not so straightforward, since it
requires to deal with the non-linear evolution of the instability and a proper calculation
of the thermal fluctuation levels (Treumann et al. 2010). It is also interesting to mention
that these magnetic fields generated by Weibel instability might provide the conditions
necessary for the triggering of other magnetized temperature driven instabilities, such as
mirror and/or firehose ones (Treumann and Baumjohann 2014). Even more: these Weibel-
generated magnetic fields (especially in the relativistic regime) have been proposed to be
the mechanism behind the magnetization present in the early universe, as well as respon-
sible for the formation of collisionless shocks in active galaxy nuclei (AGN), gamma ray
bursts (GRB) and pulsar winds (see Stockem et al. 2006, and references therein). And
only very recently it was possible to get experimental evidence confirming this mecha-
nism in a laboratory plasma (Huntington et al. 2015).

Weibel instability is non-resonant (it does not rely on wave-particle resonance), de-
pending only on the macro or bulk properties of the distribution function. This implies
that most of the plasma particles can participate of the instability, with a very efficient
transfer of kinetic (stored in the anisotropy of the distribution function) to magnetic en-
ergy. Therefore, it is very robust and can be active under a wide range of conditions
(Tautz and Schlickeiser 2006), the reason why it is sometimes called an “universal” insta-
bility (Baumjohann et al. 2010). This fact has a consequence an interesting property: most
of the previous results, such as growth rates, do not depend on the specific bimaxwellian
form of the distribution function, as shown by Davidson (1972). A plasma with an effec-
tive temperature due to, e.g.: two counterstreaming populations with (cold) temperature
Te at speed Ue,0, can give origin to a instability with identical properties as Weibel by iden-
tifying Te = Te,x and kBTe,y = 0.5meU

2
e,0 (Krall and Trivelpiece 1973). This fact and the

previous discussed generation of filamented magnetic fields is the reason because Weibel
is also called “filamentation” instability, especially under the presence of a background
magnetic field. However, the latter name is sometimes reserved when there is only rela-
tive streaming of species (see a discussion about the terminology in Bret et al. (2005) and
Bret (2009)).

Weibel instability can also operate under the presence of magnetic fields, as long as
they are not too strong Ωce ≪ ωpe. A magnetic field tends to suppress this instability
because the particle gyromotion produce an isotropization of the temperature perpendicu-
lar to it, inhibiting the magnetic field generation responsible for the isotropization of the
distribution function via pitch angle scattering. Nevertheless, under the previous assump-
tion of weak magnetic field, the growth rates given are not reduced too much. The main
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effect of the magnetic field is manifested in the fact that Weibel gets a finite oscillation
frequency, on the order ofΩce . See Hededal and Nishikawa (2005), Stockem et al. (2006),
Tautz and Schlickeiser (2007) and Tautz and Shalchi (2008) for further details.

5.2.1.1 Weibel instability in CS

Since Weibel instability develops preferentially in unmagnetized environments, its
presence in magnetic reconnection (and CS in general) has been far away from being a
focus in the research of this process. However, under some circumstances can be ob-
served, especially in Harris CS without guide field, since there is a neutral line with van-
ishing magnetic field. Indeed, a number of studies have found signatures of its presence
in studies of magnetic reconnection of pair (electron-positron) plasmas (Swisdak et al.
2008, Zenitani and Hesse 2008, Liu et al. 2009), as well as in the classic electron-proton
plasmas (Lu et al. 2011, Schoeffler et al. 2013). In these plasmas, Weibel instability has
been found operative inside of the magnetic tearing islands, as a result of the temperature
anisotropy developed there. This, in turn, is produced by the first order Fermi mechanism:
bouncing and acceleration of particles inside of these structures. In pair plasmas it can
even provide a mechanism for fast magnetic reconnection, since the turbulence generated
by Weibel instability can broaden the current layer (Liu et al. 2009). On the other hand,
Weibel instability has also been proposed to be generated due to the counterstreaming
electron inflows close to the X point, at length scales smaller than de (Baumjohann et al.
2010, Treumann et al. 2010).

5.2.2 Magnetized: Mirror instability

The mirror instability is one of the magnetized instabilities that can be excited in a
plasma when there is a field aligned anisotropy Tα,⊥ > Tα,‖ (Hasegawa 1969, Gary 1993)
(α = e, i) 6. It is interesting to mention that this condition is more feasible to find in space
plasmas than the opposite Tα,⊥ < Tα,‖, even though there is no intrinsic bias towards this
kind of heating. According to Gary (1993), this is because parallel heating will produce
acceleration of particles along the magnetic field lines. They will escape quickly from the
region where they are energized, leaving behind particles with a higher T j,⊥ and producing
thus the mentioned anisotropy. As we will see in the theoretical expressions for growth
rates and thresholds, mirror develops preferentially in high β plasmas with relatively low
anisotropies (Génot et al. 2001), such as those found in the solar wind (Klein 2013) 7.

The mirror instability was first discovered and described with a fluid description,
where the specie responsible for the anisotropy are only ions. The linear theory predicts
a practically zero real frequency, oblique propagation with respect to the magnetic field

6There is another instability driven by a similar condition, called ion-cyclotron instability. For high β
plasmas, the mirror instability requires lower thresholds in the temperature anisotropy than ion-cyclotron,
and that is why the latter will not be analyzed here. See Gary (1993) for further details.

7In general, all the electromagnetic instabilities driven by temperatures anisotropies are severely
quenched in low β plasmas. This can be understood due to the fact that these instabilities require perturba-
tions in ~B, which become more difficult in plasmas dominated by magnetic pressure and very low plasma
pressure: they cannot change so easily the structure of the background magnetic field (Krall and Trivelpiece
1973).
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(maximum growth rate nearly in the perpendicular direction) and preferentially longitudi-
nal over perpendicular fluctuations δB‖ ≫ δB⊥ (Treumann and Baumjohann 2001, Gary
1993). A fluid approach can predict quite accurately the right threshold condition. As-
suming Ti = Te , very low frequencies ω ≪ Ωci and very long wavelengths λ ≫ ρi, the
anisotropic MHD equations (Hasegawa 1975) can predict a instability associated with the
compressional Alfvén wave (or magnetosonic) mode whenever that the following condi-
tion is satisfied:

P⊥

P‖
> 1 +

1
β⊥

(5.55)

where the pressures correspond to the scalar fluid ones, being proportional to the respec-
tive kinetic temperature.

After the initial fluid studies, a kinetic approach started by Tajiri (1967) and other
workers revealed that, different from Weibel, mirror instability is essentially a resonant
instability, being driven by a wave-particle interaction (gyro-cyclotron resonance) of the
anisotropic specie, and thus a kinetic description is essential to understand its mecha-
nism (see also Klein 2013). These kind of calculations demonstrated that both ions
and electrons contributes equally to the instability condition (Hasegawa 1975), as can
be seen from the expression for the threshold taking into account these effects (Hall 1979,
Pokhotelov et al. 2000, Hellinger 2007):
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In this same framework, it is possible to derive, by assuming cold electrons and an ion
anisotropy, the maximum growth rate of the mirror mode (Hasegawa 1975, Treumann and Baumjohann
2001):
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Since the mirror mode has practically perpendicular propagation, the second term is ne-
glected8.

The essential feature of mirror instability (in both MHD and kinetic models), usually
used as signature of its presence in in-situ measurements of solar wind plasmas, is the out
of phase correlation between the density and magnetic field fluctuations (Hasegawa 1975,
Southwood and Kivelson 1993):

δne

ne

∼
(
1 − β⊥

β‖

)
δB

B0
. (5.58)

This implies, whenever the mirror threshold condition Eq. (5.55) is satisfied, that the
plasma density will be higher in regions with small magnetic field strength, and vice versa.
This can be understood due to the mechanism behind this instability (Treumann and Baumjohann

8This term gives the growth rate of the complementary instability: the so called firehose instability
driven by T j,‖ > T j,⊥ and with parallel propagation. See next Sec. 5.2.4 for further details
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2001): particles become trapped in magnetic mirror structures whenever their perpendic-
ular pressure is much larger than the parallel one according to Eq. (5.56). In that case, the
free energy stored in the perpendicular gyromotion of the particles is transferred to their
bouncing back and forth between the ends of the mirror structures, producing the oscil-
lations described by Eq. (5.58) due to a mirror force ∇(µB). Most of the particles in the
bulk of the plasma will preserve their energy during this process, as a consequence of the
conservation of the conservation of the first adiabatic invariant (magnetic moment), but
a few particles with small parallel velocity will interact via gyro-resonances, generating
cyclotron waves. And only these few resonant particles are the responsible for the plasma
response of the mirror instability. See Southwood and Kivelson (1993) for an expanded
discussion.

For many years, the mirror instability was studied with the purpose of applications to
solar wind, where the ion anisotropy is the most important one. Only recently (Pokhotelov et al.
2000, Pokhotelov 2002, Gary and Karimabadi 2006) the attention has changed to the
study of its properties when the main driver is an electron temperature anisotropy. In
particular, Pokhotelov et al. (2000) derived an improved threshold condition (compared
to Eq. (5.56)), taking into account kinetic effects with a finite temperature electron re-
sponse, finding a correction due to a stabilizing effect of the field aligned electric field
arising from the differential motion of ions and electrons:

D =

(
Ti,⊥

Ti ,‖
− 1

)
+

Te,⊥

Ti,⊥

(
Te,⊥

Te,‖
− 1

)
− 1
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−

Te,‖Ti,‖

2Ti,⊥(Te,‖ + Ti ,‖)

(
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−
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Te,‖

)2

> 0 (5.59)

The last term is the aforementioned correction, saturating at high enough electron temper-
atures. Under the same assumptions, it is possible to derive (Pokhotelov et al. 2000) an
expression for the maximum growth rates (improved version of Eq. (5.57)):

γmax =
k⊥vth,i,‖Ti,‖√
πTi,⊥βi,⊥

4A3/2
(
1+ Te ,‖

Ti,‖

)2 [
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]

(
1 + Te ,‖

Ti,‖
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+

(
1 + Te ,⊥

Ti ,⊥

)2
, (5.60)

with
A =

D

3β−1
i,⊥

(
1 + βi,⊥−βi,‖

2

) . (5.61)

where D is the left hand side of the mirror threshold condition given by Eq. (5.59). Al-
though this expression increases with k⊥, it is only valid neglecting finite Larmor radius ef-
fects: k⊥ρi ≪ 1. Therefore, the maximum growth rates will have wavelengths around the
ion gyroradius k−1

⊥ ∼ ρi , since FLR effects are expected to reduce growth rate in the short
wavelength limit (Pokhotelov et al. 2000). Later there have been works analyzing with
more detail these finite electron Larmor radius effects (Hellinger 2007, Kuznetsov et al.
2012), showing that they can indeed stabilize short wavelengths modes, but not affecting
significantly the mirror threshold condition.

Eq. (5.60) also demonstrates that the mirror mode propagates practically in the per-
pendicular y, satisfying k⊥ = ky ≫ k‖ = kx. The propagation angle θ can be then estimated
by:

tan(θ) =
k⊥

k‖
=

1
√

A
. (5.62)
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5.2.2.1 Relation between mirror and Weibel instabilities

There have been some previous investigations pointing out a very close relationship
between Weibel and mirror instabilities (Hasegawa 1969, Chen et al. 1984, Shi et al. 1987,
Pokhotelov et al. 2010). For example, the latter work identified that the linear responses
of both have mathematical identical form, by identifying quantities related with ρe (in
the mirror case) to de (in the Weibel case). It is also necessary to identify the parallel
and perpendicular direction from these with respect to the magnetic field (mirror) to these
related purely with the temperature (Weibel). Due to this fact, both linear growth rate and
non-linear evolution have very similar properties.

On the other hand, Treumann and Baumjohann (2014) proposed a very interesting
mechanism relating even more both instabilities. The idea is based in the fact that a
Weibel unstable (anisotropic) plasma will generate magnetic fields. These magnetic fields
can act as an initial seed for the triggering of magnetized temperature anisotropy driven
instabilities, in particular mirror instability. The effect is the appearance, on top of the
filamented Weibel cells, of a chain of bubble or holes mirror-like structures, generating
additional levels of turbulence due to the simultaneous existence of these instabilities. As
we will see in Chapter 7, a very similar situation can take place in the initially unmagne-
tized center of an anisotropic Harris CS.

5.2.3 Magnetized electron whistler instability

Similar to the previously discussed mirror, the (electron) whistler instability is other
instability driven by the same condition Te,⊥ > Te,‖. Under such condition, according to
Gary and Cairns (1999), Gary and Li (2000) and Gary and Karimabadi (2006), the elec-
tron whistler instability may be more important, because it has larger growth rates and
lower thresholds than the electron mirror instability, at least for a large range of parameters
with βe,‖ & 0.1. More specifically, its threshold (marginal stability condition) calculated
from linear theory is given by:

Te,⊥

Te,‖
− 1 = Aβ−αe,‖ . (5.63)

with the two fitting parameter that can be approximated as α = 0.5 and A ≈ 0.55 according
to Sironi and Narayan (2015) (they depend on the choice of the maximum growth rate).
This instability can generate right-handed transverse electromagnetic waves of (mostly)
parallel propagation. Therefore, in a 2D guide field magnetic reconnection setup, like the
one to be analyzed in chapter 9, this instability is not allowed since it would propagate
in the out-of-plane ẑ direction. Nevertheless, it has been known (Gary and Cairns 1999,
Gary and Li 2000) that the electron whistler instability becomes more electrostatic and
with a more oblique propagation angle (at maximum growth rate) as the local plasma
beta βe,‖ decreases, allowing the possibility in a 2D setup. However, we can check that
Eq. (5.63) predicts a too high threshold of the electron temperature anisotropies in low
plasma beta with strong magnetization ωpe ∼ Ωce (like the one to be analyzed in Chap-
ter 9).

93
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5.2.4 Magnetized: Firehose instability

Although we did not find evidence of the firehose instability (Parker 1958) in the sim-
ulations to be shown in this thesis (Chapter 7), for reasons of completeness we are going
to describe very briefly its properties (in order to compare it with the mirror instability).
This is a (practically) parallel propagating electromagnetic instability driven by the op-
posite condition to the mirror instability Tα,‖ > Tα,⊥ (Krall and Trivelpiece 1973, Gary
1993, Camporeale and Burgess 2008), and associated with Alfvén waves. The threshold
condition can be expressed in an analog way to Eq. (5.56) (Treumann and Baumjohann
2001): ∑

α

βα,‖ − βα,⊥ > 2. (5.64)

Thus, we can see that this instability requires (very) high beta plasmas for their existence
(such as in the solar wind). Its growth rate is also given by the same expression as for the
mirror instability Eq. (5.57), but with a dominant second term instead of the first one, in
such a way that can be rewritten in the following way (Treumann and Baumjohann 2001):

γmax =
k‖VA

2

√
β j,‖ − β j,⊥ − 2 (5.65)

Thus, we can see the much slower growth of this instability (Alfvén time scales) compared
to the other anisotropy driven ones, such as mirror or Weibel. The mechanism (and the
name) behind this instability is because of the nature of the driving force: the parallel pres-
sure along the magnetic field lines operates by increasing the amplitude of the unstable
(Alfvén) waves, similarly to water flowing in a (loose) hose (Krall and Trivelpiece 1973).
There are different kinetic effects (resonance) important in some parameter regimes of this
instability, especially in the (less investigated) case when electrons are the specie carrying
the temperature anisotropy. For a review, see Michno (2014).

Evidence of the firehose instability has been found in 2D PIC simulations of Harris
CS initialized with a temperature anisotropy by Schoeffler et al. (2011), Matteini et al.
(2013). These works detected some signatures of their presence at the edges of the CS: a
low frequency kinking of magnetic field lines, with the corresponding particle scattering
and subsequent reduction of the temperature anisotropy in these locations. These authors
also observed that when the CS is firehose unstable, the growing of magnetic tearing
islands in inhibited (they just oscillate together with the firehose fluctuations), allowing
the tearing mode growth only after the anisotropy is depleted. This suppression of tearing
mode is a very similar scenario to the one to be seen in Chapter 7.

5.3 Shear flow driven instabilities

A shear flow as source of free energy can drive a MHD Kelvin-Helmholtz instability
at macroscopic level as well as kinetic instabilities at smaller scales, with several different
names.

5.3.1 MHD/fluid Kelvin-Helmholtz instability

Kelvin-Helmholtz (K-H) is a macro instability very well known in hydrodynamics
since the XIX century. Its basic mechanism can be understood as follows: any pertur-
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bation in the streamlines lines of counterstreaming shear flows leads to unbalanced pres-
sure, which is amplified as a consequence of the conservation of energy in incompress-
ible fluid dynamics (Bernoulli principle). It transforms the bulk kinetic energy of flows
with relative streaming into kinetic energy of vortices and magnetic energy, being able to
generate anomalous viscosity and drag via turbulence (Miura and Pritchett 1982). It has
been observed in many space and astrophysical environments, such as planetary magne-
tospheres, solar wind, solar coronae, etc. (see Miura and Pritchett 1982, and references
therein). Especially in the latter scenarios a magnetic field plays an essential role, and
that is why a correct description requires at least an MHD plasma description. In this con-
text, Chandrasekhar (1961) performed a linear MHD stability analysis of this instability,
assuming a velocity shear layer of zero thickness (tangential discontinuity) and incom-
pressibility. He found a growth rate on dependence on the wave number ~k (perpendicular
to the shear velocity gradient, with its main component along the interface between the
flows) and the velocity bulk flow in each side of the shear layer ~V1 and ~V2 (see also Ma
2012, for an extended discussion):

γ =

√
α1α2[(~V1 − ~V2) · ~k]2 − α1(~VA,1 · ~k)2 − α2(~VA,2 · ~k)2 (5.66)

where αi = ρi/(ρ1 + ρ2) are the relative densities of the fluids in each side of the shear
layer and ~B is the background static magnetic field. In the limit of zero magnetic field,
one recovers the hydrodynamics results γ = k|~V1 − ~V2)| (for constant density). This means
that tangential discontinuities are always unstable (no bottom velocity threshold), with a
growth rate proportional to the shear flow relative speed. In addition, they are stronger
for smaller wavelengths (for k → ∞). The magnetic field strength diminishes the growth
rates and can even stabilize this instability if it is high enough (Alfvén speed has to exceed
twice the relative flow speed) and has a component along the ~k direction (perpendicular
component has no effect). More precisely, a system with shear flows will be K-H unstable
if it can overcome the stabilizing effect of the field line tension (Miura and Pritchett 1982):

|~V1 − ~V2 | > 2VA(~k · ~b)/ky (5.67)

which states that only super-Alfvénic flows can be K-H unstable (result valid in the in-
compressible limit).

Miura and Pritchett (1982) studied the K-H instability for more general conditions
than in previous works. By lifting the incompressibility assumption in the MHD analysis
(essential for moderate to low values of plasma beta), they found an upper limit in the rel-
ative speed between the flows, beyond which K-H can be stabilized. This threshold arises
as a consequence of the finite sound speed required to transmit the information necessary
for the formation of vortices, constraining the regime where this instability can operate
to subsonic flows (due to this, the growth rates given by the compressible MHD formal-
ism have as an upper bound the incompressible MHD growth rates, for an infinite sound
speed). More precisely, let mα = |~V1 − ~V2 |/cs, MA = |~V1 − ~V2 |/VA the sound and Alfvén
Mach speeds, ky the wavenumber along the flows and kz the wavenumber perpendicular
to both the flow and the shear velocity gradient. Then, under some additional simplifying
assumptions, we have the instability condition:

M2
f =

M2
Am2

α

m2
α +M2

A

< 4
k2

y + k2
z

k2
y

1−
4(~k · b)2

k2
y (M2

A
+ m2

α)

 (5.68)
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which reduces to the subsonic condition mα < 2 for the parallel case (b = ŷ and kz = 0)
and to M f < 2 for the transverse case (b = ẑ and kz = 0). M f is the fast Mach number. For
obliquely propagating modes with finite kz , the instability range is larger. Furthermore,
by combining Eq. (5.67) and Eq. (5.68), it is possible to find the following condition for
K-H instability relating the three characteristic speeds for both parallel and perpendicular
case:

2VA < V0 < 2Cs (5.69)

2VA

kz

ky

< V0 < 2
√

V 2
A +C2

s (5.70)

Note that the latter equation indicates that K-H instability grows more easier in the trans-
verse than in the parallel case. And the appearance of the magnetosonic speed on the
right hand side of Eq. (5.69) has to do with the additional contribution of the magnetic
pressure to the total pressure, which increases the upper stability limit. This extends the
speed range in which a flow can be unstable.

It is interesting to mention a remark on the previous result for 2D configurations
with no variations in the ẑ direction, but arbitrary direction of ~B. The right hand side
of Eq. (5.70) uses the Alfvén speed with respect to the total magnetic field, since it comes
from an effect associated with the magnetic pressure. On the other hand, the bottom
threshold depends on the in-plane Alfvén speed, since it comes from an effect related
with the magnetic field tension that cannot be curved in the out-of-plane (ẑ) direction.

We can also find a relation between the relative flow speed and the plasma beta:

2

√
1.2
β

cos θ < mα < 2 (5.71)

where θ is the angle between ~V1 − ~V2 and ~B. This condition indicate than in low beta plas-
mas, K-H can exist only if θ ∼ 90, a feasible condition in force free magnetic reconnection
configuration with strong guide field (see Chapter 9). It is also important to mention that
the growth rates decreases from transverse (θ = 90) to parallel configurations (θ = 0).

Miura and Pritchett (1982) also studied a finite shear layer thickness, finding that the
fastest growing modes do not have the smallest wavelengths as in the zero thickness case,
but a size comparable to the width of the shear flow layer (k∆x = 0.5). All the modes with
wavelengths smaller than this threshold will be K-H stable (k∆x > 2, with ∆x the shear
layer thickness). In addition, wider shear layers make the K-H growth rate smaller. Both
restrictions also recover known hydrodynamics results.

Finally, another important feature of the compressible MHD K-H instability pointed
out by the same authors is the generation of alternating (AC) field aligned currents inside
of the velocity shear layer, via a dynamo process. It can also produce several Alfvénic
waves (slow, magnetosonic, fast), confined or not to the shear layer (depending on θ).

5.3.2 Kinetic scale K-H instability

K-H instability not only takes place at MHD scales. It can also be generated at much
smaller scales, which requires other formalism for their correct description. For example,
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Hall-MHD effect have been taken into account in Huba (1994) and Yoon et al. (1996) (see
also references therein), with a magnetic field perpendicular to the shear flow direction.
Electron MHD (EMHD) also predicts a Kelvin-Helmholtz instability at electron scales
(see, e.g., Sundar and Das 2010), propagating in a direction perpendicular to both shear
flow (same as the current in EMHD) and in the magnetic field direction (it has also been
associated with a sausage mode Das and Kaw 2001). But there are many other effects that
can only be captured with a kinetic treatment. In this context, kinetic linear theory, elec-
trostatic PIC and electromagnetic hybrid simulations have been used to study instabilities
driven by shear flows (K-H in the fluid limit) since many years ago, under different ap-
proximations. For example, Ganguli et al. (1988), Lemons et al. (1992), Cai et al. (1990),
Pritchett (1993) and Cai et al. (1993) studied, under the electrostatic approximation, the
transverse K-H instability with the shear flow provided by the ~E× ~B drift. They found two
related instabilities in this configuration: one for large wavelengths kρi ≪ 1 with similar
growth rates to the MHD fluid one (although its growth rates decreases when approaching
to the kinetic limit: for wavenumbers between 0.1 . kρ . 1), and another one for short
wavelengths kρi > 1 with features of an ion-cyclotron wave (which depend on the ratio
ρi/∆x).

An early kinetic study particularly interesting for the purposes of this thesis is Wang et al.
(1992), focused on the effects of a magnetic field parallel to the shear flow on the (elec-
tromagnetic) macroscopic K-H modes k∆x < 1. They showed that the MHD bottom and
upper thresholds for the triggering of K-H instability Eq. (5.69) are not affected signifi-
cantly by kinetic effects (Landau damping). But the growth rates and range of unstable
wave numbers are modified on dependence on the ratio between thermal, Alfvén and flow
speed. This is because there is no Bernoulli principle in a kinetic plasma description,
the basic mechanism of the fluid K-H instability. As a consequence, there is no upper
bound on the perturbation of the pressure given by the sound speed or their kinetic equiv-
alent thermal speed (as in MHD), even though this approaches to infinity. Therefore, for
thermal speeds much larger than the flow speed, the maximum kinetic growth rates can
be larger than the MHD ones, providing that the flow speed is larger than the in-plane
Alfvén speed. In addition, the range of unstable wave numbers is wider for this case than
in MHD (smaller wavelengths are allowed: k∆x > 1). On the other hand, in the opposite
case of small thermal speeds, the kinetic growth rate can be smaller than the MHD one,
due to a phase difference between the magnetic and pressure perturbations different from
the obtained with the fluid approach (anti-phase, 180◦).

Later, one of the earliest attempts to study the collisionless K-H instability via an
PIC code simulation was undertaken by Cai et al. (1993). They performed electrostatic
2D simulations of this instability for systems with ion gyroradius ρi comparable to the
shear layer width ∆x, and with a magnetic field perpendicular to the velocity flow. The
initialization was based on previous works by the same authors finding suitable distri-
bution functions and methods for loading particles. They found good agreement with
previous MHD estimations and simulations of the K-H instability, in the sense that the
maximum growth rates are independent on the kinetic scale ρi/∆x. But their simulations
also showed additional purely kinetic instabilities on dependence on the ratio ρi/∆x: one
with short wavelength for small values of that parameter and Bernstein waves when that
parameter is larger.

More recently, simulations of K-H instability with more realistic parameters and large
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domains have also been performed with hybrid codes (Filippychev 2002), (4D) Vlasov
codes (Umeda et al. 2010) and fully kinetic PIC simulations (Nakamura et al. 2010, 2011,
Huebl et al. 2014). An interesting recent study is the one carried out by Henri et al. (2013).
They benchmarked the magnetized K-H instability with a variety of different codes, from
MHD to fully kinetic ones 9 . They confirmed that in hybrid and PIC codes, the linear
growth rate of K-H instability is different depending on the relative orientation of the
magnetic field with respect to the vorticity ∇ × ~V, as expected from previous theoretical
works and simulations (Cai et al. 1990, Nakamura et al. 2010, Cerri et al. 2013). This is
an effect that arises as a result of the particle gyration: in all the codes that do not they take
into account finite Larmor radius corrections, this effect is absent (a similar asymmetric
effect comes from a Hall-MHD effect. See details in Huba (1994)). They also pointed out
the key role played by the compressibility in the development of the K-H instability, since
it depends critically on the model used (related with the closure in the equation of state
for fluid codes).

5.3.2.1 Shear flow gradient kinetic instabilities

Shear flows can also be seen as gradients in the flow speed, being related thus with
the pressure gradient instabilities to be analyzed later. When shear flows reach velocity
gradients (see Chen et al. 2015, and references therein) on the order of kinetic scales
ρi or ρe, instabilities closely related with the kinetic electron Kelvin-Helmholtz can take
place. One important for our purposes is the so called electron-ion hybrid (EIH) instability
(Ganguli et al. 1988, Romero et al. 1992), since it can generates waves typically in the
lower hybrid-range Ωlh range. Furthermore, their effects are always added to the ones
produced by other streaming or pressure gradient driven instabilities. Let us describe
in more precise terms this instability. EIH is an electrostatic instability that takes place
when there are cross-field (perpendicular to the magnetic field) velocity shear gradients
(or second derivative of the electron ~E × ~B drift) with typical scales Le in between ion
and electron scales ρe < LE < ρi. It is in a high electrostatic frequency branch of the
familiar Kelvin-Helmholtz instability. Both frequencies and growth rates are on the order
of Ωlh (Romero et al. 1992). Typical perpendicular wavelengths are much smaller than
the ion Larmor radius k⊥ρi ≫ 1 but larger than electron Larmor radius k⊥ρe < 1. This
has an interesting implication: the non-linear evolution can provide a mechanism for
perpendicular ion heating, where the threshold condition is for shear frequencies larger

9 It is interesting to notice that the author of this study identified several spurious phenomena in the PIC
simulations of K-H instability, caused by the fact that they initialized the setup with an MHD and not a
Vlasov equilibrium. Indeed, one of the main problems of simulating K-H with a PIC code is finding a suit-
able equilibrium. Unfortunately, very few exact kinetic equilibria are known for shear flows configurations.
One of the first ones was discovered by Cai et al. (1990), with several simplifying assumptions (ρi & ∆x:
“strong shear case”, uniform magnetic field unaffected by plasma dynamics). Mahajan and Hazeltine (2000)
found a generalization of the Harris equilibrium for shear flows, assuming that the magnetic field is self-
generated. Both equilibria rely on the agyrotropy of the pressure tensor. Later, Cerri et al. (2013) (see also
Cerri et al. 2014) implemented some kinetic effects (finite ion Larmor radius) into a sheared MHD equilib-
rium. The justification for this is that in collisionless systems, the approximation of an isotropic pressure as
in MHD is not valid, since the tensor pressure and shear flow are strongly coupled. In this way, they found a
quasi-kinetic equilibrium (“extended fluid model”) efficient in reducing several of the consequences of start-
ing with a non-equilibrium configuration (via hybrid Vlasov simulations). This approach was also applied
successfully later by Kemel et al. (2014) in PIC simulations.
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than Ωlh:
1
Ωlh

dV

dx
& 1 (5.72)

assuming gradient in x direction and flows in the y direction.
Similarly to the MTSI and LHDI (see Sec. 5.4.2), instabilities with frequencies in this

intermediate range between Ωci > ω > Ωce can drive particles out of their ~E × ~B drifts, a
result especially relevant in magnetically dominated plasmas (Chen et al. 2015).

Finally, it is interesting to mention that the EIH instability (and other related to the
kinetic scale K-H instability) has similar growth rates as the classical (MHD) Kelvin-
Helmholtz instability, in spite of their very different mechanisms. This has led to the
conjecture that it should be a very deep physical connection between those apparently
different instabilities (Bret 2015).

5.3.3 Magnetic field generation via kinetic K-H instability

Very recently, it has been shown that kinetic electron scale K-H instability can gen-
erate large scale stationary (DC) magnetic fields via a dynamo-like process (Alves et al.
2012, Grismayer et al. 2013a,b, Alves et al. 2014). This is different from other collision-
less mechanisms that can generate magnetic fields at small scales, in particular the Weibel
instability (e.g., in collisionless shocks). Alves et al. (2012) demonstrated this process via
3D PIC simulations of (mostly relativistic) cold shear flows (V0 ≫ vth,e) in unmagnetized
electron-proton plasmas. Their two fluid linear theory was based on the relativistic cold
dispersion relation of K-H instability by Gruzinov (2008), which gives, for a tangential
discontinuity (zero shear layer thickness), a growth rate:

γ2
=
ω2

pe

2




√
1+ 8

(kV0)2

ω2
pe

− 1 − 2
(kV0)2

ω2
pe


 (5.73)

with k the wavenumber parallel to the shear flow direction. From this expression we can
infer that the unstable wave number range is kde < V0, different from the MHD result
Eq. (5.66) in absence of magnetic field. The maximum growth rate is γmax = ωpe/

√
8

at the wavenumber k =
√

3ωpe/(
√

8V0). The real frequency is zero for all the unstable
cases.

Note that this instability is in the opposite regime of the MHD K-H instability, where
the shear flow speed is much less than the thermal one (in order to satisfy the MHD upper
threshold Eq. (5.69), absent for these regimes). Therefore, the nature of this instability
is very different from the MHD K-H, in which the mechanism is the amplification of the
perturbed pressure due to Bernoulli principle. In this cold case, there is no pressure that
can play that role and because the system is collisionless, there is no Bernoulli principle
(see Sec. 5.3.2). As explained by Grismayer et al. (2013b), this instability is produced due
to the coupling of longitudinal modes (associated with the permittivity) at each side of the
shear layer in the interface. This process is similar to the two-stream micro-instability..
Therefore, this kind of shear flow instabilities at electron scales can only takes place for
fast flows (in comparison with the thermal speed).

Alves et al. (2012) generalized the previous expression by including density asymme-
try, finding that the growth rates are reduced and the frequency gets a real oscillating part.
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Their 3D simulations showed the generation of an unexpected DC (k = 0) magnetic field
in the interface between the counterpropagating flows, with direction perpendicular to the
plane formed by the shear flow direction and the shear gradient. This is in addition to
the expected fluctuating (AC) component of magnetic field on the plane of K-H instabil-
ity, necessary to roll-up the electrons forming the K-H vortices. The AC component is the
dominant one in the non-relativistic regime, while the DC component dominates scenarios
with relativistic flows (because AC fluctuations are a decreasing function of the relativistic
gamma factor). The physical mechanism for generation of this DC magnetic field is based
in a current imbalance (DC current sheet) resulting from the mixing of electrons crossing
the deformed shear interface during the non-linear evolution (ions cannot follow them due
to their inertia), amplifying any initial magnetic field perturbation in a way similar to the
Weibel instability. This is a purely kinetic effect that cannot be taken into account in fluid
model, such as the fluid dispersion relation Eq. (5.73) that does not predict instability for
k = 0. The reason is that in these linearized calculations the dynamic deformation of the
interface between the electron flows and the corresponding mixing is not considered (to
zeroth order is fixed).

The DC magnetic field can be generated via two different mechanisms: either due
to initial thermal effects in cases of warm shear flows, or due to the cold kinetic K-H
instability in the opposite case (Grismayer et al. 2013a). In the first one, a simplified 1D
kinetic (warm) model is used where an initial temperature drives the mixing of electrons
across the shear layer. This model is valid as long as the self-generated electromagnetic
field do not affect the free motion of the particles. In this way, they estimated that the
generated DC magnetic field grows linearly on time. At saturation time, it has a typical
thickness Lsat of the order of the ion Larmor radius on this magnetic field, approximately
equal to Lsat ∼ γ0de (γ0 is the relativistic gamma factor). The strength of this DC magnetic
field has a maximum value of

Bsat
DC ∼

γ0V0

c

meωpe

e
(5.74)

For the second (cold) case, the pure cold 2D K-H instability is the mechanism that drives
the generation of DC magnetic field. The spread in the particles (mean) velocities pro-
duced by K-H play the role of an effective temperature driving the mixing of electrons
across the shear layer. The calculations show that the linear growth on time and maxi-
mum value of the DC magnetic field have similar values to the warm scenario. So, it is
seems to be a quite general process in these configurations, persisting for very long (ion)
times scales. Grismayer et al. (2013a) and Alves et al. (2014) also estimated that a finite
shear layer thickness ∆X reduces the maximum value of the DC magnetic field according
to Bsat

DC(∆X) ∼ Bsat
DC(0)/(∆X/de ), where Bsat

DC(0) is given by Eq. (5.74).
This mechanism of magnetic field generation has also been observed in 2D (Liang et al.

2013a,b) and 3D (Nishikawa et al. 2013, 2014) PIC simulations in different configura-
tions, indicating the robustness of this process. In particular, some of these works ana-
lyzed pure electron-positron plasmas, where the Hall term is absent, hinting the kinetic
nature of this process has nothing to do with the decoupling of electron/ions as in other
fluid studies. Those studies were applied to explain the magnetic fields of gamma-ray
bursts, AGNs and blazars.

It is worth mentioning that magnetic field generation has also been observed in MHD
simulations of K-H instability, but with different mechanisms for the amplification: a tur-
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bulent dynamo (see, e.g., Zhang et al. 2008) or a Biermann battery (see, e.g., Modestov et al.
2014).

5.3.4 K-H interaction with magnetic reconnection

K-H instabilities can form in magnetic reconnection configurations in basically two
different ways (see Nakamura et al. (2008) or Ma (2012) for an extended discussion).
The first one is when the shear flow direction is parallel (or at least a component) to the
reconnecting antiparallel magnetic fields. In this case, magnetic reconnection (tearing
mode) is the dominant instability and the K-H vortices play a secondary role, leading to
a plasma mixing across the shear layer. The second possible configuration happens when
the shear flow is so strong that the KH vortices can grow large enough to stretch magnetic
field lines and produce localized magnetic reconnection events. Both configurations have
been extensively observed and investigated in the context of magnetospheric reconnection.
In the rest of this thesis we will focus in the first configuration.

With an MHD approach, the simultaneous existence of both K-H and tearing modes
is not allowed in 2D configurations (Ma 2012). Indeed, the only possible configuration in
2D is for wavevectors ~k of both tearing and K-H modes parallel to both the antiparallel
magnetic field and the shear flow (the K-H ~k cannot have a component across the shear
layer x, and no variations in z are allowed in this setup). If the flow is sub-Alfvénic,
by condition Eq. (5.67) K-H modes will be stable and the system will be tearing mode
dominated. In this case, the effects of the flow is modifying the magnetic reconnection
configuration by producing a density asymmetry in the outflow region, and decreasing
the tearing mode growth rates. On the other hand, for super-Alfvénic flows K-H unstable,
it was found that tearing modes will be stable (Chen et al. 1997). Then, the only way
of having both instabilities is by allowing an oblique component of ~k in the out-of-plane
direction, that necessarily requires a 3D configuration.

But there are also non-MHD mechanisms that allow 2D configurations with both K-H
and tearing modes. Califano et al. (1999) introduced electron inertia effects in this system
by using an EMHD model (where di→ ∞), allowing the study of the interaction between
K-H and tearing instabilities.

Later, by using an incompressible Hall-MHD linear theory model and corresponding
2D simulations, Chacón et al. (2003) showed that K-H instability and tearing mode can
be simultaneously unstable for some parameter regimes. They studied configurations
with flows parallel to the magnetic field and identical shear profiles. This is due to the
decoupling between electron and ion flows inside of the sheared layer, when the latter is
of the order of the relevant kinetic scales (di or ρi). In that case, the electron layer can
be tearing unstable while the ion layer can be prone to K-H instability. They showed that
Hall effects allows the formation of tearing mode islands and ion flow vortices in both sub-
Alfvénic and super-Alfvénic regimes on dependence on the ratio di/L, in contrast with the
aforementioned MHD predictions. More precisely, in the EMHD limit of large di (ions
with infinite inertia in comparison with electrons), the separation of electron to ion scales
is large enough to have simultaneously and completely independent both K-H and tearing
instabilities. When di is large but still comparable to de (the so called Hall-MHD regime),
both instabilities are not only simultaneously unstable, but also can be strongly coupled
to each other. The dominant mode depends on the Alfvénic Mach number MA, with the
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5 Instabilities in CS: Theoretical background

strongest coupling for values in a narrow range just above MA = 1. In general, the growth
rates of the K-H instability were found to decrease when ∆x < di, due to the Hall term.
Note that these results are, however, restricted for cold ions and incompressible plasmas,
assumption not valid in strongly magnetized environments.

2D two fluid simulations of the coupling between K-H and tearing instability have
been carried out by Nakamura et al. (2008) (with MHD scale K-H vortices, without guide
field). They found that although K-H can start to grow for flows satisfying MA > 2 (the
same MHD condition as Eq. (5.67)), highly rolled vortices that can stretch magnetic field
lines requires much higher super-Alfvénic flow speeds (MA > 5). For scenarios weakly K-
H unstable (MA ∼ 2), reconnection mostly helps the growth of K-H vortices by stretching
the magnetic field lines. They pointed out that tearing mode has lower growth rates when
the system is K-H unstable, due to the magnetic field associated with the growth of this
instability generated via the Hall term (additional magnetic pressure inhibits the thinning
of the CS).

Full electromagnetic PIC simulations of the coupling between K-H instability and
magnetic reconnection have also become available recently, in the context of magneto-
spheric environments, both in 2D (Nakamura et al. 2011) and 3D (Nakamura et al. 2013).
These works investigated strong shear scenarios, where magnetic reconnection is a sec-
ondary instability generated inside of the K-H vortices.

K-H instability can also interact with magnetic reconnection in a more subtle way.
For example, K-H vortices have been reported in 2D PIC simulations of force free current
sheets with guide field up to bg = 80 by Liu et al. (2014). They were located in the
reconnection outflows at electron scales, but not related directly with secondary magnetic
islands (no wrapping of magnetic field lines around them). As a result, they produce
only small modulations of the reconnection rates, but not affecting their mean value. On
the other hand, Fermo et al. (2012) reported in 2D PIC simulations of Harris sheets with
guide field the formation of secondary magnetic islands (with wrapping of magnetic field
lines around them) generated via this instability and not due to the tearing one. Those
magnetic islands started as K-H vortices, were generated in the downstream region, and
did not have the typical flow pattern expected from a tearing island, but vortical flows.
Since those vortices had typical length scales of k−1 ∼ de, they pointed out that the onset
of K-H instability requires, in addition to super-Alfvénic flows as in MHD, the additional
requirement of growth rates γ higher than the whistler wave frequency ωW . By assuming
a typical growth rate linearly dependent on the shear flow speed and the wavenumber
(similar to the MHD result), this condition reads:

γ ∼ ∆Ve,yk ∼
∆Ve,y

de

& ωW ∼ Ωce,y

(kde)2

1+ (kde)2 (5.75)

where Ωce,y is the electron cyclotron frequency calculated on the magnetic field parallel to
the interface between the counterstreaming flows. This condition can be rewritten as:

∆Ve,y >
VAe,y

2
(5.76)

with VAe,y the electron Alfvén speed based calculated with the y component of the mag-
netic field (same as Ωce,y).
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5.3.5 Shear flow interaction with magnetic reconnection

Other works have studied the role of the shear flows on the development of the tearing
mode, in systems K-H stable. 2D MHD and Hall-MHD simulations (see Shi et al. 2005,
and references therein) have shown that shear flows can tilt the magnetic islands and
produce concentric vortical flows inside of them, as long as the shear flow speed is in
a given sub-Alfvénic range. Later, Cassak (2011a) found the scaling laws that establish
how reconnection rates decrease with increasing symmetric (same speed at each side of
the interface) shear flows on a current sheet. This was derived under a Hall-MHD model
without guide field, and tested with corresponding 2D simulations of Harris sheets (also
by Cassak 2011b). The reason is because the outflows from the X point become slower.
They are generated by the magnetic tension in the reconnected magnetic field lines, which
is released by the shear flow. Let the reconnection rate be (dψ/dt)0 in absence on shear
flow, while for finite values the reconnection rate is given by:

dψ

dt 0
=

dψ

dt

√
1 −

V2
0

V2
A

(5.77)

They also calculated the expected tilt angle θtilt of the dissipation region (with respect to
the direction parallel to the current sheet) due to dynamic pressure of the shear flow:

tan(θtilt) ∼
V 2

0

2V2
A

(5.78)

Roytershteyn and Daughton (2008) analyzed the stability of collisionless tearing mode
in thin current sheets with this configuration by incorporating flows with symmetric pro-
files in the Harris equilibrium (not counterstreaming flows). They considered both mag-
netic and shear flows on ion kinetic length scales. For thick current sheets L & ρi , the
shear flow speed is the dominant parameter in the evolution of the CS, being able to either
stabilize or destabilize the tearing mode in some parameter regimes. The latter case is op-
posite to the Hall-MHD predictions where a shear flow always stabilize the tearing mode.
For thin current sheets L . ρi, the shear flow always stabilizes the reconnection process,
in addition to produce strong non thermal features in the distribution function. An im-
portant finding is that the shear flows never stabilize completely the tearing instability in
their analyzed parameter range, even with super-Alfvénic flows. All this was confirmed
via solutions of the full linearized Vlasov-Maxwell systems and 2D PIC simulations.

Later, Hosseinpour and Mohammadi (2013) carried out a two fluid analysis of colli-
sionless tearing mode under the influence of a shear flow. By taking into account electron
inertia, they showed that the out-of-plane Hall magnetic field can exhibit a significant
symmetric structure for low βy < 1, something not predicted by the standard two fluid
model developed by Rogers et al. (2001) who did not consider the effects of the shear
flow, relevant for force free CS. But the work by Hosseinpour and Mohammadi (2013)
also predicts antisymmetric or quadrupolar structure of δBz for the regime βy ≫ 1, even
with strong flow speeds, in agreement with Rogers et al. (2001).

103



5 Instabilities in CS: Theoretical background

5.4 Streaming instabilities

5.4.1 Instabilities of field aligned currents with oblique or perpendic-

ular propagation

Field aligned currents ~V0 ‖ ~B can produce instabilities although the drift speed be-
tween ions and electrons is below vth,e. This condition necessarily requires obliquely
propagating waves with |~k · ~V0| ≪ V0 and thus a phase speed ω/k ≪ vth,e. The most
known example is the so called ion cyclotron harmonic wave instability (ICHWI, see
Drummond and Rosenbluth (1962)). It drives waves at the harmonics of Ωci , with propa-
gation almost perpendicular to ~B and wavelengths comparable to ρi (Brown et al. 2013).
They are the low frequency relatives of the electron cyclotron harmonic waves, also
known as Bernstein waves (Bernstein 1958). Different from Buneman or ion acoustic
instability that involves a coupling with Langmuir waves, in this case the coupling is with
the slow extraordinary mode or lower hybrid mode. These waves are strongly damped
by electron/ion cyclotron resonance if they have a parallel propagating component (not
perpendicular propagation ~k ⊥ ~B). On the other hand, they are not affected significantly
damped when Ti ∼ Te as the ion-acoustic or Buneman waves. Kindel and Kennel (1971)
showed that this critical threshold for the electrostatic ion-cyclotron instability is reduced
to values V0/vth,e > 0.2 for Ti ∼ Te , facilitating its excitation over ion-acoustic or Bune-
man in scenarios with weak currents or when the direction~k ‖ ~B is neglected for numerical
reasons (as in 2D simulations). Therefore, it might be triggered more easily in reconnec-
tion, although their slow growth rates comparable to Ωci can make it more difficult to see
since other faster processes can take over. Higher currents will suppress this instability by
destroying the ion gyromotion, leading to a demagnetization of them and preparing the
conditions for the possible excitation of ion-acoustic instability (Hasegawa 1975). On the
other hand, the final non-linear saturate stage of this instability in a spatial modulation in
the ion-density at scales of ρi due to ion phase space holes, moving across the magnetic
field at speed comparable with vth,i . These ion structures occurs because the low phase
speed of the ICH waves allow a strong interaction with ions, instead of electrons as with
the high frequency waves generated by the Buneman instability.

An important characteristic of these waves is that a reduced mass ratio accelerate their
growth, an important fact to keep in mind for PIC simulations (Brown et al. 2013). How-
ever, and because this instability has frequencies on the order of Ωci , which correspond to
the typical time scales of magnetic reconnection, if it is developed will be overcomed by
the main process, being unlikely to play any important role.

5.4.2 Instabilities of cross-field currents with nearly perpendicular

propagation

A relative drift between electrons and ions perpendicular to the magnetic field: V0 ⊥ ~B
can also generate electrostatic or electromagnetic instabilities. In this configuration a mag-
netic field has a destabilizing effect, making a plasma more prone to additional instabil-
ities than unmagnetized environments. This is especially important when the plasma is
inhomogeneous and/or the characteristic electron frequencies are comparable ω pe ∼ Ωce.
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5.4 Streaming instabilities

And different from many other streaming instabilities, they can exist even for Te ∼ Ti .
It is important to remark that all the instabilities to be described, because of their

typical frequencies and propagation direction, share an important feature: they can diffuse
particles across the magnetic field 10 . This means that if the waves generated by them are
strong enough, wave-particle interaction can move electrons and/or ions out of their ~E × ~B
drifts across the magnetic field (Chen et al. 2015). As we will see in our simulations to
be shown in Chapter 9, this fact has an important practical consequence when comparing
with reduced plasma models, such as the gyrokinetic approximation. Indeed, since the
gyrokinetic approach assumes that the motion of particle across the magnetic field is
uniquely described by these drifts, it is understandable that these instabilities will have
effects that can only be captured by means of a full kinetic approach.

5.4.2.1 Electron cyclotron drift instability (ECDI)

The electrostatic instabilities with relative bulk flow between electrons and ions as
their source of free energy are known generically as cross-field streaming or beam-cyclotron
drift instabilities. We are going to focus in the particular case of drifting electrons, where
the corresponding instability is called electron-cyclotron drift instability (ECDI). ECDI
has a minimum drift speed threshold much lower than vth,e , with typical frequencies rela-
tively high: on the order of the electron cyclotron harmonics nΩce (Hasegawa 1975).

The cold dispersion relation for this instability was first studied by Buneman (1962).
Later, Wong (1970), Gary (1970) and Forslund et al. (1970) studied the thermal effects on
the ECDI, finding the same hot dispersion relation as for (electron) Bernstein waves but
with an additional term due to the ions

(kλDe)2 = −1 + e−λI0(λ) + 2ω2
∞∑

n=1

e−λIn(λ)
ω2 − (nΩce)2

+
Te

2Ti

Z′


ω − kV0√

2kvth,i


 (5.79)

with λ = (kρe)2/2 and I0 is the modified Bessel function of order 0. Here we have as-
sumed strictly perpendicular propagation ~k ‖ ~V0 ⊥ ~B (see derivation, e.g., in Gary 1970),
unmagnetized ions and neglecting all kind of gradients. As an electrostatic dispersion
relation describing longitudinal waves, it is valid for low beta plasmas. From the analysis
of this dispersion relation, Forslund et al. (1970) found that the source of this instability
is the resonance of electron cyclotron waves with the tail of the ion VDF. In other words,
it is produced due to the coupling of (Doppler-shifted) slow electron Bernstein with ion
acoustic waves (Lashmore-Davies and Martin 1973). Thus, in the terminology previously
mentioned, it is a reactive instability. As a result, it produces perpendicular ion heat-
ing during this linear development, besides of the expected electron heating due to the
electron cyclo-resonance. The unstable roots are asymptotic to the electron cyclotron har-
monics ω = nΩce for large kρe (or λ). An approximate expression for the growth rates
when γ ≪ ωr can be written as:

γ

Ωce

≈ n

2
√
πkρe

Te

Ti

Im Z′((ωr − kVd)/kvth,i)
[1 + (kλDe)2 − (Te/2Ti) Re Z′((ωr − kVd)/kvth,i)]2

(5.80)

10 The diffusion across magnetic fields can be characterized by the coefficient Dr〈(∆r)2〉 depending on the
wave electric field amplitude, as well as the diffusion in velocity space along the magnetic field Dv〈(∆v)2〉.
See details in Drummond and Rosenbluth (1962).

105
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From this we can infer that this instability is very weakly dependent on both temperature
and mass ratio. It has a cutoff for wavelengths smaller than the Debye length kλDe > 1,
which occurs for smaller values of the drift speed V0/vth,e (for larger frequency ratios
ωpe/Ωce). Therefore, their typical wavelengths are of the order kλDe < 1 . Since the
frequency ratio is proportional to the Alfvén speed due to the relations in Appendix A.3.1,
this means that the instability is more efficient in environments with high density and
low magnetic field strength. More precisely, an approximate instability criterion can be
written as (Forslund et al. 1972):

V0

vth,e

& n
Ωce

ωpe

(5.81)

and it also requires V0 > vth,i. From here we can see that is more difficult destabilize
higher harmonics (characterized by n), i.e.: they require higher values of the drift speed.
Furthermore, high values of the frequency ratio ωpe/Ωce allow a lower threshold in the
drift speed11. For V0 > vth,i and large wavelengths kλDe < 1, this instability has a maxi-
mum growth rate of the order (Forslund et al. 1972):

γmax ∼
Ωce√
π

V0

vth,e

Te

Ti

(5.82)

Note the dependence on the temperature ratio in the previous expression. This insta-
bility is more efficient for large electron temperatures. For Ti ∼ Te, the nature of this
instability changes from reactive to dissipative (only the branch related with electron
Bernstein waves are unstable), implying an easier quenching (in comparison to other re-
active instabilities) due to quasilinear effects that breaks the resonance condition (see
Lashmore-Davies and Martin 1973). It is also interesting to see the cold limit V0, ω/k ≫
vth,e of the dispersion relation Eq. (5.79)(see Forslund et al. (1970) and also the textbook
Birdsall and Langdon (1991)):

1 −
ω2

pe

ω2 − Ω2
ce

−
ω2

pi

(ω − kV0)2
= 0 (5.83)

For Ωce ≪ ωpe, this becomes identical to the cold Buneman dispersion relation (see, e.g.,
Treumann 2001, Sec 2.3) although the geometry involved and mechanism for the wave
interaction are quite different. For this instability, the coupling is not with the ion-acoustic
waves, but between the upper-hybrid mode with the Doppler shifted lower hybrid mode.

Later, Forslund et al. (1972) extended the previous analysis by allowing propagating
with arbitrary angle and including collisional effects. They found the turbulence spectrum
generated by this instability covers a wide range of angles centered in the drift speed
direction, in the plane perpendicular to ~B. As expected, they also confirmed the narrow
range of angles of unstable waves for non perpendicular propagation (~k · ~B , 0), due to

11This fact impose a severe restriction on PIC simulations of these instabilities. In fact, due to numerical
constraints, these simulations require a lower value of the frequency ratio ωpe/Ωce than the usually found in
nature. This leads to artificially large charge separation and correspondingly large electric fields, making the
system more unstable (Winske et al. 1987, Chen et al. 2012). In addition, the threshold for these streaming
instabilities will be higher than in real physical environments, making more difficult the excitation of the
processes associated with them.
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the cyclotron damping. On the other hand, they also established that an electron collision
frequency of the order of the growth rate is required for stabilization, making those effects
negligible in our case. Forslund et al. (1972) also carried out PIC simulations of this
instability for the non-linear evolution and saturation of this instability, although in a high
beta parameter range. For wavelengths satisfying 1 < kρe < 2π, they observed strong
perpendicular electron heating, being attributed to a resonance in the main part of the
electron VDF and the corresponding trapping. This contributes, as expected, to rise the
threshold Eq. (5.81) and thus to self-suppress this instability.

During the early years of the study of the ECDI other works reached slightly differ-
ent conclusions. Among them it is worth to mention the one carried out by Lampe et al.
(1971), applied especially for low beta plasmas. They found that the fast growth rates of
the ECDI transform it in a ion-acoustic instability in the course of its evolution, avoiding
the electron trapping seen in the simulations by Forslund et al. (1972). The fast exponen-
tial electron heating slows down very quickly, due to the relatively low level of satura-
tion turbulence, generating ion trapping. And since the ion-acoustic instability requires
Te ≫ Ti , in many cases the final state will be a stable one. Another work to be analyzed
with more detail later is Fujimoto and Machida (2003), with results also supporting the
conclusion that the electron heating by this instability is not too efficient for relatively low
drift speeds V0 < vth,e. Indeed, they estimated the electron temperature at saturation to be:

Te,sat/Te,0 ∼ (V0/vth,e)2 (5.84)

Zhou et al. (1984) analyzed the plasma beta effects on this instability, founding a re-
duction in the growth rates as this parameter increases. In addition, magnetic gradient
will also contribute to stabilize the ECDI.

5.4.2.2 Modified two stream instability (MTSI) / Kinetic cross-field streaming in-

stability KCSI

Krall and Liewer (1971) (see also Krall and Liewer 1972) discovered a cross-field
streaming instability not only more or less independent on the temperature ratio and with
threshold much lower than vth,e (both properties similar to ECDI), but also with an inter-
mediate range of frequenciesΩci < ω < Ωce. They called modified two-stream instability
or MTSI. It is usually applied for a parameter regime where the ions are unmagnetized
while the electrons are strongly magnetized, implying wavelengths ρe . λ ≪ ρi. Its typi-
cal frequency and growth rates are close to the lower hybrid frequency Ωlh (less than the
typical ones from the ECDI) and it has almost perpendicular propagation (same as ECDI).
This and many other properties can be derived from the electrostatic dispersion relation
(McBride 1972):

1− 1
2k2λ2

De

Te

Ti

Z′



ω− ~k · ~U
√

2kvth,i


 −

e−λ I0(λ)
2k2λ2

De

Z′


ω
√

2kvth,e

 +
1 − e−λI0(λ)

(kλDe)2
= 0 (5.85)

with λ = (kρe)2 and I0 is the modified Bessel function of zeroth order. As usual, this is
calculated in the electron frame of reference with ions drifting with speed V0. It is also
assumed Ωci ≪ ω ≪ Ωce and kρe < 1. Compare with the dispersion relation for its high-
frequency relative ECDI Eq. (5.79). Due to the assumption of low frequencies ω ≪ Ωce,
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only the term n = 1 in the infinite sum Eq. (5.79) is kept. McBride (1972) pointed out and
tested a very interesting property of this dispersion relation: it is independent on the mass
ratio if the angle sin θ = kz/k is rescaled to θ′ = θ

√
mi/me. If it is additionally assumed

small θ and λ < 1, the dispersion relation can be expressed independently of ωpe/Ωce

rescaling the frequency and wavenumber as:

ω =
ω

ωpi

√
1 +ω2

pe/Ω
2
ce (5.86)

k
′
= k
Ωce

ωpe

√
1 + ω2

pe/Ω
2
ce (5.87)

So, Eq. (5.85) has only two real free parameters: Te/Ti and V0/vth,i. Numerical solution
of the unstable waves predicted by this dispersion relation show that MTSI always have a
negative group speed ∂ωr/∂k . 0, similar to the generic property of the ion-acoustic wave
(Gary et al. 1987), in addition to a phase speed smaller than the drift speed: |ωr/k| < V0.
The latter means that the positive slope of the ion VDF drives the instability.

Now, using the appropriate asymptotic expansion of the plasma zeta function in the
cold limit kρe ≪ 1, kvth,i < |ω − ~k · ~U | and kvth,e < |ω|, we have (McBride 1972):

1 +
k2
⊥

k2

ω2
pe

Ω2
ce

−
k2
‖

k2

ω2
pe

ω2
−

ω2
pi

(ω − k⊥V0)2
= 0 (5.88)

From here we can see its similarity with the dispersion relation of the Buneman instability
(see, e.g., Treumann 2001, Sec 2.3) , and hence the origin of the name MTSI. This fact
also implies that is a non-resonant or fluid-like instability. The second term is due to the
polarization drift of electrons across the magnetic field ~vP = −(dE⊥/dt)/(BΩce), while
the second gives the free streaming of electron along the magnetic field lines. This has
a very interesting interpretation by comparing with the Buneman dispersion relation: the
electrons behave as if they had an “effective mass” me,eff =

k2

k2
‖
me, which is larger for

propagation angles nearly perpendicular k
k‖
≫ 1 (McBride 1972). We can have a deeper

insight about the range of frequencies involved in this MTSI by simplifying Eq. (5.88)
and rewrite it as (Treumann and Baumjohann 2001):

1−
Ω2

lh

(ω− k⊥V0)2
−

mik
2
‖

mek
2

Ω2
lh

ω2
= 0 (5.89)

with Ωlh is the lower hybrid frequency (see Appendix A.1.2). This expression allow us
easily to make a correspondence with the Buneman instability dispersion relations can be
obtained by replacing ωpe with Ωlh and ω2

pi with (mik
2
‖ /mek

2)Ω2
lh, respectively. Therefore,

this reactive instability involves the coupling (Lashmore-Davies and Martin 1973) of a
lower hybrid mode (ω ≈ Ωlh) with a Doppler shifted electron Langmuir mode (ω ≈
k⊥V0 − (k‖/k)

√
mi/meΩlh). From the cold dispersion relation Eq. (5.89) we can derive the

following condition for the existence of MTSI (Treumann and Baumjohann 2001):

k2
⊥V2

0
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2
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2
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(5.90)
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By comparing with the respective condition on the threshold speed of the Buneman in-

stability (kV0)2 < ω2
pe

[
1 +

(
me

mi

)1/3
]3

(see, e.g., Treumann 2001, Sec. 2.3), we can infer

that MTSI requires a much lower threshold than the latter to be driven unstable, because
Ωlh ≪ ωpe. From Eq. (5.90), we can also derive the following relation that gives the prop-
agation direction of the MTSI waves with maximum growth rate (more unstable roots of
Eq. (5.85)):


k2
‖

k2
⊥

 ∼
me

mi

≪ 1 (5.91)

i.e., close to perpendicular propagation. However, a necessary condition for the existence
of this instability is a finite k‖, or not strictly a perpendicular propagation. Note that this
condition is relaxed, in the sense of more oblique waves are allowed, when a reduced mass
ratio is used. This also implies that the “effective electron mass” for these waves is similar
to the ion mass: me,e f f ∼ mi . Finally, for nearly perpendicular propagation direction, the
maximum growth rate, wave number and real frequency are given by:

γmax = Ωlh/2 (5.92)

k⊥,maxV0 ∼ Ωlh/2 (5.93)

ωr,max = k⊥,maxV0/2 ∼ Ωlh (5.94)

Note that through Ωlh, it can be inferred a weak dependence of this instability on the
frequency ratio ωpe/Ωce (e.g.: a decrement of 3 orders of magnitude in the frequency ratio
will decrease growth rates only in a factor of two. See further details in Gary et al. (1987)
or Lashmore-Davies and Martin (1973)). The estimation Eq. (5.94) allow us to rewrite the
condition to overcome ion Landau damping, |ω−~k · ~V0| > kvth,i, as an instability threshold
on the drift speed (McBride 1972):

V0 > vth,i (5.95)

In a similar way, by using both estimations Eq. (5.93) and Eq. (5.94), we can find the
following condition to avoid electron Landau damping given by ω > k‖vth,e:

k‖

k⊥
.

V0

vth,e

⇔ tan θ .
me

mi

V0

vth,eme/mi

(5.96)

which is a restriction on the propagation direction (McBride 1972): waves with propaga-
tion far from strictly perpendicular will experience more electron Landau damping. From
here and Eq. (5.91) we can understand the decrease in the Buneman instability threshold
from V0 > vth,e to the MTSI threshold

V0 > (k‖/k)vth,e =
√

me/mivth,e = vth,i (5.97)

Other properties can be obtained just through a numerical solution of the hot disper-
sion relation Eq. (5.85). One of these properties is the dependence of the growth rates on
the drift speed V0/vth,i (note that the cold dispersion relation Eq. (5.88) is independent on
this parameter). Following this method, McBride (1972) found that the maximum value
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of the growth rates is a decreasing function of the drift speed, as well as the propagation
angles of this maximum and the cut-off angles in which MTSI ceases to exist. On the other
hand, it was also shown that γmax is a weakly decreasing function of the temperature ratio.
The propagation angle in which this γmax takes place also decreases the angle θ (it is not
constant as the approximation Eq. (5.91) may suggest). However, for large ratios Te/Ti

the unstable range of wave numbers is enhanced because the ion-acoustic instability, with
parallel propagation, takes over. Indeed, it can be shown that both instabilities are closely
related, especially in the case of Te = Ti when the propagation shift from perpendicular
to parallel (Lashmore-Davies and Martin 1973). This implies the change of nature from
a reactive (MTSI) to dissipative instability (ion-acoustic), being more easily stabilized.

In contrast to most of the other streaming instabilities analyzed so far that only heat
electrons, MTSI can also heat ions in the perpendicular direction to the magnetic field,
along the direction of the unstable waves. This is in addition to the expected parallel
electron heating due to their free streaming along ~B (and different from the perpendicular
electron heating due to ECDI because the cyclotron resonances). It is possible to relate
the magnitude of the relative heating by noticing first that the effective electron and ion
mass are equal, me,eff = mi , for a propagation direction of sin θ = k‖/k =

√
me/mi (which

correspond to the most unstable waves). Then, it is expected than the perpendicular ion
heating can be comparable with the parallel electron heating for this propagation direction.
By using some quasilinear estimates at saturation time, and validates afterwards with 2D
simulations, McBride (1972) found the relation:

√
kBTi⊥

mi

=

√
kBTe‖

mi

∼ V0

2
(5.98)

i.e.: the streaming free energy is equipartitioned between the thermal energies of ions and
electrons.

So far, all the previous analysis and conclusions were done assuming only electrostatic
fluctuations and small plasma beta. McBride (1972) and McBride and Ott (1972) also
analyzed the electromagnetic effects in MTSI. Many of the conclusions can be understood
from the cold dispersion relation considering both effects (but still k‖≫ k⊥ and ω ≪Ωce),
analogous to Eq. (5.89):
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= 0 (5.99)

These authors established that the extra terms due to electromagnetic effects have a sta-
bilizing effect, imposing an upper limit in the value of drift speed and restricting the
instability to

V0

VA

.

√
1 + βe (5.100)

implying and extra condition on the lower threshold V0 > vth,i to vth,i < VA

√
1 + βe. Com-

bining both conditions:

1 <
V

vth,i

.

√
2

1 + βe

βi

(5.101)
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Furthermore, the electrostatic instability is recovered in the limit of small speeds V0 in
comparison with VA

√
1+ βe.

After the initial studies in the early 70s summarized in McBride (1972), other works
analyzed the electromagnetic effects on this instability in the high beta range of parame-
ters. The reason is because the usual electrostatic approximation is valid for small wave-
lengths, assumption not necessarily valid for the expected wavelengths of MTSI in a wider
set of parameter regimes. Lemons and Gary (1977) found that these effects reduce the
growths rate of MTSI, but at the same time make wider the unstable range of wavenum-
bers (with important consequences for its overall contribution to the turbulence level).
The electromagnetic contributions to the dispersion relation are also more dominant, in
comparison with the electrostatic ones, for non-perpendicular propagation. The relative
importance of the electromagnetic corrections is also an increasing function on the plasma
beta. More precisely, they are dominant for values greater than one of the coupling pa-
rameter (Davidson et al. 1977):

δEM =
ωpe

c2k2
=

βe

(kρe)2
& 1 (5.102)

Finally, Lemons and Gary (1977) also found that MTSI has a comparable electrostatic
and magnetic fluctuation level for low plasma betas, even though it is mostly an electro-
static instability in this regime. Later, Wu et al. (1983) analyzed the large drift regime of
this instability, finding that the nature of this instability is essentially kinetic (electrons
become more resonant producing enhanced Landau damping) and electromagnetic when
V0 ≫ VA in high beta plasmas, in the transition to the ECDI. This means that the propaga-
tion angle at maximum growth rate decreases significantly (shift from perpendicular) and
the unstable modes are modified whistler waves. On the other hand, in low beta plasmas,
electromagnetic effects can suppress the instability for V0 > VA, but they are unimpor-
tant in the opposite regime, in agreement with the findings of McBride (1972). They
also found that in low plasma betas, the levels of electrostatic and magnetic fluctuations
will be similar (Wu et al. 1983). Because the different nature of MTSI in the high beta
regime, it is often called kinetic cross-field streaming instability or KCSI. However, other
works prefer to call both MTSI and KCSI with the generic name electron-ion modified

two stream instability (Gary et al. 1987).
Another later work by Winske et al. (1985) investigated the ion and electron heating

for this instability in both low beta (MTSI) and high beta regimes (KCSI), with both quasi-
linear theory and 2D PIC simulations. In general, the fluctuations levels and both electron
and ion heating rates decrease with an increasing plasma beta (it has low saturation levels
in the high beta regime). They showed that for an increasing plasma beta, the heating
becomes more isotropic for ions. This reflects the fact that higher beta implies a more
oblique propagation of the unstable waves, and therefore a more comparable heating be-
tween both directions. Regarding the electrons heating, this becomes more field aligned,
i.e.: more anisotropic with an increasing plasma beta. On the other hand, the relative ratio
between parallel electron heating and perpendicular ion heating is an increasing function
of the plasma beta. Another important finding of Winske et al. (1985) is that for low
beta the saturation mechanism is comparable between electron and ion trapping, while
for high beta it becomes easier for the unstable waves to trap electrons due to the more
oblique propagation.

111
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5.4.2.3 Cross field streaming instabilities and magnetic reconnection

A long time after the pioneer studies of cross-field streaming instabilities in the 70s,
Fujimoto and Machida (2003) applied these old findings to a scenario likely to be de-
veloped during magnetic reconnection. In particular, they proposed that due to the de-
coupling of ions and electrons in the diffusion region, large cross-field Hall currents can
be generated, which can interact with the out-of-plane Hall magnetic field via the elec-
trostatic cross-field streaming instabilities previously discussed. Of course, this effect
might be additionally enhanced by imposing a magnetic guide field. Note that the relative
streaming of the electrons and ions arises because the outflow speeds from the X point
are of the order of the in-plane Alfvén speed VA for ions and in-plane electron Alfvén
speed VAe,y for electrons (Shay et al. 2001). By performing a linear analysis and 2D PIC
simulations with much higher resolution than the original works from the 70s, they found
a very interesting interplay between the two cross-field streaming instabilities KCSI and
ECDI. It is important to mention than in the linear analysis, they considered frequen-
cies higher than the ion-cyclotron frequency, since modes with lower frequencies will not
have time to grow in the diffusion region. More precisely, Ωuh & ω > Ωlh ≫ Ωci , with

ωuh =

√
ω2

pe + Ω
2
ce the upper hybrid frequency and Ωlh the lower hybrid frequency (see

Appendix A.1.2). They also allowed arbitrary propagation direction and electromagnetic
fluctuations in addition to the electrostatic ones. In this way, they could study both KCSI
and ECDI with an unified approach.

The mechanism proposed by Fujimoto and Machida (2003) can be understood as fol-
lows. The kinetic cross-field streaming instability KCSI requires much lower threshold
Vd/vth,e on the relative drift speed than ECDI, being more likely to be developed first in
the diffusion region of magnetic reconnection as the current sheet thins. This instability
has relatively low growth rates but can produce a weak parallel heating of electrons. Then,
when the Hall current or relative speed between electron-ions overcomes a critical thresh-
old (a significant fraction of vth,e according to Eq. (5.81)), the fastest growing ECDI can
be triggered. This threshold was about Vd/vth,e ∼ 0.6 for the parameter regime analyzed.
As we discussed, ECDI heats the electrons in the perpendicular direction very quickly.

One of the findings of the linear dispersion analysis of Fujimoto and Machida (2003)
is that the critical threshold in which ECDI is dominant in comparison with KCSI is a
decreasing function on the mass ratio, important for numerical simulations.

There have been previous investigations about the role of streaming instabilities in
force free configurations of magnetic reconnection, but in the relativistic regime with pair
plasmas (see Haruki and Sakai 2001, Sakai and Matsuo 2004). They also noticed the gen-
eration of quasi-steady magnetic fields (similar to the previously described and reported
by Alves et al. (2014), caused by the Kelvin-Helmholtz (macro) instability in unmagne-
tized plasmas). Nevertheless, they are strongly dissipated in a short time because of the
electrostatic fluctuations caused by the streaming instability. In Liu et al. (2014) it was
shown that reduction of reconnection rates may happen when intense electric fields, due
to secondary streaming instabilities, are generated in magnetic reconnection configura-
tions for a strong guide field.
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5.4 Streaming instabilities

5.4.2.4 Lower Hybrid Drift Instability (LHDI)

The modified two stream instability MTSI have frequencies near the lower hybrid
frequency Ωlh , with propagation oblique to ~B. Their generalization for inhomogeneous
plasmas (in density, temperature or magnetic field) is called Lower Hybrid Drift insta-
bility (LHDI), being first found by Krall and Liewer (1971). Basically, assuming in-
homogeneity only in density and/or pressure, the diamagnetic drifts generated by the
pressure gradients produce cross-field currents that behaves analogously to the ones re-
quired for the triggering of MTSI (for a more detailed proof of their equivalence, see
Lashmore-Davies and Martin 1973). As a result, the range of conditions in which MTSI
can exist is extended due to the gradients (destabilization becomes easier).

Now, in order to estimate how inhomogeneous a plasma should be to trigger LHDI,
we need to define a characteristic quantity. In the frame of reference of stationary ions,
the electrons will be drifting with the diamagnetic drift given by Eq. (3.21), or, assuming
gradients in x̂ direction and magnetic field in the ẑ direction,

~VD,⊥ =
v2

th,e

Ωce

(
1
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dne

dx
+

1
Te

dTe,⊥

dx

)
ŷ (5.103)

⇔
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1
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)
ŷ (5.104)

It is interesting to note that if we denote the approximate length scale of variations of
the gradients as (1/ne)dne/dx ∼ (1/Te )dTe/dx ∼ 1/Ln, then we have an inverse relation
between the magnitude of the diamagnetic drift and the scale of inhomogeneity in units
of ρi:

VD,⊥

vth,i

=
1

Ln/ρi

(5.105)

In the so called drift-approximation, the full motion of electrons will also have to incorpo-
rate at least the ~E × ~B drift (dominant over gradient drifts especially in low beta plasmas.
See Gary (1970) and Lashmore-Davies and Martin (1973)) for a frame of reference non-
comoving with them. Note that a more general expression should also include magnetic
field gradients, but they usually are negligible in low beta plasmas. Then, an approximate
threshold condition of this instability, assuming (ω/k) ≫ vth,i and neglecting electron
Larmor radius effects k⊥ρe > 1 can be written as (Krall and Liewer 1971):

V0VD,⊥ &
Ti + Te

mi

(5.106)

with V0 is the same cross-field electron-ion drift speed discussed for the streaming insta-
bilities (possibly arising as a result of the ~E × ~B in a frame of reference with electrons
non-stationary). Note that the right hand side is just the square of the sound speed. Com-
bining with Eq. (5.104), we have the alternate expression:

∣∣∣∣∣∣
1

Pe,⊥

dPe,⊥

dx

∣∣∣∣∣∣
−1

. ρi (5.107)
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with Pe,⊥ = nekBTe,⊥. This simply means that the length scale of the pressure gradient
should be smaller than ρi in order to drive LHDI unstable. The inclusion of the associated
gradient drifts and its relatively long wavelengths makes necessary the addition of electro-
magnetic effects (Lemons and Gary 1977, Lashmore-Davies and Martin 1973) for their
linear analysis (contrary to KCSI or ECDI for which an electrostatic approach is enough
due to their short wavelengths). However, a first order approximation can be obtained
in the electrostatic approximation. We assume the same conditions as for MTSI: unmag-
netized ions, magnetized electrons (wavelengths ρe < λ < ρi). Then, the real part of
the dispersion relation becomes for phase speeds much larger than the ion thermal speed
(ω/k)≫ vth,i (Treumann and Baumjohann 2001):
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+
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k2λ2
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+
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k2λ2
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= 0 (5.108)

Note the similarity of this expression with the corresponding dispersion relation for the
Buneman or MTSI instabilities Eq. (5.88). Therefore, in a similar way, it will have solu-
tions for ω/k < VD,⊥. Assuming additionally Te ≪ Ti , it is possible to find analytical ap-
proximations of the maximum growth rate, frequency and wavenumber (Davidson and Gladd
1975):

γ

Ωlh

=
1
4

√
π

2

(
VD,⊥

vth,i

)2

(5.109)

ω

Ωlh

=
1
√

2

(
VD,⊥

vth,i

)
(5.110)

kρe =
√

2

√
Ti

Te

(5.111)

which implies a phase speed at maximum growth rate ω/k ≈ VD,⊥/2. Now, let us discuss
some of the properties that only a numerical solution of the full electrostatic dispersion
relation can provide. As it was found first by Gladd (1976), the propagation direction of
the most unstable waves is perpendicular to both magnetic field: it propagates much less
obliquely than MTSI, with maximum growth rates in the regime k‖/k⊥ ≪ 1. In addition,
it is wavevector is also orthogonal to the pressure gradients (Yoon and Lui 2008). Similar
to MTSI, it is not too dependent on the temperature ratio, something especially relevant
in a plasma with equal temperature for electrons and ions where other instabilities, such
ion-acoustic, should be damped (according to Krall and Liewer (1971): “both [MTSI and
LHDI] are quite happy growing in a Te ∼ Ti plasma)”. By analyzing an intermediate
range of drift speeds VD,⊥ ∼ V0 ∼ vth,i, Davidson and Gladd (1975) found that for Te ∼ Ti

its typical wavenumbers at maximum growth rates satisfy k⊥ρe ∼ 1 over a wide range
of values of V0 and VD,⊥ (compare with MTSI that have larger wavelengths k⊥ρe < 1).
Therefore, finite electron Larmor radius effects are essential to describe properly this in-
stability in this parameter range. This is something to keep in mind when comparing with
gyrokinetic simulations in which these effects are ordered out. It was also shown that
the instability is not completely shut-down when VD,⊥, V0 < vth,i as the threshold condi-
tion Eq. (5.106) may suggest. Instead, when taking into account finite electron Larmor
radius effects by solving the full dispersion relation, growth rates are still a significant
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5.4 Streaming instabilities

fraction of γ ∼ Ωlh when the streaming or diamagnetic drift are below the thermal speed.
Davidson and Gladd (1975) also analyzed the non-linear evolution of this instability and
its contribution to the anomalous transport, founding that the fastest electron and ion heat-
ing is reached when VD,⊥,V0 ∼ vth,i.

All the previous conclusions and analysis were done under the assumption of unmag-
netized ions: ω ≫ Ωci and k⊥ρi ≫ 1. For diamagnetic drift speeds low enough, this
assumption breaks down. As pointed out by Davidson et al. (1977), taking into account
these finite ion Larmor radius effects implies another different bottom constraint on the
minimum value of VD,⊥, or equivalently, the minimum inhomogeneity required to trigger
LHDI (since both are related by Eq. (5.104)). This cannot be taken into account by means
of the previously discussed linear analysis and electrostatic dispersion relation, and there-
fore Eq. (5.106) cannot be valid in this regime. The result is the instability threshold
condition:
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For realistic frequencies ratios in many astrophysical environments (ωpe ≫ Ωce) and real-
istic mass ratios, the value is quite low (4/(

√
2mi/me) ∼ 10−3), indicating that even mild

gradients in density (compared with the ion gyroradius) will make a plasma unstable to
LHDI. This can be seen more clearly if we denote the typical length scale of the inho-
mogeneity as Ln, since the previous instability threshold in the “realistic limit” becomes
approximately:

Ln

ρi

.

√
2

4

√
mi

me

∼ 15 (5.113)

On the other hand, PIC simulations require much lower frequencies ratios as well as mass
ratios, implying that the threshold required for LHDI is higher than in nature: gradient
scale lengths should be much steeper, on the order of Ln . ρi . Therefore, PIC simulations
makes more difficult the development of LHDI, allowing an artificial stable parameter
regime that it should not exist in the reality.

Friedberg and Gerwin (1977) complemented the previous study of Davidson et al. (1977)
by analyzing analytically the behaviour of LHDI in the limit of even lower diamagnetic
drift speeds VD,⊥ < 0.5vth,i. They found that in this limit, LHDI becomes ion-cyclotron
drift instability, with very different properties and much lower frequencies. This is conse-
quence of the resonant (with the characteristic frequencies nΩci) character of the instabil-
ity in this regime. If the diamagnetic drift speed decreases even more, both instabilities
are completely stabilized for VD,⊥/vth,i .

√
mi/me, which is usually very small (except in

PIC simulations with reduced mass ratios). This is an indication of the universal character
of this instability: it is almost always present whenever there are gradients in the thermal
pressure, although their growth rates may be small in comparison with other instabilities.

Electromagnetic or finite plasma beta effects on the electrostatic dispersion relation
were studied by Gladd (1976). They concluded that these effects manifest through the
induction of gradients in magnetic field, allowing the coupling between electrostatic and
electromagnetic modes. Therefore, many of their consequences can be analyzed with the
same dispersion relation, just extending the diamagnetic drift speed to include magnetic
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5 Instabilities in CS: Theoretical background

gradients. They found that in high beta plasma regimes LHDI can be very weak, because
the gradients in magnetic field are more important and in the opposite direction to pressure
gradients, and thus, a cancellation of the associated diamagnetic drift is expected. The
dependence on beta of the magnetic gradient drift speed (using the same geometry as in
Eq. (5.104)):
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= −ρi
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)
ŷ (5.114)

can be understood by writing its ratio with respect to the diamagnetic drift speed Eq. (5.104),
resulting in (Davidson et al. 1977):
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Note that in deriving this expression the Maxwell equations have been used to relate the
different gradients:

1
B

dB

dx
= −1

2
(βi + βe)

1
ne

dne

dx
− 1

2
βe

1
Te

dTe

dx
(5.116)

Thus, VB,⊥ is comparable to VD,⊥ whenever βe ≈ 1. By performing numerical solutions of
the full dispersion relation, Davidson et al. (1977) found a more precise critical threshold
in βe beyond which LHDI is completely stabilized. This threshold increases with larger
diamagnetic drift speeds and it does not exist for Ti ≫ Te . Furthermore, they also showed
that the most significant decrease in the LHDI growth rates due to finite plasma beta ef-
fects is in the regime VD . vth,i . Gladd (1976) also analyzed the effects of changing the
frequency ratio ωpe/Ωce. Similarly to MTSI, the growth rates and wave number at max-
imum growth rate decrease weakly as this parameters is reduced. And finally, although
the wave number range is not affected significantly by variations in the temperature ratio
Te/Ti , the growth rates are enhanced as this parameter increase (although too high values
may favor the ion-acoustic instability, which should be the dominant one over LHDI)

Davidson and Krall (1977) analyzed the non-linear evolution of the instability by means
of a quasilinear approach, finding the relevant values of the saturation wave amplitudes
and associated anomalous resistivity. Similar to MTSI, and for low diamagnetic drift
speeds, LHDI saturates mostly via ion trapping, reducing the gradients and associated
diamagnetic drifts. Note that all these saturation processes are not valid if the system
is being driven externally and continuously replenishing the free energy of the gradients,
as it would happen during the magnetic reconnection process. In this case, a macro-
instability tearing mode would produce local gradients that can excite short-wavelengths
LHDI modes.

5.4.2.5 LHDI in M.R.

Historically, it has been thought that LHDI should happen at the edges of a Harris
current sheet, where the equilibrium density gradients provide a diamagnetic drift per-
pendicular to the reconnection plane (Huba et al. 1977). LHDI should take place in that
region mostly for three reasons: the pressure gradients are higher there, the electrons are
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magnetized (not true at the unmagnetized center of a CS) and the stabilizing finite plasma
beta effects are reduced in comparison with the center (the plasma beta decreases asymp-
totically from infinite at the center for a neutral sheet to low values at the infinity. How low
it will depend on the background density). In the early years after the discovery of LHDI,
there were many works analyzing the role of this instability in magnetic reconnection
configurations, mainly because it can provide relatively high values of anomalous resis-
tivity (Huba et al. 1977) that may explain the turbulence levels observed in magnetotail
reconnection (Huba et al. 1978).

It is important to remark that most of the works about LHDI in magnetic reconnection
have focused in 3D geometries. That is because LHDI should propagate perpendicular to
both pressure gradient and magnetic field, which are located on the reconnection plane.
Then, the propagation direction should be perpendicular to the reconnection plane. On
recent example is the work by Divin et al. (2015). They investigated development of
LHDI in the reconnection jet fronts (also known as dipolarization fronts), starting from
a 2D PIC simulation, and then performing a localized 3D PIC simulation using the data
provided by the first one in the later stages of the reconnection process. This was done
to save computational resources, since a high resolution 3D PIC simulation developing
magnetic reconnection self-consistently in not too practical.

However, very few works have analyzed the possibility of LHDI in a geometry where
there is a strong guide magnetic field and the gradients are developed self-consistently dur-
ing the reconnection process. In this case, the diamagnetic drifts are on the reconnection
plane.
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6 Kinetic PIC code simulations

In this section we are going to discuss the main numerical tool used in the simulations
of this thesis: the fully-kinetic Particle-in-Cell (PIC) codes. In order to narrow the scope
of this discussion, we focus mostly in the algorithms implemented by the PIC code used
to obtain the results to be shown in this thesis: ACRONYM (Kilian et al. 2012). Only
tangentially other kind of codes and approaches will be mentioned. A brief description of
the capabilities of this code is given at the end of this chapter (Sec. 6.10).

6.1 General scheme

This kind of codes were invented at the end of the 50s by Buneman (1959) and Dawson
(1962) to study the electromagnetic interactions among a large amount of plasma particles.
Therefore, they were designed for the simulation of fully-kinetic plasma processes 1. They
have become one of the most convenient tools for simulations of collisionless plasmas
in a wide variety of physical environments. Nowadays, they are highly optimized and
designed to run in the most powerful supercomputers.

The basic theory and applications of PIC codes are very well explained in the classical
reference textbooks (the “PIC bibles”): Birdsall and Langdon (1991) and Hockney and Eastwood
(1988), besides of other nice reviews: Dawson (1983), Winske and Omidi (1996), Pritchett
(2000), Verboncoeur (2005), Tskhakaya et al. (2007), Lapenta (2012) and sections of
books: Büchner et al. (2003). A review about the early history of these plasma codes
can be found in Birdsall and Fellow (1991). A pedagogical introduction including a PIC
code is in the textbook by Matsumoto and Omura (1993). A short review about the latest
standard methods used in the state-of-the-art relativistic electromagnetic PIC codes can
be found in Vay and Godfrey (2014) (many of them implemented in ACRONYM). Note
that most of these textbooks/reviews analyze electrostatic2 PIC codes models, in reduced
geometries. Electromagnetic PIC codes are analyzed to much less extent, and that lack of

1In this thesis we use (abusing the terminology, but also for brevity) the word “PIC” as synonym for
“fully-kinetic PIC” (code or simulation). However, it is necessary to remark that there are PIC codes mod-
eling other physical models, and not only a fully-kinetic plasma described by the Vlasov (or Boltzmann)
equation. Indeed, the PIC method was originally developed for compressible hydrodynamics flows (by F.H.
Harlow in 1955), representing the continuum fluid as an Eulerian (fixed coordinate system) grid of cell plus
a Lagrangian (coordinate system comoving with the fluid) set of marker particles. Note that the fully-kinetic
PIC method does the same with the continuum phase-space of Vlasov plasmas (see Sec. 6.2). This kind of
“hydrodynamic” PIC codes can simulate efficiently certain kind of problems (distorted flows), but its use
is not widespread nowadays because has low accuracy and it is prone to some instabilities (in stagnating
flows). For further details, see Harlow (1988) and Brackbill (2005).

2See Sec. 6.7.1 for clarification about this term
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coverage is even more notorious for 3D3V 3 plasma models, the most required ones for
realistic applications.

The basic idea of the PIC method can be summarized in Fig. 6.1. First of all, the sim-
ulation domain is divided in a grid with many cells, filled with computational particles
that can be everywhere (from this fact comes the name “particle-in-cell”). The electro-
magnetic fields ~E and ~B are given and calculated only in these grid points. In order to
have their values at the (arbitrary) particle position, it is necessary to use an interpolation
scheme (step 1: “Weighting (E, B)i → Fi” in Fig. 6.1). Then, the code can simulate the
motion of these computational particles by solving the Lorentz equation (step 2: “Inte-

gration of eqs of motion, moving particles” in Fig. 6.1 using Eq. (2.11)), under the action
of the electromagnetic force due to ~E and ~B. Then, the sources of the electromagnetic
field, charge ρc and current density ~J , are calculated via weighting (step 3: “Weighting

(x, v)i → (ρ, J)i” in Fig. 6.1, using Eq. (2.20)-Eq. (2.21)) from the (arbitrary) particle
position back to the grid points, via an interpolation scheme (the inverse process as step
1). Finally, the Maxwell equations are solved (integrated) in the grid position from eρ and
~J to get ~E and ~B (step 4, “Integration of field eqs on grid” in Fig. 6.1, using Eq. (2.7)-
Eq. (2.10)). With the values of the electromagnetic field at the grid points, the loop repeats
again back to the step 1.

Figure 6.1: Main loop in a PIC code. See text for explanation. Adapted from

Birdsall and Langdon (1991).

The reason of the introduction of a grid, instead of solving directly the equations of
motion for each particle, is in order to save computational effort. The earliest attempts
to simulate plasmas (Dawson 1962) used directly the explicit computation of the inter-
particle electric force among N particles (like in N-body code simulations), which requires
the huge amount of N(N − 1)/2 operations per time step, besides of being very noisy
(Winske and Omidi 1996). On the other hand, the introduction of a grid in the PIC codes

3PIC codes are classified according to their dimensionality as “NDMV”, where N and M are the dimen-
sions of the space and velocity space, respectively (Tskhakaya et al. 2007).
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reduces the required operations for the force calculation to N log(N) (Pritchett 2000)4. In
addition, this approach also reduces the fluctuations at sub-grid scales and automatically
introduces the time retardation effects implicit in the Maxwell equations.

6.2 Coarse-graining of phase space and shape function

The PIC method represents many physical particles 5 close enough in a given point of
phase space (~x,~v) 6 , by one single computational “macro-particle” with a VDF fp(~x, ~v). In
the Vlasov formulation (Sec. 2.1.4), this is equivalent to a discretization (sampling, coarse-
graining) of the phase space. Then, a macroparticle in the PIC method is not simply a set
of physical (point) particles, is more precise to say that is a fluid element in a 6D phase
space. This can also be thought as solving the Vlasov equation Eq. (2.19) 7 with the
method of characteristics (Winske and Omidi 1996) (see Sec. 2.1.4 for further details).
Therefore, the total (physical) VDF f is represented as the following superposition of
computational phase-space elements, represented with the subscript “p”(Lapenta 2012):

f (~x,~v, t) =
∑

p

MpS x(~x − ~xp)S v(~v − ~vp(t)), =
∑

p

fp(~x,~v, t) (6.1)

The idea of the PIC method is assigning to the macroparticle VDF fp this form:

fp(~x,~v, t) = MpS x(~x − ~xp(t))S v(~v − ~vp(t)), (6.2)

where ~xp and ~vp are the phase-space coordinates around which the macro-particle is lo-
cated, Mp represent the macrofactor: the number of physical particles to a computational

4 It is interesting to mention a different approach to this problem without the introduction of a grid. In-
deed, there are also “mesh-free” plasma codes, based on the N-body Barnes-Hut hierarchical tree algorithm.
This is a method used to model astrophysics systems where gravitation is the inter-particle force, but with
a significant speed-up over the standard N-body algorithms. The force over a particle is calculated using a
multipole expansion of the net force due to the other particles located away, resulting also in a scaling as
N log(N) operations. However, this approach neglects some long-range collective effects present in fully-
kinetic PIC plasma codes, in addition to big complexities for its parallel implementation. For further details,
see the review by Gibbon et al. (2010) and references therein.

5 It is not always necessary or practical to represent all the species in a plasma via this PIC method. It
is often the case that is more important to model kinetically the heaviest species (ion) in the plasma, but
for electrons can be enough a fluid approach. This kind of codes are called “hybrid-PIC” and are useful to
model low frequency phenomena ω ∼ Ωci. In order to couple the electron fluid with ions, it is necessary
to use a closure in the Ohm’s law to calculate the total electric field due to them (see Eq. (2.25)). This
means considering a specific form for the electron pressure tensor and, frequently, neglecting their inertia.
See Pritchett (2000), the chapter in Büchner et al. (2003, pp. 136-165) and the textbook Lipatov (2002)
for further details. It is interesting to mention that it is also possible to have physical scenarios where the
opposite approach is convenient: kinetic electrons and an ion fluid, as explained in Lyster (1992).

6In a fully relativistic formulation, it is more convenient to use as coordinate the spatial components
of the 4-velocity ~u = γ~v (proper velocity), where γ = 1/

√
1 − v2/c2 is the relativistic gamma factor. See

details in Haugbølle et al. (2013).
7It is also possible to resolve directly that equation via Vlasov plasma codes. These are Eulerian codes

and therefore free of the intrinsic PIC shot noise, besides of allowing the relaxation of the small grid cell size
Eq. (6.37) required by the latter ones. But, on the other hand, they also require a grid in both configuration
and velocity space. This make them computationally very expensive, especially for full 3D cases (with a
corresponding 6D phase space and associated grid). For details, see e.g., Umeda et al. (2009) and Umeda
(2012).
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6 Kinetic PIC code simulations

macro-particle and S x and S v the shape functions in space and velocity, respectively. They
represent the extension of the macro-particle in the phase space (they are no point parti-
cles). The choice of Mp is a trade-off between physical fidelity (higher values, closer
to nature) and computational effort (lower, simulating less particles). The standard PIC
method usually considers (almost universally) the velocity shape function S v as a tensor
product of Dirac’s deltas (Lapenta 2012):

S v(~v − ~vp) = δ(~v − ~vp) = δ(v x − vx, p)δ(vy − vy,p)δ(vz − vz,p) (6.3)

This means no spread in the velocity space for all physical particles represented by the
macroparticle: since their speed is the same, their evolution will be similar (Lapenta 2012).
On the other hand, there are many choices for the shape function in the real space S x. They
are usually chosen to satisfy the following properties for requirement and convenience:

1. Compact support: S x = 0 outside a small domain Ω = ~∆x (not necessarily equal to
the cell volume: it is usually chosen to be larger) in the phase space

2. Normalization:
∫
Ω

S x(~x − ~xp)d3~x = 1

3. Symmetric: S η(x − η) = S η(η − x)

4. Separable: S (~x − ~xp) = S (x − xp)S (y − yp)S (z − zp)

Note that the two first properties imply that the integration of fp over all phase space
gives the macroparticle number: Mp =

∫
Ω

fpd
3~xd3~v. From all the functions satisfying

these properties, it typically used only a small subset, the so-called b-splines. They are
functions of increasingly order constructed from an iterative integration starting from the
lowest order ones. The first one is defined as:

b0(ξ) =




1 if ξ < 1/2,
0 otherwise.

(6.4)

where ξ = x, y, z. The higher order b-splines of order n are obtained via the generating
formula (Lapenta 2012):

bn(ξ) =
∫ ∞

−∞
b0(ξ − ξ′)bn−1(ξ′)dξ′ (6.5)

If ∆ξp are the macroparticles sizes in each direction ξ = x, y, z, the shape function using
b-splines of order n is defined thus:

S (~x − ~xp) =
1

∆xp∆yp∆zp

bn

(
x − xp

∆xp

)
bn

(
y − yp

∆yp

)
bn

(
z − zp

∆zp

)
(6.6)

Since we mentioned the macroparticle size, it is convenient to introduce the weighting
function W by integrating the shape function defined in Eq. (6.2) over all the domain Ω,
measuring thus the spatial extent of the macroparticle:

W(~xc − ~xp) =
∫ ~xc+ ~∆x/2

~xc− ~∆x/2
S (~x′ − ~xp)d3~x′. (6.7)

where ~xc represents a cell vertex. Note that ~∆x is usually larger than the grid cell size.
The choice of higher order shape functions has a number of consequences:
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6.2 Coarse-graining of phase space and shape function

1. The width of W(x) by ∆x is increased.

2. The continuity class of these functions is increased: from Cn to Cn+1, with n the
order of the interpolation scheme. In other words, the shape functions becomes
smoother (Cormier-Michel et al. 2008), and so distribution of the charge density
and the electromagnetic fields.

3. The quantities calculated with them become more accurate, since the aliasing effects
associated with the undersampling by the interpolation is reduced (Haugbølle et al.
2013).

4. Associated with the previous point is the fact that the non-physical forces between
the macroparticles smeared over the grid are also reduced, with the corresponding
PIC simulated plasma behaving more similar to a real collisionless plasma (Eastwood and Hockney
1974).

5. The simulations become computationally more expensive, since their expressions
require more calculations per interpolation step.

6. The numerical collisions between the macroparticles are reduced (Matsuda and Okuda
1975). This is the most important consequence for the goal of this thesis.

6.2.1 Most common shape functions

Due to the previously mentioned reasons, the choice of the most appropriate shape
functions is a trade-off between accuracy and computation time. The ones that are proven
to be more efficient and commonly used are listed below. We use ξ = |x − xn |/∆x as the
relative distance with respect to the center of the macroparticle.

1. NGP (Nearest Grid Point), zero order weighting scheme. The 1D weight function
is:

W(x) =




1 if ξ < 1/2,
0 otherwise.

(6.8)

This W(x) assigns all the charge of a macroparticle to its nearest grid point. The
corresponding S (x) is a Dirac delta function: each macroparticle is concentrated at
one location. Although is very fast due to its simplicity, this shape function is rarely
used nowadays because has very noisy properties (enhanced numerical scattering).

2. CIC (Cloud in Cell), first order (linear) weighting scheme. The 1D weight function
is:

W (x) =




1 − ξ if ξ < 1,
0 otherwise.

(6.9)

This W (x) assigns the charge of a macroparticle between the two nearest grid points
by means of a linear interpolation. As explained in the previous subsection, it is ob-
tained by convolving NGP W (x) with itself. This is the most commonly used and
standard shape function scheme in PIC codes since many years ago, because it pro-
vides a good (empirical) compromise between the smoothness of the interparticle
force and computational speed.
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6 Kinetic PIC code simulations

3. TSC (Triangular Shaped Cloud), second order (quadratic) weighting scheme. The
1D weight function is:

W(x) =



3
4 − ξ2 if ξ < 1/2,
1
2

(
3
2 − ξ

)2
if 1/2 < ξ < 3/2,

0 otherwise.

(6.10)

The change from linear to quadratic interpolation makes the quantities calculated
with the TSC W(x) much smoother than the obtained with the CIC scheme. How-
ever, it not so often used in PIC codes, since it is also computationally more expen-
sive.

4. PQS (Piecewise Quadratic Spline), third order (cubic) weighting scheme. The 1D
weight function is:

W (x) =




1
6

(
4 − 6ξ2 + 3ξ3

)
if 0 < ξ < 1,

1
6

(
2 − ξ3

)
if 1 < ξ < 2,

0 otherwise.

(6.11)

These different shape functions and their associated weight functions are illustrated in
Fig. 6.2 for 1D and in Fig. 6.3 for 2D.
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Figure 6.2: Left panel a): 1D shape functions S (x). Right panel b): 1D weight functions

W (x). Those figures are for a macroparticle located at the origin ~xn = 0. Adapted from

Muñoz et al. (2014).
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6.3 Discrete Vlasov-Maxwell system for particles

Figure 6.3: 2D weight functions W (x)W (y) for different weighting schemes. a) NGP

(Nearest Grid Point). b) CIC (Cloud in Cell). c) TSC (Triangular Shaped Cloud). d) PQS

(Piecewise Quadratic Spline). Adapted from Muñoz et al. (2014).

6.3 Discrete Vlasov-Maxwell system for particles

The introduction of a grid and the macroparticle will necessarily change the Vlasov-
Maxwell system to be solved by the PIC code. This can be seen by replacing the definition
of the macroparticle distribution function fp given by Eq. (6.2) in the (full, continuous)
Vlasov equation Eq. (2.19) (possible due to its linearity in f ) and taking the appropriate
moments. This procedure will give us the equation of motion for the macroparticles.

Taking the moment of order zero, i.e.: integrating over the full phase space (symboli-
cally:

∫
fpd

3~xd3~v Eq. (2.19)), it is possible to prove (Lapenta 2012):

dM p

dt
= 0 (6.12)

i.e.: conservation of the macrofactor (or macroparticles) in the phase space (analogous to
the continuous version: the conservation of mass).

Taking the spatial moment of order 1, i.e.: multiplying by the coordinate ~x and then
integrating over the full phase space (symbolically:

∫
~xd3~xd3~v Eq. (2.19)), it is possible

to get

d~xp

dt
= ~vp (6.13)

i.e.: nothing more than the definition of the velocity.
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6 Kinetic PIC code simulations

Taking the velocity moment of order 1, i.e.: multiplying by the coordinate ~v and then
integrating over the full phase space (symbolically:

∫
~vd3~xd3~v Eq. (2.19)), it is possible

to get:

d~vp

dt
=

qp

mp

[
~Ep(~x, t) + ~v × ~Bp(~x, t)

]
(6.14)

i.e.: formally equivalent to the Lorentz force Eq. (2.11), but with the electromagnetic
fields defined (sampled) only at the grid points:

~Ep = ~E(~xp) =
∫

~E(~x)S (~x − ~xp) =
∑

~xc

~E(~xc)W (~xc − ~xp) (6.15)

~Bp = ~B(~xp) =
∫

~B(~x)S (~x − ~xp) =
∑

~xc

~B(~xc)W(~xc − ~xp) (6.16)

where the last equality is obtained assuming constant the electromagnetic fields inside
of the macroparticle volume and using the definition of the weighting function Eq. (6.7)
(Haugbølle et al. 2013). Note that qp and mp corresponds to the charge and mass of each
macroparticle (not the physical particle). The sum runs over all the cell vertices (sub-
script ~c) at the boundaries of each cell volume (with the exact locations to be discussed
in Sec. 6.5). Thus, the full system of equations to solve via the PIC method is given by
the equations of motion Eq. (6.12)-Eq. (6.13)-Eq. (6.14), with the electromagnetic fields
Eq. (6.15), in addition to the Maxwell equations and their correspondent sources to be dis-
cussed in Sec. 6.7. The most important advantage of the PIC method is that the equations
of motion are formally the same as the Newton equations, but with the force sampled at
the grid points, even though they were derived as a discretization of the Vlasov equation.
It is important to remark again that all the previous equations and quantities are calculated
at the particle positions (hence the subscript p), and not on the grid points.

6.4 Particle mover

Due to the large quantity of simulated macroparticles, one of the most critical and
time consuming parts in any PIC code is the solution of equations of motion Eq. (6.12)-
Eq. (6.13)-Eq. (6.14). Then, the algorithms to solve them have to be both fast and accu-
rate. As in many other numerical codes, finite differences algorithms provide a reliable
compromise between both factors, with the leap-frog (velocity-Verlet) algorithm one of
the preferred choices. This is an explicit time-centered second order accurate algorithm
(O(∆2)), based in the time discrete version of the aforementioned equation of motion for
the macroparticles. If ∆t is the time step, each time in the code can be defined as tk = k∆t,
with k an integer number. The leap frog algorithm updates position at these integer times
but velocities at half integer times8 tk+1/2 = (k + 1/2)∆t, in the following way:

~x k+1
p = ~x k

p + ∆t~v k+1/2
p (6.17)

~v k+1/2
p = ~v k−1/2

p + ∆t
qp

mp

~Ek +
~v k+1/2

p + ~v k−1/2
p

2
× ~Bk

 (6.18)

8In order to get second order accuracy. Otherwise, it would be reduced to the explicit Euler algorithm
which is only first order accurate (Lapenta 2012).
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6.4 Particle mover

where vk
p = vp(tk) and similarly for all the other physical quantities from now on. Instead

of solving separately the three components of Eq. (6.18), there are other approaches in-
volving a single solution in several steps (see Birdsall and Langdon 1991, Secs. 4.3 and
15.4). One of the most used algorithms is the so called Boris push (Boris 1970), because
it is simple, accurate and fast: it requires a single evaluation of the electromagnetic fields
per time step (different from Runge-Kutta algorithm requiring at least two evaluation.
See Fuchs and Gunn (2006)). First, it solves separately Eq. (6.18) for the velocities at
half-times applying only half of the total electric field in the right hand side (and so half
of the total momentum). Second, it applies only the magnetic force ∝ ~v × ~B (second term
in the right hand side), equivalent to a rotation of~v (and so energy-conserving). And third,
it is applied the second half of the total electric field in the right hand side of Eq. (6.18)
(and so the other half of the total momentum). This sequence of operations (depicted
in Fig. 6.4), makes the algorithm more efficient due to its symmetry and time reversal
or energy-conserving properties 9 . This last property, and in general the leap frog time
scheme, are only possible because the second step: the rotation due to the magnetic field,
since it is calculated with an implicit evaluation of the velocity (Haugbølle et al. 2013).

Figure 6.4: Schematics of the Boris pusher. Left: the total force over the particle is

calculated in 3 steps. First, half of the uniform acceleration due to ~E. Second, a rotation

due to ~B (energy conserving). And third, the other half of the acceleration due to ~E. Right:

The action of the force generated by the Boris push on the particle motion is a piecewise

function between the first and second application of the electric field, an straight line

approximation to the real curved motion of the particle on the magnetic field. Adapted

from Schreiner (2013).

ACRONYM implements the Boris pusher (in the notation of Birdsall and Langdon

9 It was recently proposed by Webb (2014) that the Boris algorithm is also symplectic, i.e.: derived from
a Hamiltonian. This is not common due to the intrinsic difficulty on deriving Hamiltonians from systems
involving magnetic fields (they used an indirect technique based on a discrete Lagrangian). The implication
is that the algorithm describe the exact particle orbit in the limit ∆t → 0. However, later another work by
Zhang et al. (2015) demonstrated that the previous statement was not precise: the Boris algorithm is not
symplectic: only preserves the discrete phase-space volume.
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(1991)) in the following way, assuming γ ∼ 1 and so ~u = γ~v ≈ ~v (Schreiner 2013):

~v− = ~vk−1/2
p +

qp∆t

2mp

~E (6.19)

~t =
qp∆t

2mp

~B (6.20)

~v′ = ~v− + ~v− × ~t (6.21)

~s =
2~t

1 + t2
(6.22)

~v+ = ~v− + ~v′ × ~s (6.23)

~vk+1/2
p = ~v+ +

qp∆t

2mp

~E (6.24)

where ~t and ~s are two auxiliary vectors related with the rotation angle (t = − tan θ/2
and s = − sin θ), avoiding the evaluation of transcendental functions. This algorithm
is relativistically correct as long as the γ factor is not too high (γ ≪ 1000), since it
is not Lorentz invariant. Indeed, Vay (2008) showed this drawback of the Boris pusher,
proposing a new Lorentz invariant algorithm, called after him Vay pusher. It is also second
order accurate and only a little bit slower than Boris.

6.5 Discrete Vlasov-Maxwell system for fields: FDTD schemes

and Yee lattice

Now, the next step is choosing a convenient discretization of both time and space, in
order to calculate the fields, derivatives and integrate the discrete Vlasov-Maxwell sys-
tem. This is done via some scheme based in the Finite-Difference-Time-Domain (FDTD)
method (see, e.g., the classical textbook Taflove and Hagness (2005), whose author coined
this term), widely used in all areas of science involving computational electrodynamics10.
As its name indicates, these are methods to solve numerically the fields (no potential)
in the Maxwell equation using finite differences11 for both time and space (with the re-
quirement of resolving wavelength and frequency of the typical wavelengths found in a
given system) , usually with leapfrog schemes (and so in an explicit fashion), on an stag-

gered grids. In PIC codes, the most popular and de facto standard choice for arranging
these quantities is the Yee staggered lattice (Yee 1966) (see Birdsall and Langdon (1991,
Sec. 15) or Taflove and Hagness (2005, Sec 3.6) for further details). The idea is that the
electromagnetic fields and sources are calculated, by using the symmetries of the Maxwell
equations, at different points inside of each grid cell, in order to get second order accuracy
in both space and time via central differences. It uses an uniform cartesian grid. There

10for several practical and historical reasons, among them the fact of not having to use linear algebra
techniques. For other reasons, see Taflove and Hagness (2005, Sec. 1.4)

11Another very different approach is solving the Maxwell equations in the Fourier space, the so called
“spectral solvers”, especially used when considered approximations of the Maxwell equations such as Dar-
win or electrostatic (see Sec. 6.7.1). However, since FFTs require global communication on the entire
simulation domain, they show bad parallel scaling performance, being one of the reasons for its not so
widespread use.
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are slightly different conventions depending on the code. ACRONYM uses the scheme
depicted in Fig. 6.5.

Figure 6.5: Yee lattice used by ACRONYM, showing the position in a cell where it is

calculated the electromagnetic fields ~E and ~B and their sources, ρ and ~J. See main text

for the explanation. From Kilian (2013).

This arrangement has the advantage of calculating the derivatives (gradient and curl)
of the Maxwell equations in a consistent way, without further rearrangement, allowing at
the same time an easy implementation of boundary conditions. Note that the components
of ~J and ~E are calculated at the same position at the edges of the cell, as required by the
right hand side of the Ampère’s law Eq. (2.10). Also note that the each magnetic field
component ~B is calculated at the faces of each cell, surrounded by the 4 components of ~E
in the perpendicular direction as required for the curl in Faraday equation Eq. (2.9) (e.g.:
Bz at the bottom face is surrounded by the components Ey and Ex). Something similar
happens in the other way around: each electric field component ~E is surrounded by the 4
components of ~B in the perpendicular direction, as required by the curl in the Ampère’s
law.

Regarding the time integration, the Yee scheme uses a leapfrog algorithm, storing and
calculating ~E and ~B alternatively. This is an explicit scheme, avoiding numerical issues
related with matrix inversion that implicit codes have, besides of being non-dissipative
(Taflove and Hagness 2005). The downside is the requirement of a small time step. Dif-
ferent from other methods such as Runge Kutta where all the variables are calculated
at the same time (time-centered), there is no necessity of storage for intermediate steps
(Haugbølle et al. 2013) besides of being compatible with energy-conserving (symplectic)
particle movers (see Sec. 6.4).

6.6 Coupling particles with fields: current assignment

Now that we have prescribed the location of the fields on the cells, we have to couple
the particle information with the electromagnetic fields in the Maxwell equations. For that
it is necessary to calculate the sourcesρc and ~J at the cell vertices (indicated with subscript
c), where the Maxwell equations are solved. Therefore, using fp given by Eq. (6.2) in the
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continuous definitions Eq. (2.20) and Eq. (2.21), we get (Haugbølle et al. 2013):

ρc(~xc, t) =
∑

p

qp MpWx(~xp − ~xc) (6.25)

where we have assumed an average over each cell volume and used the weighting function
Eq. (6.7). Note that the sum in p is over all the particles of all species. This gives a charge
density using the same interpolation as the fields Eq. (6.15) via the function Wx. This
is not mathematically necessary, but it is natural and a very convenient choice for three
different reasons (see Birdsall and Langdon (1991, Secs. 8.5 and 8.6) and Tskhakaya et al.
(2007)): the absence of self-forces on the particles, the inter-particle force is symmetric
(3rd Newton’s law) and the conservation of momentum (as calculated from the derivative
of the discrete Lorentz force Eq. (6.14)).

However, note that the explicit PIC codes as ACRONYM do not use ρc for the solution
of the Maxwell equations. Instead, the current density is required, for which we might
use the same approach

~J(~xc) =
∑

p

qp~vp MpWx(~xp − ~xc) (6.26)

However, this way of calculation brings an inconvenient side effect. Indeed, the charge
continuity equation (derived from Gauss and Ampère equations):

∂ρc

∂t
+ ∇ · ~J = 0 (6.27)

may not be satisfied, leading to a non-physical evolution of the electromagnetic fields,
since the Gauss equation for ~E will not be satisfied). Although Eq. (6.27) is satisfied
strictly inside of each cell, the particles moving across cells (crossing boundaries) in one
time step will violate charge conservation (Haugbølle et al. 2013).

One solution to this issue is making a correction δ~E to enforce the Poisson equation
Eq. (2.7) at each time step, a technique called “divergence or Gauss cleaning” (Marder
1987) (option implemented in ACRONYM). Basically, it is necessary to solve the Poisson
equation for the electric potential: ∇2δφ = (∇ · ~E − ρcǫ0), since thus we can calculate the
corrected electric field ~E′ = ~E −∇φ = ~E −δ ~E (~E is the original electric field as calculated
from the Ampère’s law). Note that this would be the only case requiring the calculation of
the charge ρc. This additional step is computationally expensive (due to the elliptic, non
local, character of the Poisson equation, requiring spectral solvers) and not friendly for
parallel PIC codes (Pritchett 2000)12 . Moreover, it has been reported by Haugbølle et al.
(2013) that this method shows a worse performance in conserving energy and higher level
of numerical heating than the method to be described next.

A more convenient approach to enforce Eq. (6.27) is calculating ~J directly from
Eq. (6.27) instead of Eq. (6.26), thus preserving rigorously the condition of local charge
conservation. This approach does not require to solve elliptic equations, and therefore is

12 Indeed, any speedup in this step of the PIC method leads to a significant improvement in the overall
performance. Due to the large amount of particles necessary to keep numerical noise at low levels, the
current assignment and then the particle mover are the more time consuming steps all PIC codes (Decyk
1995).
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fast and easily parallelized. But there are two important disadvantages (Lapenta 2012):
the conservation of momentum is lost with a consequent enhanced noise level, requiring
thus a larger number of macroparticles per cell to reduce this undesired side effect.

ACRONYM uses the second approach. There are several methods implementing this
“smart” way of assigning the current (Eastwood 1991, Villasenor and Buneman 1992,
Esirkepov 2001, Umeda et al. 2003), but note that all of them (in the unmodified published
form) are only compatible with the second order field solver (Haugbølle et al. 2013). The
method used by ACRONYM is the Esirkepov scheme (see Fig. 6.6). He proposed a
decomposition of the discretized version of Eq. (6.27) in a set of differential equations,
decoupling the different components of ~J. This is valid for any shape function, and it
also has the advantage of allow generalizations to higher order Maxwell solvers functions
(Haugbølle et al. 2013).

a) 2D b) 3D

Figure 6.6: Scheme showing the Esirkepov charge assignment in 2D (a) and 3D (b). The

flux of charge representing the current is represented by the arrows carrying charge q and

velocity ~v: ~J = q~v. In 2D (a), the charge flux is decomposed in 2 components per spatial

direction (in total 4) that are added step by step to reconstruct the total current. In 3D (b),

the charge flux is decomposed 12 components, each one associated with the edges of the

grid cell and with a different weight. From Umeda et al. (2003).

6.6.1 Current smoothing

As we will see in Sec. 6.8.6, the numerical noise depends mostly on the number of
macroparticles per cell. But it can be numerically reduced by applying a spatial filtering
to the current density after this is accumulated on the grid. One of most used filters in PIC
simulations is the binomial filter. See Appendix B.1.2.2 for further details.
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6.6.2 Energy conserving PIC codes

It it is important to note that all the PIC codes using these conserving momentum
schemes (same interpolation for particles and fields) do not conserve energy. Intuitively,
this can be understood due to the “degeneration” of degrees of freedom due to the intro-
duction of the grid and associated discretization: there are many possible microscopic
configurations (position and velocities of macroparticle) leading to the same values of
macroscopic quantities ρc and ~J weighted on the grid. This was already pointed out by
Abe et al. (1975) (see also Birdsall and Langdon 1991, Sec. 10.2). The deviations, how-
ever, are small, being caused by the non-conservative forces that the particles experience
through the interactions between themselves though the grid (see Hockney and Eastwood
1988, Sec. 7.6).

On the other hand, there are also energy conserving PIC codes, derived from a vari-
ational formulation of the discrete Vlasov-Maxwell system, not experiencing numerical
grid heating. They were first proposed by Lewis (1970), conserving energy only in the
limit ∆t → 0, and recently extended to finite time steps by Markidis and Lapenta (2011)
and Evstatiev and Shadwick (2013). Although at a first sight the conservation of energy
might make these codes highly attractive, they are much less used in practice since they
lack conservation of momentum (the Lagrangian is not invariant under displacements).
This approach also produces self-forces in the particles (a highly undesired nonphysical
effect), besides of having to invert large matrix systems and allowing a reduced choice
of shape functions (with the consequent enhanced numerical noise). For further details,
see Langdon (1973), Birdsall and Langdon (1991, Sec. 10) and (Hockney and Eastwood
1988, Sec. 5).

6.7 Maxwell solver

Finally, with the sources of the electromagnetic field ~J calculated from the previous
step, we have to solve (the discrete version of) the Maxwell equations that includes the
curl (Faraday and Ampère), representing a coupled system for the fields ~E and ~B. For
consistency reasons, it is also necessary to use a leap frog algorithm . In practice, this
means that the magnetic field and density current has to be calculated at half time steps:
~Bk±1/2 and ~J k±1/2, while the electric field at integer time steps ~Ek . Thus, if these fields
are calculated in the locations indicated by the Yee lattice and denoted, e.g.: (i, j, k), the
magnetic field will be advanced with the Faraday equation Eq. (2.9) in the following way:

~Bk+1/2
(i, j,k) =

~Bk−1/2
(i, j,k) − ∆t

(
∇ × ~E

)k

(i, j,k)
(6.28)

while the electric field is computed with the Ampère’s law Eq. (2.10):

~Ek+1
(i, j,k) =

~Ek
(i, j,k) +

∆t

µ0ǫ0

[(
∇ × ~B

)k+1/2

(i, j,k)
− µ0

~Jk+1/2
(i, j,k)

]
(6.29)

where, for example, the x component of the finite difference operator ∇× can be expressed
explicitly in the following way (Schreiner 2013):

(
∇ × ~B

)k+1/2

x,(i, j,k)
≈ 1
∆x

(
B

k+1/2
z,(i, j,k) − B

k+1/2
z,(i, j−1,k) + B

k+1/2
y,(i, j,k−1) − B

k+1/2
y,(i, j,k)

)
+ O(∆x

3) (6.30)
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For details about the explicit form of these six equation on the Yee lattice, see Taflove and Hagness
(2005, Sec. 3.6.3) or Birdsall and Langdon (1991).

An important feature of this Maxwell solver using a Yee lattice is that satisfies auto-
matically the Maxwell equations containing divergence, the Gauss (Poisson) equation for
the electric Eq. (2.7) and magnetic field Eq. (2.8), in each cell. This means that the initial
values of ∇ · ~E and ∇ · ~B are preserved 13 during the evolution of the system (note that
it is not equivalent to the fulfillment of the continuity equation Eq. (6.27), for which is
required additional techniques, as explained in Sec. 6.6). In contrast, it is interesting to
mention that the enforcing of ∇ · ~B is an important issue in MHD codes (Lapenta 2012).

Figure 6.7: Comparison of electromagnetic dispersion relations. Left: Real theoretical

Eq. (6.31) (just a couple or straight lines). Center: numerical with Yee + TSC shape

function. Note the deviation for short wavelengths (high k), signature of numerically

induced dispersion on the electromagnetic waves. Right: numerical with CK + TSC shape

function. The dispersion of the electromagnetic waves suffers less dispersion than with

Yee grid, resembling more the ideal electromagnetic waves (straight lines). From Kilian

(2013).

All the Maxwell solvers, and in particular the ones based on a Yee lattice, introduce
changes in the dispersion relations (ω, k) of the plasma wave modes due to discretization
effects (compare Eq. (6.31) with Eq. (6.32), to be discussed in Sec. 6.8.1)14 . Several
approaches have been proposed to have more accurate dispersion relations for some pa-
rameter ranges, especially when applied to high frequency phenomena like laser wakefield
accelerators (see, e.g., Vay et al. 2011). This is because the numerical dispersion relation
of the Yee lattice makes electromagnetic waves travel slower than c close to the cut-off
frequency. One of these, implemented in ACRONYM, is the Cole-Kärkkäinen (CK) al-
gorithm. It was formulated by Kärkkäinen and Gjonaj (2006) (extending a previous algo-
rithm by Cole 1997) for the Maxwell equations without sources and adapted for its use to
PIC codes, including source terms, by Vay et al. (2011). It is based on non-standard finite
differences (NSFD)15, showing higher accuracy than the standard Yee lattice, without sig-

13i.e.: they are assumed as an initial condition. For a proof, see Taflove and Hagness (2005, Sec. 3.6.9)
or Birdsall and Langdon (1991, Sec. 15.6).

14 Indeed, most of the linear kinetic plasma theory and stability analysis (e.g.,dispersion relations) can be
redone by taking into account the grid effects through the shape function S (x) via the relations Eq. (6.25)
and Eq. (6.26). In Fourier space, the first relation is equivalent to replace, the charge q → qS (~k), with the
consequent change of the PIC plasma frequency ωω2

pe → ω2
peS (~kn). This means that now it is dependent

on the grid wavenumber. For further details, see a brief description in Birdsall and Fellow (1991) and the
extended discussion in Birdsall and Fellow (1991, Chapters 8-9).

15These methods improve the usual finite-difference ones by adding a correction to the derivative opera-
tors. This correction is calculated based on the analytical solutions of the equations to be solved
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6 Kinetic PIC code simulations

nificant slow down in the computation (Cole 2002). It features no numerical dispersion
relation along the main axis of a cartesian mesh, as long as it has cubic cells. See the
simulated dispersion relations comparing with the Yee Maxwell solver in Fig. 6.7. How-
ever, it is possible to tune some coefficients in the algorithm to have accurate dispersion
relations along any desired axis. This is in contrast to the Yee algorithm that has always a
large numerical dispersion at high frequency along the main axis, although no numerical
dispersion along the main diagonal of the cell cube (Vay et al. 2011).

It is interesting to mention that the numerical deviations from the electromagnetic
wave dispersion relation at high frequencies become especially critical when there are
also highly relativistic particles present in the plasma. This is because they will emit
numerical Cherenkov radiation when their speed is faster than the (artificially low) speed
of light in the plasma. It is due to a coupling between electromagnetic and beam modes
generated by an “incompatibility” or “mismatch” between the Lagrangian treatment of
particles and Eulerian treatment of electromagnetic fields (Godfrey 1975). This numerical
radiation can also affect lower frequency ranges, affecting severely the evolution of the
simulated plasmas (Godfrey 1974, Greenwood et al. 2004). Many approaches have been
proposed to specifically eliminate this undesired effect. One of them was discussed in the
previous paragraph, and even another is based in a high order version of the ordinary Yee
Maxwell solver, called M24 since it is 2th order accurate in time and 4th order accurate
in space (Hadi and Piket-May 1997, Hadi 2007). It has been recently implemented in
ACRONYM.

6.7.1 Approximation of the Maxwell equations

So far, we have discussed the solution of the full set of the Maxwell equations. These
kind of PIC codes are called electromagnetic, and they are especially useful to model high
frequency phenomena. On the other hand, there are also electrostatic PIC codes if they
solve only the Poisson or Gauss equation Eq. (2.7) for the (self-consistent) ~E. In the latter
case, a magnetic field can be included but it does not evolve: it is considered external and
fixed. Its main advantage is the elimination of the CFL stability constraint (see discussion
of Eq. (6.34)) by eliminating light waves (Pritchett 2000). This kind of codes usually
solve these equations via spectral solvers.

Another approach are the so called Darwin (also known as magnetoinductive or non-
radiative) PIC codes (first discussed in this context by Kaufman (1971). See also the early
review by Hewett (1994)), which neglect the displacement current in the Ampère’s law
Eq. (2.10) by assuming low frequency waves or (v/c) ≪ 1 16. As a result, the charac-
ter of the Maxwell equations changes from hyperbolic to elliptic (Pritchett 2000). This
approximation introduces a big complexity in the algorithm (elliptic equations are non-
local), especially in the 3D case. All these categories of plasma models are included in
ACRONYM, although only the full electromagnetic version will be used for the results to
be shown in this thesis.

16More rigorously, that simplification in the Maxwell equations can be obtained via two very different
approaches. In the first one, the formal solution to the full set of Maxwell equations in terms of scalar and
vector potentials is found in the Coulomb gauge. Then, the vector potential is approximated by neglecting
retardation effect. In the second approach, the same set of equations by themselves is approximated by
neglecting the time derivatives in the vector potential. See Krause et al. (2007) for further details.
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6.8 Numerical consequences of the coarse-graining, grid and time step

There is even another more hybrid approach, consisting in not only an approximation
of the Maxwell equations, but also on the underlying Vlasov equation, by eliminating the
gyromotion of charged particles in strong magnetic fields. This gyrokinetic theory and its
associated simulation codes will be discussed in Sec. 9.1.

6.8 Numerical consequences of the coarse-graining, grid

and time step

6.8.1 Stability conditions

The use of explicit schemes in a PIC code involves very stringent conditions on the
choice of the grid cell size and time step. Moreover, there are some other stability condi-
tions17 that may trigger numerical instabilities if they are not taken into account. There
are mainly three reasons and associated conditions (Lapenta et al. 2006):

1. Discretization of fields (Maxwell solver, Sec. 6.7). ∆x and ∆t have to be chosen
in such a way that allow the propagation of the fastest wave mode. In the case of
the full set of Maxwell equations, this has to be the speed or light, with the physical

dispersion relation

ω2

c2
= k2

x + k2
y + k2

z (6.31)

The condition is then given by finding the (approximated) numerical dispersion
relation of the electromagnetic waves propagating on the grid (obtained assuming
harmonic solution in the discrete version of Faraday and Ampère’s law). This de-
pends on the Maxwell solver and so on the arrangement of fields in the grid. For
the Yee lattice it is (Greenwood et al. 2004, Vay et al. 2011):

(
sin(ω∆t/2)

c∆t

)2

=

(
sin(kx∆x/2)
∆x

)2

+

(
sin(ky∆y/2)

∆y

)2

+

(
sin(kz∆z/2)
∆z

)2

(6.32)

In order to avoid numerical instability, we require to have real solutions for ω ,
equivalent to:

(
sin

(
ω∆t

2

))2

≤ 1 (6.33)

This allows to obtain the Courant-Friedrichs-Lewy condition (CFL, first discussed
by Courant et al. (1928)), assuming that the most unstable modes should propagate
at the cut-off (Nyquist) wavenumber along the main axis ki,max = π/∆i, the 2D faces
diagonals and 3D main diagonal of the cell. In case of a cubic lattice: ∆x = ∆y = ∆z,
this becomes:

c∆tc ≤ min


∆x,

1
√

2/(∆x)2
,

1
√

3/(∆x)2


 =
∆x
√

3
(6.34)

17See Hockney and Eastwood (1988, Sec. 4.4 ) for an introduction to the stability conditions applied to
the numerical schemes used in PIC codes.
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It is interesting to notice that this requirement becomes less restrictive in lower di-
mensionality: in 2D the right hand side of Eq. (6.34) is ∆x/

√
2, while in 1D only

∆x. Eq. (6.34) can be intuitively understood as the requirement that an electromag-
netic wave should not propagate in a single time step (c∆tc) a distance larger (<)
than the grid cell size (∆x in 1D)18.

2. Discretization of equations of motion for particles (Sec. 6.3). The standard (Von
Neumann) stability analysis establish that the minimum required time step to avoid
instability can be calculated from the linearization with the subsequent Fourier anal-
ysis of the equation of motion, and then finding the conditions for which the maxi-
mum frequency in the system, ω, has real values (otherwise, the system turns out to
be unstable). In an unmagnetized plasma, this is equivalent to resolve the fastest re-
sponse of the lightest particle, the plasma frequency ωpe (because it is the harmonic
oscillation of the electrons in presence uniquely of an electric field), giving the con-
dition also known as Langmuir wave propagation (Tskhakaya et al. 2007, Lapenta
2012):

ωpe∆t < 2 (6.35)

In practice, to avoid additional effects related with electron heating, a time step one
order of magnitude smaller is usually chosen (found empirically): ωpe∆t . 0.1 (see
Hockney and Eastwood 1988, Sec. 9.2.3.).

The condition Eq. (6.35) should also be valid for any other frequency in the plasma
(replacing ωpe → ω). In principle, the electron gyromotion should also be resolved.
However, the use of the Boris algorithm (involving a energy conserving rotation in
the magnetic field, see Sec. 6.4) does not impose any additional stability require-
ment: the algorithm is always stable for any value of Ωce∆t (Bowers et al. 2008).
Instead, the choice of the timestep is constrained for accuracy reasons. In order
to get 1% of accuracy, the timestep has to resolve the electron Larmor gyration by
(Patacchini and Hutchinson 2009):

Ωce∆t . 0.3 (6.36)

This requirement becomes difficult to fulfill for strong enough magnetic fields, im-
posing a practical limit for simulations of strongly magnetized plasmas (at least,
with explicit schemes). On the other hand, it is also interesting to mention that the
electron gyromotion does not impose a constraint on the size of the electron Lar-
mor radius ρe compared to the grid cell size ρe. As pointed out by Melzani et al.
(2013), this has an intuitive interpretation: the interpolation of the fields to the par-
ticles gives always the same particle orbit, completely independent on the grid size,
providing a constant and homogeneous magnetic field.

3. Interpolation scheme (Sec. 6.2). The introduction of the shape function coupling
grid and particles adds an additional stability requirement. This arises as a con-
sequence of the loss of information from the continuum particle shape to discrete

18It is interesting to mention that ∆t obtained by this condition is usually much smaller than the required
for the stability of the particle mover. As pointed out first by Boris (1970), it is possible to choose different
∆t for particles and fields, by a method known as sub-cycling, advancing the fields several times per a single
particle update. See Tskhakaya et al. (2007) and Birdsall and Langdon (1991, Sec. 9.7) for further details.
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points, producing an aliasing from higher to lower wavenumbers. This “finite grid”
instability imposes the following criterion (Lapenta 2012):

∆x < CλDe (6.37)

where C is a constant of order 1, with the specific value depending on the method
used. The derivation of Eq. (6.37) is much more involved than the previous condi-
tions, and it can be found in Birdsall and Langdon (1991) and Hockney and Eastwood
(1988). If this condition is violated, the consequence is an artificial numerical heat-
ing, to be discussed in Sec. 6.8.2.

6.8.1.1 Practical consequences of the stability conditions

The three stability conditions Eq. (6.34), Eq. (6.35) and Eq. (6.37) for explicit PIC
codes are very difficult to fulfill. They make the numerical modeling of kinetic plasmas
computationally very expensive in many cases of interest. This is because these conditions
constrain the grid cell size and time step to electron scales, but usually the phenomena to
be analyzed takes place at ion (or even larger) spatial and time scales (e.g.: in magnetic re-
connection)19 . For this reason it has become traditional to use reduced values of the mass
ratio mi/me (to make closer electron and ion scales) and the inverse of the electron thermal
speed c/vth,e (since, due to the relations in Appendix A.3.1, this makes smaller de/λDe, and
correspondingly di/λDe, the typical ion length scale). As pointed out by Pritchett (2000),
for a given time measured in ion scales, the number of time steps should scale as mi/me

in explicit PIC codes due to the stability conditions. And the number of grid points per
dimension should scale as

√
mi/me. Putting together both scalings, the computational

cost of a simulation scales as (mi/me)(d+2)/2, with d the spatial dimensions. In 3D, this
results in (mi/me)5/2, making prohibitive the use of realistic mass ratios given the current
computational resources.

6.8.1.2 Implicit codes

It is interesting to mention other approaches to avoid the stringent stability conditions
Eq. (6.34) and/or Eq. (6.35). Among them, one of the most important are the implicit PIC

19 This kind of phenomena where many different scales are coupled are a real challenge for any kind
of simulation code: there is always a trade-off between physical fidelity and the scale that it is possible to
resolve (PIC codes for small scales vs MHD codes for large scales). It is interesting to mention that fully-
kinetic explicit PIC codes (with the more accurate physics) can be modified to deal, partially, with different
length scales and at the same time satisfying the condition Eq. (6.37). The approach is known as AMR:
Adaptive Mesh Refinement, consisting in adapting dynamically the grid cell size depending on the required
resolution. For example, in the case of magnetic reconnection, it is possible to have high grid resolution in
the diffusion region, while low resolution for the uninteresting region away from the CS. This can save a lot
of computational resources, although the algorithms can be very complex (see, e.g., Fujimoto and Sydora
2008). On the other hand, it is interesting to mention that there have been also some attempts to bridge
the gap between the different physics and scales used in different codes by coupling them directly. The full
kinetic physics is modeled in a small region via PIC codes, and its output is used as boundary condition
and input for fluid simulations. This approach was first proposed by Sugiyama and Kusano (2007) (see also
Usami et al. 2014), although in cases where the simulation domains of both codes have comparable sizes.
In any case, their future is very promising, since it is starting to be used for an accurate modeling of space
weather (see Tóth et al. 2012, Lapenta et al. 2013, and references therein).
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codes, developed in the early 80s (see Mason 1983, Denavit 1981, Brackbill and Forslund
1982). All the previously described algorithms for the particle mover and Maxwell solver
are explicit schemes, in the sense that the new values of the physical quantities only re-
quire the stored previous values. On the other hand, in implicit schemes the new values
of the quantities appear only in implicit form in both sides of the respective equations,
requiring thus the solution of a system of coupled non-linear equation (Pritchett 2000).
The methods for solving these equations can be very involved. One approach to solve the
implicit equations is the “kinematic”, based in the solution of the linearized particle and
Maxwell equations to estimate their new value (see Pritchett 2000, and references therein).
But the most used so far is the so called “implicit moment” technique. They use the mo-
ment or fluid equations as an approximation for the estimations of fields, which are used
in the particle mover (see Lapenta 2012, and references therein). One recent example of
these kind of codes, from the same developers of ACRONYM, is PICPANTHER: “Paral-

lel Implicit Concise PiC Allowing Non-Thermal Electromagnetic Relativity” (Kempf et al.
2014).

The advantage of implicit PIC codes is that they can be stable with longer timesteps
than these required by Eq. (6.34). In principle, the stability condition on the time step is
completely eliminated, and its choice is determined instead by the desired physical time
scale and the accuracy of the used method. For example, under the conditions described
in Pritchett (2000), the accuracy of an standard implicit method requires:

0.1 ≤ vth,e∆t/∆x ≤ 1.0 (6.38)

This reduces the computational cost for reaching a given time in ion scales from mi/me

in explicit code to
√

mi/me. But not everything is favorable for the implicit codes. In
addition to the intrinsic complexity in the solution to the equations, these codes distort
the physics of the unresolved length and time scales (see Lapenta 2012, and references
therein).

6.8.2 Numerical heating

As discussed extensively in Birdsall and Langdon (1991, Secs. 8 and 13) and Hockney
(1971, Sec. 9.2), since the very early times of PIC plasma simulations an artificial nu-
merical heating of these systems was observed. This numerical heating may mimic real
physical processes, making the triggering of physical instabilities driven by heating pos-
sible, besides of affecting the development of the natural instabilities of the real plasma
being simulated. There are several sources of this phenomena, mostly due to two different
mechanisms (Cormier-Michel et al. 2008):

6.8.2.1 Grid heating and “aliasing” instability

The first source of the self-heating was attributed the introduction of a grid: the appear-
ance of a non physical force Fg acting on the particles. In a real plasma, invariant under
spatial translations, the inter-particle interaction force will only depend on the distance
between them. But the spatial grid make the system spatially non-uniform (although pe-
riodic), losing the invariance under translations. Then, this implies that the inter-particle
force will depend not only of the separation between particles, but also on their position
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relative to the grid (see Birdsall and Langdon 1991, Sec. 8.2). The difference between the
interparticle force in a real plasma and the one simulated with the grid is defined as the
nonphysical grid force Fg.

The most important effect of this nonphysical force is due to the aliasing between grid
modes (first noticed by Langdon 1970). Indeed, by means of a Fourier analysis, the peri-
odicity introduced by the grid can be quantified by k∆x = 2π∆x. Following Melzani et al.
(2013) (see also Birdsall and Langdon 1991, Sec. 8.7), any physical plasma wave mode
with wavenumber k = 2π/λ will generate aliases at kn = ±k + nk∆x (n: an integer). These
grid aliases (in both density perturbations and grid forces Fg) with wavenumbers not re-
solved by the grid can couple resonantly with physical plasma modes, triggering para-
metric instabilities via non-linear wave-wave interactions. The spatial grid operates as a
“pump wave”. An example of such numerical instability is given in Birdsall and Langdon
(1991, Sec. 8.13) based in the original work by Langdon (1970), through a linear analysis
of the discrete electrostatic Vlasov equation. They found unstable wave modes arising
from the aforementioned coupling. Their growth rates γ were greatly enhanced when
the Debye length was not well resolved by the grid: ∆x > λDe, while they were heav-
ily damped in the opposite case. This can be explained because plasma modes with
large wavelengths will have λDe > 2∆x (Nyquist criterion), equivalent to the known non-
coupling condition from parametric instabilities: k < −k + k0. In addition, these growth
rates were found to be

γ ∝ S 2(kn) (6.39)

where S is shape function in Fourier space, depending on the aliases wave number kn.
Therefore, the undesired effects due to these aliases can be avoided by choosing macropar-
ticles with an extended shape (higher order), equivalent to a sharp decaying Fourier
transform. Note that these kinetic instabilities are totally independent on the number
of macroparticles per cell.

The non-linear saturation of the aforementioned (linear) kinetic instability was ob-
served to be around knλDe ∼ 1 in several simulations studies, some of them compiled
in Birdsall and Langdon (1991, Sec. 8.12). Therefore, when the condition Eq. (6.37)
∆x > CλDe was violated, the plasma experienced a very fast electron heating. This lead
to an increase of λDe until it becomes of order ∆x (more precisely ∆x/π), restoring the
system to the marginal stability condition.

6.8.2.2 “Scattering” heating

But in a “real plasma” there are many more numerical effects acting on the particles
that just Fg and the aliases that produces. One can group them all together in a stochastic
force F(t) acting on the particles, with contributions also from computational rounding,
time step, finite difference algorithm of the field equations and the use of shape functions
for the macro-particles. This force, changing at each time step and different for each par-
ticle, can be modeled as due to only fluctuations in the electric field (since magnetic field
fluctuations do not change energy) in a way δF(t) = mδv/∆t = qδE. It was found that
the net result of this force is a random walk (revealing thus its stochastic origin) of the
particles in velocity space. The average change in kinetic energy 〈|(1/2)m∆v2|〉 of the parti-
cles due to this random walk will increase linearly with time (see Hockney and Eastwood

139



6 Kinetic PIC code simulations

1988, Eq. 9.18)

〈|(1/2)∆v2 |〉 = q2

m
∆t|δ~E|2tn (6.40)

where tn is the time after n time steps: tn = n∆t. It can be noticed that this “stochastic
heating” (further details can be found in Hockney and Eastwood (1988, Sec. 9.2) and
Birdsall and Langdon (1991, Sec 13.4)) will affect most the lighter particles: electrons. Its
effect on the evolution of the simulated plasma can be characterized via the “heating time”
τh, the time necessary to increase twice its thermal energy. By means of 2D electrostatic
PIC simulations, Hockney (1971) and Abe et al. (1975) found the following empirical
formula20:

τHωpe ∝ η
(
λDe

∆x

)2

NC (6.41)

where Nc is a correction to the Λ parameter (the number of particles on a Debye sphere)
due to the introduction of the grid:

Nc = n
(
λ2

De + (W∆x)2
)

(6.42)

with W is a fitting parameter of order unity depending on the shape function. η is also
a fitting constant, but strongly dependent on the shape functions (in their simulations,
η = 3 for NGP, η = 600 for CIC and η = 4000 for TSC). Other simulations mentioned
in the previous references also showed a dependence proportional to the length of the
spatial smoothing used for the current. From this we can conclude that the numerical
heating can be controlled (i.e.: longer τh) by choosing a larger number of macroparticles
per cell (through Nc) but especially for higher order shape functions (and only weakly on
∆x . λDe, the critical parameter for the grid instability).

This “stochastic heating” at the end is due to the coarse-graining of phase-space. The
effective scattering can be considered as a form of numerical collisions (see Sec. 6.8.3) be-
tween the macro-particles and also due to the grid. As explained by Cormier-Michel et al.
(2008), whenever a macroparticle moves across the boundary of cells, it produces ran-
dom electric fluctuations. These spurious electric fields, non-existent in real collisionless
plasmas, are accumulated on each grid point with an associated error depending on the
interpolation scheme, affecting the motion of the neighboring macroparticles when the
fields are interpolated back to the macroparticles position. The net effect is analogous
to the Brownian motion or random walks (a diffusive process). Finally, this leads to
artificially high levels of the standard deviations in the particles’ velocities, equivalent
macroscopically to a numerically increased temperature.

It is interesting to mention that most of the studies about numerical heating were based
on the one due to the grid instability, and to a less extent in the one due to the scattering
heating. In addition, practically all of them were in reduced geometries with electrostatic
PIC codes, in order to avoid additional complications to the already complex problem of
determining the sources of heating. And most of the attempts to mitigate the heating were
based in increasing the number of macroparticles per cell, according to Eq. (6.41), since

20There are very few reliable analytical expressions for this numerical heating, considering its many
different sources.
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this will also reduce the PIC shot noise (see Sec. 6.8.6). But note that the latter, according
to Eq. (6.48), it is only weakly dependent on the shape function. For this reason, in addi-
tion to the lack of studies about the shape function, that a choice of S was not considered
relevant to solve this issue. Only recently there have been some studies studying these ef-
fects in more realistic plasmas: laser wakefield accelerators (Cormier-Michel et al. 2008).
They found that the choice of higher order shape functions proved to be more (compu-
tationally) efficient in reducing the heating due to scattering that an equivalent increase
in the number of macroparticles per cell. They also observed spurious numerical insta-
bilities driven by numerical heating, hiding the real physical processes to be modelled.
Our results to be shown in Chapter 7 agree with this conclusion for a very different setup:
current sheets.

6.8.3 Consequence of coarse-graining: numerical collisions

Strictly speaking, PIC codes do not model a real collisionless plasma governed by
the Vlasov-Maxwell equations. This is due to the inherent numerical collisions (for an
extended discussion about this issue, see Melzani et al. 2013). They are generated due to
the calculations on a spatial grid, a finite time step and the coarse-graining (representation
of many physical particles by a single macroparticle). Thus, in practice, PIC codes solve
a kinetic Boltzmann equation for the distribution function instead of the (collisionless)
Vlasov equation, with an effective numerical collision operator depending on the Fourier
transform of the shape function S̃ (~k), the grid size ∆x and the time step∆t. More precisely,
it is estimated being proportional to (see Birdsall and Langdon 1991, Appendix E):

(
∂ f

∂t

)

c

∝
∫

~dk
~κ~κ

K4

S̃ 2(~k)

|ǫ(~k,~k · ~v)|2

∞∑

p=−∞
S̃

2(~kp) ×
∫

d~v′δ(~k · ~v − ~kp · ~v′, ωg) (6.43)

where ~κ and K are the finite difference gradient and Laplacian operators, respectively
(associated with ~k and k2, respectively). ~kp = ~k − ~p · ~kg, ~kg = 2π/∆(~x−1)T is the grid
wave number, ωg = 2π/∆t is the characteristic frequency of the time stepping, δ(ω,ωg) =∑∞

q=−∞ δ(ω − qωg) is a periodic delta-function comb. ǫ is the plasma dielectric function.
Different from the usual dependence on the physical scenario/problem, in this case it also
depends on the time integration scheme, the conservation properties of the algorithm, the
shape function as well as other numerical algorithms/details of a PIC code.

We can have a more physical insight on the collision operator (∂ f/∂t)c by rearranging
it in the form of a Fokker-Plank collision term:

(
∂ f

∂t

)

c

=
∂

∂vi

Di j

∂ f

∂v j

+
∂

∂vi

A i f . (6.44)

with effective diffusion Di j and drag A i coefficients. The values of these coefficients are re-
duced (and with them the numerical collisions) by choosing higher order shape functions,
since S̃ (~k) decays faster. Moreover, it has been found empirically (see Birdsall and Langdon
(1991, Chap. 12), Hockney and Eastwood (1988, Sec. 7.5) and Okuda (1970)) that the
values of these coefficients depend mostly on the width of the macroparticle shape func-
tion compared to λDe, and to a lesser extent on the macroparticle number per cell. This is
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6 Kinetic PIC code simulations

different from real plasmas with individual point particles where they depend mostly on
the number of particles in a Debye sphere.

Note that previous investigations (Okuda 1970) have shown that the difference be-
tween the ideal Vlasov and Boltzmann equation, given by the numerical collision oper-
ator, is especially important for 2D3V plasma models in comparison with the 3D cases.
This was confirmed by Matsuda and Okuda (1975), who showed that numerical collisions
in electromagnetic PIC code simulations are reduced in regions with stronger magnetic
field, in addition to be highly anisotropic in a 2D configuration with an externally applied
magnetic field. This is because the electron-ion collisions, measured through the temper-
ature relaxation time, drag and diffusion coefficients, depend on the relative direction of
the magnetic field relative to the electric field fluctuations. They stated that is due to the
neglect of the spatial variations in the z direction: a 2D3V PIC code constrains the motion
of the macroparticles to the x-y plane, but solves for all three components of the velocities
vx -vy-vz. It is important to mention that the analysis by Matsuda and Okuda (1975) was
carried out for a plasma embedded in a strong magnetic field.

Numerical collisions are also closely related with numerically generated pitch angle
scattering. This is a process that redistributes particles velocities in the momentum space
when a temperature anisotropy is present, without changing significantly their total speed
(∼ to the total kinetic energy). Electromagnetic turbulence arising from the temperature
anisotropy generates waves that transfer momentum via wave-particle interaction from
the perpendicular to the parallel direction in velocity space. See more details in Kirk et al.
(1994, Sec. 3.1). Similarly to pure numerical collisions, the pitch-angle scattering (ei-
ther physical or numerical) is stronger in regions where the magnetic field is minimum
(Coroniti 1980). This pitch-angle scattering, similar to the (either physical or numerical)
collisions, is modeled through a diffusion operator in the right hand side of Boltzmann
equation

Finally, it is worth to remark that the (numerical) collisional behaviour of a plasma can
be measured via the collision time τc: larger values imply a more “collisionless behaviour”
of the plasma. By means of 2D electrostatic PIC simulations, Hockney (1971) (see also
Hockney and Eastwood 1988) found the following empirical formula:

tcωpe = n(λ2
De +W2) (6.45)

where W is the effective size of the macroparticle (as calculated from their shape function).
We can see that this quantity is mostly controlled by the density n and not so much on the
particle shape function (different from the heating time, Eq. (6.41)).

6.8.4 Side effect of collisions (and coarse-graining): Entropy in Vlasov

plasmas

A collisionless Vlasov plasma by definition describes reversible processes and thus
keeps the entropy S (t) constant for a closed system (for a discussion about non-equilibrium
processes and the validity of the Vlasov approximation in a real plasma, see Klimontovich
1997). The definition of this quantity that we will be using is

S (t) = −
∫

f (~v, t) ln f (~v, t) d3v, (6.46)
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This quantity measures the “uncertainty” in the information contained in the distribution
f , and for that reason is sometimes called “information entropy” (Shannon 1948) 21 , is
different from the Gibbs entropy only by the Boltzmann’s factor kB

22. And this is almost

equivalent to the thermodynamic definition of entropy (at least for a system in a local
thermodynamic equilibrium) in the sense that shares the properties of (see Zubarev et al.
1996, Sec. 1.3.1): 1) additivity (extensive quantity), 2) TdS = dU +PdV − µdN holds for
reversible processes, where U is the internal energy and µ the chemical potential. How-
ever, S (t) as defined by Eq. (6.46) differs from the thermodynamic definition of entropy
in the sense that does not monotonically increase in time until reaching maximum value
at thermal equilibrium. Instead, as we mentioned, the Gibbs or information entropy S (t)
of a closed system cannot increase. It is only when the entropy Eq. (6.46) is calculated
for any coarse-grained distribution function f that S (t) can increase in time, recovering
the desired thermodynamic behaviour. Since the coarse-graining can be in both phase
space and time, this is precisely the behaviour expected in PIC codes (corresponding to
the introduction of grid and time stepping, respectively), being noticed very early in the
history of these plasma model simulations (Buneman 1964). This is true even for a system
in thermodynamic equilibrium which should have maximum entropy for some given con-
straints (see Birdsall and Langdon 1991, Sec. 12.6). Only in the differential limit, when
f is the fine-grained distribution function defined with respect to the infinitesimal phase
space volume dx3dv3, S (t) remains constant (it is a Casimir invariant). Choices of larger
finite phase space elements will lead to higher increases in the entropy. For a proof of all
these claims, see Zubarev et al. (1996, pp. 51-52) or Levin et al. (2014).

Now, the problem with the calculation of entropy gets complicated when considering
dissipation, as produced eventually by numerical collisions in a PIC code. First of all,
and thermodinamically speaking, the entropy should increase in presence of dissipation.
The latter is characterized by the diffusion coefficient Di j that appears in the effective
collision operator of the Boltzmann equation Eq. (6.44), depending on the shape function
as well as other numerical parameters of the PIC algorithm. Then, any increase in entropy
in a PIC code is not only due to the coarse-graining of phase space, but also due to the
relative strength of numerical collisions. A very simplified model allow us to relate the
total rate of change of entropy due to the last effect with the effective collision operator in
the Boltzmann equation given by Eq. (6.43). Following Birdsall and Langdon (1991, Sec.
12.6), the latter is proportional to the increase of kinetic energy according to:

d

dt

1
2

(~v − ~v)2 = −v2
th,e

dS

dt
= − 1

2v2
th,e

∫
d~vd~v′(vi − v′i)Qi j(v j − v′j) f (~v) f (~v′ ). (6.47)

This simple expression is valid for an instantaneous Maxwellian distribution function.
Here, Qi j is a tensor proportional to the right hand side of the numerical collision operator,
therefore having the same dependence as Eq. (6.43). And to the order and approximations
used in the kinetic equation, the rate of change of kinetic energy is equal to the rate of

21 There are also alternatives definitions, for example the relative entropy calculated with respect to a
reference distribution function f0 (replacing the argument of the natural logarithm in Eq. (6.46) from f (~v, t)
by f (~v, t)/ f0(~v, t)), sometimes called Kullback-Leibler divergence (Kullback and Leibler 1951).

22 Strictly speaking, the definition of Gibbs entropy used in statistical mechanics is a special case of the
more information entropy, although we will not discuss these differences here. For further information, see
Zubarev et al. (1996, Sec. 1.3).
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6 Kinetic PIC code simulations

change of total energy. This correlation has already been noticed in early uniform and
electrostatic simulation studies (see, e.g., Montgomery and Nielson 1970). Years later,
Struckmeier (1996) and Struckmeier (2000) improved the analytical expression for the
rate of change of entropy by considering other additional effects (e.g., lifting the approx-
imation of Maxwellian distribution and allowing anisotropies), particularly suitable to
be measured in PIC simulations of laser plasma beams. The model developed by them
is based on the second order moment of the Vlasov-Fokker-Planck equation, relating
specifically the noise and collisional effects with the numerically generated temperature
anisotropies (the latter is necessary for the increase in entropy). Recent PIC simulations
studies have applied and extended these models to similar simulations of laser beams,
being able to distinguish the collisional effects due to the grid and the noise via measure-
ments of the entropy and other related quantities (Hofmann and Boine-Frankenheim 2014,
Boine-Frankenheim et al. 2015).

6.8.5 Side effect of collisions: Enhanced stopping of high energy par-

ticles

Due to the collisions, a particle that travels through a plasma with speed much higher
than the electron thermal speed, will experience a drag force due to the induced electro-
static field. This was already noticed by Hockney (1971) (see also Birdsall and Langdon
1991, Sec. 13.5), finding analogous empirical relations to these shown for the heating
and collisions times of the previous sections. But only recently there have been some
analytical progress regarding this topic. Kato (2013) and May et al. (2014) found that the
rate of kinetic energy loss depends mostly on the number of macroparticles per cell and
the shape function, with a very different behavior on dependence of the dimensionality.
This stopping power of energetic particles can relax very quickly non thermal populations,
scaling in general as q2/m, being therefore reduced for a macroparticle with small charge.
In addition, it can be avoided by using larger grid cells, higher order shape functions and
current smoothing.

6.8.6 Consequences of coarse-graining: numerical noise

The stochastic force arising from the grid and other effects (see Sec. 6.8.2) produces
enhanced fluctuations levels in a PIC simulation compared to a real plasma (both are
correlated). Indeed, early (2D electrostatic) PIC simulations by Hockney (1971) showed
that the electric field fluctuations, a measurement of the numerical PIC noise, scale as (see
also Birdsall and Langdon (1991, Sec. 13.5) and Dawson (1983)):

〈ǫ0E2/2〉
(3/2)nekBT

=
K

Nc

=
K

n
(
λ2

De + (W∆x)2
) (6.48)

where Nc, defined in Eq. (6.42), is roughly the macroparticle number and K is a fitting
parameter. This is consistent with the general theory of fluctuations in a thermal plasma23,

23 It is interesting to mention that these results regarding fluctuations are beyond the scope of the kinetic
Vlasov theory, because they involve the intrinsic discrete nature of a real plasma, and therefore higher order
correlations in 1/Λ = 1/(nλ3

De
). See further details in Krall and Trivelpiece (1973, Sec. 11) or the classical

textbooks Sitenko (1967) and Sitenko (1982).
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which predicts the following expression for a Maxwellian plasma with equal Ti = Te (see
Krall and Trivelpiece 1973, Sec. 11.2.3).

〈ǫ0E2/2〉
(3/2)nekBT

=

∫
d3~k

(2π)3

1
1 + (kλDe)2

=
1

(2π)3
log

(
1 + (kmaxλDe)2

1 + (kminλDe)2

)
1

nλ3
De

≈ 1
nλ3

De

=
1
Λ

(6.49)

where the last approximation is obtained neglecting the contribution from short wave-
lengths kλDe > 1 (strongly damped). Then, we can identify the number of particles in a
Debye sphereΛ by Nc, since the latter is approximately equal to the number of macroparti-
cles in one Debye length and also per cell ppc (due to the condition∆x ∼ λDe to avoid grid
heating). Consequently, the noise in the electric field,

√
〈ǫ0E2/2〉, will scale as ∝

√
1/N.

This scaling has been measured with ACRONYM code by P. Kilian (see Fig. 6.8), show-
ing a very good agreement with the expected theoretical behavior.
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Figure 6.8: Scaling of electric and magnetic field energy with the number of macroparti-

cles per cell, showing good agreement with Eq. (6.48). After Schreiner (2013), based in

the results by P. Kilian.

6.9 Parallelization

In order to reduce the huge computational burden of solving the equation of motion for
millions of macroparticles, the parallelization of PIC codes have become one important
issue since some decades ago. This is especially critical nowadays, with the availability of
petascale computational resources capable to use hundreds of thousands of CPUs/GPUs,
requiring an optimum and efficient design of massively parallel algorithms (see, e.g.,
Bowers et al. 2009, Daughton et al. 2014, Burau et al. 2010, Germaschewski et al. 2013).
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6 Kinetic PIC code simulations

The most popular strategy is the “domain decomposition”24 : to divide the computational
box in several smaller domains, and assigning each one of them to a single CPU (more
correctly, a process or thread). This CPU has to solve all the relevant equations inside
of its domain, in particular the most expensive part related with the current assignment
(inter-communication is avoided in this step), and it should also be able to transfer par-
ticles to the neighboring computational domains if their motion require that. Besides of
that, if the algorithm is local, like for the explicit PIC codes (but not for implicit or Darwin
ones), it should also solve individually the Maxwell equations and exchange their values
at their boundaries with the neighboring computational domains. Due to these reasons,
the parallelization using MPI (Message Passing Interface) libraries have become a very
convenient choice in most of the PIC codes used nowadays, since it allows a efficient
communication between the domains (for an introduction to MPI, see Pacheco 2011, Sec.
3). The exchange of information between them is carried out in “ghost (or guard) cells”:
additional cells at the domain boundaries that are designed to exclusively transfer data
and to make the interpolation of current assignment strictly local, and not representing
any physical domain in the plasma.

The transfer of information between computational domains have a side effect when
trying to solve the same physical problem with an increasing number of them (each one as-
sociated to one process or thread). Indeed, the increasing number of boundaries between
computational domain with their associated data exchange of particles and field data may
produce the opposite effect: it may slow down the total computational time of a simula-
tion if a too high number of computational domains are used and the code parallelization
is not done efficiently. This parallel performance of a PIC code (or any kind of parallel
code in general) can be evaluated through scaling studies. In the computer science termi-
nology (see Pacheco 2011, Sec. 2.6), the ideal behaviour of a parallel PIC code is called
“weakly scalable” if the efficiency25 is kept fixed when both simulation size and number
of processes are increased at the same rate. On the other hand, a code/program is called
“strongly scalable” if the efficiency is kept fixed for a given simulation size.

As can be seen in Fig. 6.9, the ACRONYM PIC code (to be discussed next) shows a
very good weak scaling up to 65k processes in several supercomputers in Germany and
other European countries.

24 In PIC codes, this method is sometimes called GCPIC algorithm: general concurrent particle-in-cell.
They were first developed for electrostatic PIC codes with spectral solvers by Liewer and Decyk (1989) and
Decyk (1995). See also Pritchett (2000) for a brief description and early attempts.)

25 This is defined as E =
Tser ial

nTparallel
where Tparallel is the parallel execution time of the code/program, Tserial

the serial execution time of the same (for one single process) and n the number of used processes. Ideally,
we would like to have Tparallel = Tserial/n and so E = 1 (a “linear speedup”), but in the real world there are
many factors that makes E much lower.
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y axis is the “code speed” in particles updates per second. After Kilian (2013).

6.10 The ACRONYM code

The fully-kinetic PIC code ACRONYM (“Another Code for moving Relativistic Ob-

jects, Now with Yee lattice and Macroparticles”) has been developed and improved since
2007 in the University of Würzburg, mainly during the theses written in the graduate stud-
ies of T. Burkart (Diploma and PhD: Burkart 2007, 2010), U. Ganse (Diploma and PhD:
Ganse 2009, 2012), P. Kilian (Diploma and PhD: Kilian 2010, 2015), and C. Schreiner
(Bachelor and Master: Schreiner 2011, 2013). Nowadays, it features26:

• Explicit scheme

• 1D3V, 2D3V and 3D3V cartesian geometries

• Maxwell solvers (in CGS units)

– Full electromagnetic Maxwell equations: FDTD (finite domain time differ-
ence) standard Yee lattice (2nd order accurate in space and time), FDTD
4th order solver, NSFD (Non-Standard Finite Differences) Cole-Kärkkäinen
solvers CK-CK5 (Kärkkäinen and Gjonaj 2006, Vay et al. 2011), and, in de-
velopment stage, FDTD M24 solver with 2th/4th order accurate in space/time,
respectively (Hadi and Piket-May 1997, Greenwood et al. 2004, Hadi 2007).

– Electrostatic, using a spectral solver (with parallel FFT libraries by S. Plimp-
ton27, based on the FFTW libraries28)

26There is also a hybrid PIC code version of ACRONYM in development stage. It features fully-kinetic
ions and an electron fluid with finite inertia.

27at Sandia National Laboratories, http://www.sandia.gov/~sjplimp/docs/fft/README.html
28“Fastest Fourier Transform in the West”: http://fftw.org/
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6 Kinetic PIC code simulations

– Darwin (low frequencies), using a spectral solver.

• Particle mover: (relativistic) standard Boris pusher and (ultra-relativistic) Vay pusher
(Vay 2008).

• Available shape functions: NGP, CIC, TSC, PQS (piecewise quadratic shape), PCS
(piecewise cubic shape) and SUDS (subtracted dipole scheme, see Kruer et al. (1973)).
Option of half-order shape functions, i.e.: a given order Wn for the even grid points
and other Wn+1 at the odd grid points (Sokolov 2012). Option of fix-point particle.

• Current deposition: Charge conserving Esirkepov scheme (Esirkepov 2001) and, in
development stage, Umeda scheme (Umeda et al. 2003).

• Post-compilation option of Gauss cleaning (Marder 1987) to enforce quasineutral-
ity, by using an spectral solver in the Poisson equation

• Post-compilation option of current smoothing using a binomial filter, with optional
compensation pass (Vay et al. 2011).

• Post-compilation selection of boundary conditions: Periodic, reflecting (PEC: Peri-
odic Electric Conductor), absorbing (ABC: Absorbing Boundary Conditions, with
the CFS-CMPL method: Complex Shifted Coefficient - Convolutionary Perfectly
Matched Layer. See Taflove and Hagness (2005, Sec. 7.9)).

• Default species particles: electron, ion and positrons.

• Initial loading of particles: by default (non-relativistic) drifting Maxwellian dis-
tribution, with normal random numbers generated via a modified version of the
Kinderman/Monahan algorithm (Leva 1992). Option to change initial random seed.
Enforce of initial charge quasineutrality by loading each pair of ion/electron at the
same position.

• Option for particle injection and wave launching.

• Vector operations using Blitz 29 library.

• Massively (domain) parallelized with MPI (Message Passing Interface) libraries.
Automatic domain decomposition specifying number of MPI tasks.

• Post-compilation option of load balancing to dynamically resize MPI domains and
thus to distribute equally the computational load.

• Output in HDF5 30 or native MPI binary format.

• Running time diagnostics for particle/electromagnetic field energy, global particle
momenta per specie up to second order (density, bulk velocities and pressure tensor),
local particle momenta per specie up to fourth order (for heat flux and kurtosis),
temporal averages of electromagnetic fields and particle momenta, derivatives of
particle momenta, particle tracking.

29http://blitz.sourceforge.net/
30Hierarchical Data Format v5 https://hdfgroup.org/HDF5/
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6.10 The ACRONYM code

• Post-processing diagnostics for power spectrum and dispersion relations, phase
space and particle distribution functions, particle pitch angle.

This code have been extensively tested and applied to a wide variety of numerical and
physical problems, such as investigations about the shape function (Kilian et al. 2013),
particle acceleration by plasma instabilities (Burkart 2007, 2010, Burkart et al. 2010, Kilian et al.
2012), particle acceleration in laser plasmas (Kilian 2010), wave-wave interaction in type
II Radio Bursts (Ganse et al. 2010, 2012b,c,a, Ganse 2012, Ganse et al. 2014)), CME
driven shocks in the solar wind (Kilian 2015), resonant wave-particle interaction (Schreiner
2011, 2013, Schreiner and Spanier 2014) and part of the present thesis work: current
sheets instabilities (Muñoz et al. 2014, 2015).
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Disclaimer for Chapter 7

The following chapter is based on and follows very closely the line of argumentation
of the work published in: P. A. Muñoz, P. Kilian, and J. Büchner, Physics of Plasmas 21, 112106, (2014)

“Instabilities of collisionless current sheets revisited: the role of anisotropic heating”

(Muñoz et al. 2014), also available as arXiv eprint:1501.06022. To the best of my knowl-
edge, all the text have been rewritten and mostly expanded and/or moved to the Introduc-
tory chapters or Appendix, although some parts can still be traced to the original source.
Moreover, since the line of argumentation is similar, the titles of some sections are still
identical. In particular,

• 26 of 30 figures are “Reproduced with permission from P. A. Muñoz, P. Kilian, and
J. Büchner, Physics of Plasmas 21, 112106, (2014). Copyright 2014, AIP Publish-
ing LLC”. Each one is identified in its corresponding caption.

• The first paragraph in Sec. 7.1.3 correspond to the last paragraph of section II in
Muñoz et al. (2014).

• Sec. 7.1.4 is based on Section VI-A of Muñoz et al. (2014).

• Sec. 7.2.1 is based on Section III-A of Muñoz et al. (2014).

• Sec. 7.2.2 is based on Section III-B of Muñoz et al. (2014).

• Sec. 7.2.3 is based on Section III-C of Muñoz et al. (2014).

• Sec. 7.2.4 is based is based on Section III-D of Muñoz et al. (2014).

• Sec. 7.2.5 is based on Section VI-C of Muñoz et al. (2014).

• Sec. 7.3.1 is based on Section IV-A and IV-B of Muñoz et al. (2014).

• Sec. 7.3.2 is based on Section IV-B of Muñoz et al. (2014).

• Sec. 7.3.3 is based on Section IV-C of Muñoz et al. (2014).

• Sec. 7.3.4 is based on Section IV-D of Muñoz et al. (2014).

• Sec. 7.3.5 is based on Section IV-E of Muñoz et al. (2014).

• Sec. 7.3.6 is based on Section IV-F of Muñoz et al. (2014).

• Sec. 7.3.7 is based on Section IV-G of Muñoz et al. (2014).

• Sec. 7.3.1.1 is based on Section IV-H of Muñoz et al. (2014).

• Sec. 7.4.1 is based on Section V-A of Muñoz et al. (2014).

• Sec. 7.4.1.3 is based on Section V-B of Muñoz et al. (2014).

• Sec. 7.4.2 is based on Section V-C of Muñoz et al. (2014).

• Sec. 7.4.3 is based on Section VI-B of Muñoz et al. (2014).

http://dx.doi.org/10.1063/1.4901033
http://arxiv.org/abs/1501.06022
http://dx.doi.org/10.1063/1.4901033


7 Instabilities of antiparallel Harris

CS and anisotropic heating

In order to simulate current sheet instabilities and magnetic reconnection with PIC
codes, it is necessary to carefully consider several numeric constraints, like stability con-
ditions (see Sec. 6.8.1). They impose restrictions on how small the grid size ∆x and time
step ∆t should be with respect to the characteristic plasma parameters λDe and ωpe. In
addition to that, it is also necessary to keep the numerical noise controlled due to the
necessary use of a reduced number of macro-particles per cell. The direct approach for
that is just increasing the number of macroparticles per cell. But this simplistic approach
becomes computationally prohibitive if more realistic parameters (like mass ratio) are de-
sired. Another, much less studied, approach is using higher order shape functions for
the interpolation of PIC quantities to the grid nodes (see Sec. 6.2). As mentioned in
Sec. 6.8.2, in the past there have been very few studies about the role of the numerical
heating caused by this simulation parameter, mostly related with laser wake-field acceler-
ation (Cormier-Michel et al. 2008). But the influence of the use of shape functions on the
numerical heating and stability properties of collisionless current sheets has not been ana-
lyzed so far. This is the purpose of this chapter. As we are going to demonstrate, if these
numerical considerations are not taken into account, they may lead to non-physical results,
hiding completely the development of the physical phenomenon trying to be studied.

This chapter is divided as follows. We describe the setup of the Harris sheet simulation
in Sec. 7.1. Next, we discuss the consequences of the numerically-induced anisotropic
heating on the evolution of these Harris sheets in Sec. 7.2, and how it can be suppressed
by the use of higher order shape functions. The consequences of the numerical heating are
mostly manifested in suppression of tearing mode, the instability associated with recon-
nection, and the appearance of an instability driven by numerically generated anisotropic
heating: bifurcation. In order to prove the causation between the last two processes, we
initialize CS with initially imposed temperature anisotropy in Sec. 7.3 but keeping con-
trolled the numerical heating, seeing the natural development of bifurcation. We also
observed an initially very dynamic state characterized by other secondary temperature
driven micro-instabilities. Next, in Sec. 7.4 we confirmed the theoretical predictions of
the tearing mode instability if all these numerical considerations are taken properly into
account. Finally, we summarize our findings in the conclusion, Sec. 7.5.
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7 Instabilities of antiparallel Harris CS and anisotropic heating

7.1 Simulation setup

7.1.1 General considerations

For all the simulations to be shown in this chapter, we use a single Harris CS equilib-
rium (Harris 1962). It is described by a magnetic field By that rotates around a neutral line,
sustained by a current Jz carried out by counterstreaming electrons and ions (see details
in Sec. 3.2.1 with their respective profiles displayed in Fig. 3.1). There is no initial guide
field (see Sec. 7.2.5 for their effects on the simulations) nor initial background. The latter
is in order to minimize additional effects due to that population and, in addition, to reduce
the number of free parameters. Nevertheless, we will discuss the effects of a background
plasma in Sec. 7.2.4.

The CS evolves only from the initial macroparticle numerical noise, there is no other
initial perturbation. This is because we focus on the onset and growth of the spontaneous
instabilities (Daughton 2005, Pritchett 2005a), the slow build-up phase of reconnection
(see Chapter 4) characterized by the so called tearing mode (see Sec. 5.1). This kind of
simulations require more computational time to reach the fully developed fast reconnec-
tion. Simulations with an initial perturbation allow to bypass this slow build-up phase and
to reach directly the explosive reconnection phase (Birn et al. 2001), more convenient to
analyze that kind of phenomena.

7.1.2 Parameters

As mentioned in Appendix A.3.3, there are four parameter ratios necessary to fully
specify a Harris sheet in absence of background and guide field. These are chosen accord-
ing to Lee and Büchner (2012).

L

di

= 0.57,
ωpe

Ωce

= 2.87,
mi

me

= 180,
Ti

Te

= 1, (7.1)

Ωce (and so ρi ) is calculated with the asymptotic Harris magnetic field B∞y, while ωpi

with the central peak density n0 = ne = ni. Now, let us justify the choice the physical
parameters. The chosen mass ratio is a compromise between computational speed and
the possibility to separate the effects of ion and electron motion. The width of the CS is
of the order of the ion inertial length, prone to a faster growth of the tearing mode than
thicker CS, besides of the (supposed) natural limit of the thinning of CS. The ratio of
frequencies ωpe/Ωce is chosen to be relatively small to save computation time. Although
this parameter may affect the nonlinear saturation of the tearing mode and the relative
electron to ion contribution to that stage (Coroniti 1977), the linear growth rate was shown
to be independent of it (Daughton 2005).

For our discussions, it will be helpful to specify the remaining parameters necessary
for the simulation setup, as well as some other few derived parameters and the relations
between them.
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7.1 Simulation setup

Parameter Standard Case

mi/me 180
Ti/Te 1
ωpe/Ωce 2.8688√
kBTe/me/c 0.1743

L/di 0.57735
L/ρi 1.1547
Lx/di 13.3
Ly/di 26.6

VDe0/c 0.0225
VDe0/vth,e 0.129√
kBTi/mi/c 0.01299
ρi/di 0.5
ρi/de 6.7
ρi/λDe 38.48979
di/λDe 76.9795
L/λDe 44.444

ω−1
pi /ω

−1
pe 13.416

Ω−1
ci /ω

−1
pe 516.39

0.5Lx/L 11.52
2πL/Ly 0.136

ωpe [Hz] 5.0459 ∗ 109

λDe/∆x 1.0
ρe/∆x 2.86886
ρi/∆x 38.48979
L/∆x 44.444
ω−1

pe/∆t 11.4754
Ω−1

ce /∆t 32.92143
Ω−1

ci /∆t 5925.8575
Nx/Ny 1024/2048

B∞y [G] 100.000

Table 7.1: Constant parameters for a Harris CS used in this chapter. The relations

between them were obtained through the expressions given in Appendix A.3.1 and Ap-

pendix A.3.3.

Other simulation runs in this chapter will vary only a very few parameters with respect
to the specified in Table 7.1. Their names and different parameters are in the following
table.
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Name/Parameter Shape ppc nb/n0 total ppc per specie vth,ey/c Te,y/Te,⊥

CIC − 40ppc CIC 40 0 7.28 · 106 0.1743 1
CIC − 160ppc CIC 160 0 2.91 · 107 0.1743 1
CIC − 360ppc CIC 360 0 1.16 · 108 0.1743 1
TSC − 40ppc TSC 40 0 7.28 · 106 0.1743 1

TS C − 160ppc TSC 160 0 2.91 · 107 0.1743 1

CIC − 40ppc − back01 CIC 40 0.1 1.56 · 107 0.1743 1
CIC − 40ppc − back02 CIC 40 0.2 2.40 · 107 0.1743 1
CIC − 360ppc− back01 CIC 360 0.1 1.91 · 108 0.1743 1
TS C − 40ppc− back01 TSC 40 0.1 1.56 · 107 0.1743 1

TS C − 160ppc − back01 TSC 160 0.1 6.26 · 107 0.1743 1

TSC − 40ppc − A0.64 TSC 40 0. 7.28 · 106 0.1394 0.64
TSC − 40ppc − A1.21 TSC 40 0. 7.28 · 106 0.1917 1.21
TSC − 40ppc − A1.44 TSC 40 0. 7.28 · 106 0.2092 1.44
TSC − 40ppc − A1.69 TSC 40 0. 7.28 · 106 0.2266 1.69
TSC − 40ppc − A1.96 TSC 40 0. 7.28 · 106 0.2440 1.96

TS C − 360ppc − A1.96 TSC 360 0. 1.16 · 108 0.2440 1.96
T SC − 1000ppc − A1.96 TSC 1000 0. 1.82 · 108 0.2440 1.96

TSC − 360ppc − A1.3 TSC 360 0. 1.16 · 108 0.1987 1.3
TSC − 360ppc − A1.4 TSC 360 0. 1.16 · 108 0.2062 1.4
TSC − 360ppc − A1.6 TSC 360 0. 1.16 · 108 0.2205 1.6
TSC − 360ppc − A1.8 TSC 360 0. 1.16 · 108 0.2338 1.8

Table 7.2: Parameters for the runs used in this chapter. The rest of parameters are

identical to these in Table 7.1.

For the simulations, we use the PIC code ACRONYM (see Sec. 6.10 or Kilian et al.
(2012) for a description) in 2.5D mode, not allowing variations in the translational in-
variant ẑ direction (parallel to the current). The boundary conditions for particles and
electromagnetic fields are reflecting in the ±x direction and periodic in the ±y direction
(see Sec. 7.1.4 for their effects on the simulations). The time step is chosen small enough
to solve the electron motion and to fulfill the Courant condition c∆t/∆x = 0.5 < 1 (see
Eq. (6.34)). Finally, in the results to be shown, lengths are normalized to the ion inertial
length di = c/ωpi and times to Ω−1

ci .
The specific order in which the input parameters of this Harris CS are initialized in

the ACRONYM code is described in Appendix A.3.3.

7.1.3 Justification for the size along y

The simulation box size in the y direction was chosen to allow, according to the linear
theory (Coppi et al. 1966), the development of up to seven unstable tearing modes with
wavelength λ = Ly/M, with M an integer satisfying 2πML/Ly = ky L ≤ 1 (according
to Table 7.1, this value is 0.136 for our parameters). Modes with shorter wavelengths,
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kyL ≥ 1, are evanescent. Thus, we can investigate the interaction and exchange of energy
between magnetic islands of different size, i.e.: multimode tearing.

Note that for a simulation box size with Ly = 2πdi, the linear theory predicts only one
unstable mode with kyL = 0.5 or, equivalently, only one tearing island. Because of this,
there is no interaction processes between different tearing islands and therefore no X point.
Consistently, in the simulations (not shown here) it is possible to see a steady increase of
the reconnected flux Ψ until a saturated stage, but not a sudden increase in this quantity,
which is a characteristic signature of the explosive phase of the reconnection process. This
stabilization and saturation takes place at very small amplitudes, unimportant for space
plasmas (Karimabadi 2005). The minimum size for which Ψ have a sudden increase,
which is the final stage of the coalescence process, is for a box size with Ly = 4πdi,
that allows three unstable modes with kyL = 0.25, 0.5 and 0.75. We checked that the
time in which the explosive phase of reconnection happens and the maximum value of
reconnected flux at saturated stage do not vary too much with respect to our choice of
7 unstable modes. And finally, we do not choose larger boxes in order to minimize the
complications of the merging of even more magnetic islands.

7.1.4 Justification for the size along x and influence of the boundary

conditions

The choice of reflecting (also called conducting) boundary conditions in the x might
not be a realistic choice, especially considering applications to space plasmas. In the
results to be shown, we detected waves launched from the center of the CS arising from the
numerical noise. These waves propagates outwards being reflected many times between
these reflecting boundaries and the center of the CS. This process leads to a periodic
exchange of magnetic and kinetic energy, at time scales shorter than Ω−1

ci . By changing
(extending) the simulation box size across x, we did not notice any significant difference
in any of the processes to be described in this chapter (results not shown here). This is
in agreement with previous studies (Ambrosiano et al. 1983, Melzani et al. 2013), who
identified these waves as of magnetosonic nature. Therefore, we can safely ignore the
influence of these boundaries in our results, as long as they are far away from the center
of the CS. For our parameters, they are located 11.5L from the center (see Table 7.1).

7.2 Origin and consequences of the numerically gener-

ated anisotropic heating

In this section, we show the results of five simulation runs with different combinations
of shape functions (CIC or TSC schemes) and macroparticle per cell (ppc), specified in
the first part of Table 7.1.

7.2.1 Numerical heating and shape function

As we discussed in Sec. 6.6.2, the momentum preserving PIC codes (the vast ma-
jority, including ACRONYM), do not preserve the total energy exactly. This is due to
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7 Instabilities of antiparallel Harris CS and anisotropic heating

the effect of the discretization (reduced number of macroparticles) and the introduction
of the grid (via the shape function), which produces unphysical forces over the parti-
cles (Hockney and Eastwood 1988). In order to see to what extent these parameters affect
the conservation of the total energy, we compare its time evolution for the aforementioned
five PIC runs of Harris CS in Fig. 7.1(a).

For later times, by comparing the curves with equal number of macroparticles but
different shape function, we can see that the conservation of energy is improved by two
orders of magnitude just by changing the shape function. For example, for t & 40Ω−1

ci
,

the total energy for TSC-40ppc increases above its initial value by about 0.25%, while
for CIC-40ppc by about 25%. The same is true for 160ppc at the same point in time:
the total energy for TSC-160ppc increases above its initial value by about 0.05%, while
for CIC-160ppc by about 8%. On the other hand, by comparing curves with equal shape
function but different macroparticle number, we can infer that the pure increase of the
latter does not have such significant effect on the improvement of the conservation of
energy. That is true even though the numerical noise (scaling as 1/

√
ppc, according

to the discussion in Sec. 6.8.6) is reduced in 50% between the cases, e.g., CIC-40ppc
compared to CIC-160ppc. But the change of the macroparticle number has a big impact
of the computational effort, since it scales linearly with it. Thus, the run CIC-160ppc is
300% slower than CIC-40ppc, while the change of shape functions is computationally
cheaper: TSC-40ppc is only ∼ 32% slower than CIC-40ppc.
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7.2 Numerically developed anisotropic heating

Figure 7.1: Time history of some quantities for the runs with different combinations of

shape functions (CIC and TSC) and number of macroparticles per cell (40-360 ppc). It

also includes a run with the XOOPIC code (using CIC shape function and 40ppc) for

validation purposes (denoted by △). The plots show: a) total energy (normalized to its

initial value), b) average electron temperature Te,x, c) average electron temperature Te,y

and d) average electron temperature Te,z . The temperatures are normalized to their equi-

librium (initial) values. Note that we break the plots in the vertical direction in two parts,

with larger scales in the upper parts. This is in order to visualize more easily the small

variations of the quantities obtained using the TSC shape function, compared with the

large variations in those obtained using the CIC shape function. Reproduced with permis-

sion from P. A. Muñoz, P. Kilian, and J. Büchner, Physics of Plasmas 21, 112106, (2014).

Copyright 2014, AIP Publishing LLC.

In order to prove the validity of these results obtained with ACRONYM, we bench-
marked it against an independent (and standard) PIC code: XOOPIC (Verboncoeur et al.
1995). Different from ACRONYM, this is an old serial code and only provides linear
weighting (CIC). The results for a run with identical parameters to these of CIC-40ppc
are also shown in Fig. 7.1. Note that we have not obtained results with the XOOPIC
code for times greater than tΩci ∼ 33, since we were using the free serial version of
the code, which is much slower than ACRONYM (∼ 58 days (!) to reach that point in
time). Although the total energy is similar in the beginning between both ACRONYM and
XOOPIC runs, they start to diverge after tΩci ∼ 16. From that time onwards, XOOPIC
has a slightly better performance (increase of total energy . 8% for the last time depicted
tΩci ∼ 33) than CIC-40ppc with ACRONYM (increase of total energy . 16% for the last
time depicted tΩci ∼ 33). This difference does not affect any of the physical and numerical
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7 Instabilities of antiparallel Harris CS and anisotropic heating

processes to be described in the next sections: they develop almost identically between
both codes. Therefore, we can conclude that ACRONYM does not behave numerically
different from other standard PIC codes, demonstrating the validity of our results.

It is important to mention the effects of using even higher order shape functions. For
this sake, we ran another simulation test (not shown here) with the PQS shape function,
but otherwise identical parameter to these of CIC-40ppc. This run was slower by ∼ 71%
compared to CIC-40ppc, but it did not improve significantly the conservation of energy
over TSC-40ppc. From this (and other similar evidence) we conclude that is more efficient
the change of TSC over CIC than PQS over TSC shape functions, in agreement with
another recent study (Cormier-Michel et al. 2008). They found that some non-physical
processes related with numeric scattering do not vary significantly between cubic and
quadratic interpolations rather than between quadratic and linear ones.

Now, what is the origin of this insufficient energy conservation in the CIC runs? As
we can see in the components of the electron temperature averaged over the whole sim-
ulation box shown in Fig. 7.1(b)-(c)-(d), the runs that experience this effect also show
enhanced numerical electron heating. They follow practically the same trend as the cor-
responding curves for the total energy Fig. 7.1(a): TSC runs keep this artificial heating
more controlled than the CIC ones. We could check that the ion heating is negligible
(not shown). From this correlation, we deduce that a higher order shape function allows
a better resolution of the electron motion than just a simply increase in the macroparticle
number.

By comparing Fig. 7.1(b)-(c)-(d) we can also note that this numerical electron heating
is anisotropic: Te,x and Te,y are heated more than Te,z . We will explore the origin of this
behaviour in the next subsections.

Thus, the main finding of this section is that the choice of a higher order interpolation
scheme, in particular TSC over CIC, allows a better conservation of energy and reduction
of numerical heating than just using more macroparticles per cell in PIC simulations of
current sheets. It is “better” in the sense of being computationally cheaper. Note that
early studies of electrostatic and homogeneous PIC simulations also showed this effect
by comparing NGP and CIC schemes (see Hockney 1971). Our finding also agree with
a more recent study by Cormier-Michel et al. (2008), who demonstrated the efficiency of
TSC over CIC shape function in PIC simulations of laser wakefield accelerators.

7.2.2 Consequences of the anisotropic numerical heating on the sta-

bility of CS

Here we are going to discuss the physical consequences of the anisotropic numerical
heating on the stability of CS. As it is widely know, the natural evolution of a thin CS
should lead to a development of the tearing mode: a merging of magnetic islands. This
can be reproduced in the TSC-40ppc run, as indicated in the out-of-plane Jz displayed in
Fig. 7.2(b). On the other hand, we found that instead of that behaviour, CIC-40ppc (as
well as the other runs with the same CIC shape function) develops a double peak struc-
ture in Jz, with a reduction of the current along the center of the CS. This phenomenon
is called bifurcation. As we mentioned in Sec. 5.1.4.1, bifurcated CS sheets are associ-
ated to temperature anisotropies (Sitnov 2003, Zelenyi et al. 2004, Daughton et al. 2004,
Matsui and Daughton 2008). One study (Lee and Büchner 2012) also observed a bifur-
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cated CS by using 2D PIC simulations with CIC shape functions, in agreement with our
results. Since we measured strong anisotropic numerical heating for all CIC runs (see
Fig. 7.1(b)-(c)-(d)), it is possible to infer that both effects are related.

Figure 7.2: Contours of the out-of-plane component Jz of the total current density, at the

time t = 33Ω−1
ci

, for two runs a) CIC-40ppc and b) TSC-40ppc. Black lines are the mag-

netic field lines. The run CIC-40ppc shows a bifurcated structure while TSC-40ppc shows

only a single peak structure with large tearing mode islands. Reproduced with permis-

sion from P. A. Muñoz, P. Kilian, and J. Büchner, Physics of Plasmas 21, 112106, (2014).

Copyright 2014, AIP Publishing LLC.

The growth of tearing mode can be characterized by the time history of the recon-
nected flux ψ, as defined by the vector potential Az according to Eq. (4.1). A special
consideration about that definition that considers X and O points should be taken in our
case of multimode tearing starting from numerical noise. This is because the position
of magnetic islands is completely random and varies with time, and so are the X and O
points. Therefore, and following some previous works, we chose to compute this quantity
by taking the difference between the maximum and minimum value of Az along the line
x = 0. The evolution of a CS leads to a merging and reduction of the number of magnetic
islands, and thus this definition is a representative quantity for later times. It does not rep-
resent accurately the evolution of tearing mode at the beginning, due to the large number
of magnetic islands arising from noise, but that stage is not important for our purposes
since is dominated by numerics. The results of this calculation are displayed in Fig. 7.3.
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Figure 7.3: Comparison of reconnected flux Ψ for the runs a) CIC-40ppc and b)

TSC-40ppc. The left panel a) (with CIC shape function) correspond to the case with

anisotropic heating and CS bifurcation, while the right panel b) (with TSC shape func-

tion) correspond to a tearing instability without significant anisotropic heating nor bi-

furcation. Reproduced with permission from P. A. Muñoz, P. Kilian, and J. Büchner,

Physics of Plasmas 21, 112106, (2014). Copyright 2014, AIP Publishing LLC.

In Fig. 7.3(b), we can see the monotonous growing of ψ due to tearing mode until
the explosive phase of magnetic reconnection in t ∼ 60Ω−1

ci
, when there is only one

remaining magnetic island. The maximum values of Ψ in this stage are typical from this
kind of studies of magnetic reconnection (see, e.g., Pritchett 2005a). After that time, the
entire structure of the current sheet is disrupted due to outflows from the single X point
in opposite directions, colliding due to the periodic boundary conditions. This boundary
effect1 can be avoided by choosing larger simulation boxes (Karimabadi et al. 1999) or
open boundary conditions (see, e.g., Daughton et al. 2006, Ohtani and Horiuchi 2009).
On the other hand, Fig. 7.3(a) demonstrate a complete different behaviour: no growing of
reconnected flux for the run CIC-40ppc, and therefore no tearing mode.

Now, let us analyze how the bifurcated CS develops for the CIC run. In Fig. 7.4 we
show the integrated profile of Jz across the inhomogeneous x direction. This allows to
detect that the depletion of current starts around t ∼ 15Ω−1

ci
. It is driven by a reduction

of Je,z . The ion contribution Ji,z to the total current (Jz = Ji,z + Je,z) is negligible. This is
turn involves a reduction in the out-of-plane electron bulk velocity Ve,z, while the electron
number density is practically unchanged (Je,z = −en0eVe,z). This agrees with the finding
of a previous work (Lee and Büchner 2012).

1 Although it mostly numerical in our case, its physical consequences shares some features to dipolar-
ization fronts. See Sitnov and Swisdak (2011) for further details.
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Figure 7.4: Evolution of the total current density profile Jz showing bifurcation (CIC-

40ppc run). The profiles are obtained by integrating the current density along the CS:

Jz(x) = (1/Ly)
∫ Ly/2

−Ly/2
Jz(x, y)dy. Reproduced with permission from P. A. Muñoz, P. Kilian,

and J. Büchner, Physics of Plasmas 21, 112106, (2014). Copyright 2014, AIP Publishing

LLC.

This reduction of Ve,z for CIC-40ppc is strongly related with the temperature anisotropy.
Indeed, it can be shown from Eq. (2.24) (see Schindler and Hesse 2008, or discussion fol-
lowing Eq. (4.22)) that both quantities are related by the following expression

Pxx,e − Pzz,e

Pxx,e

≈ 1
By

dVe,z

dx
∝

Te,x − Te,z

Te, x

. (7.2)

This is valid neglecting contribution due to heat flux, assuming a gyrotropic tensor pres-
sure (a justified assumption due to the dominant collisions in our system) and under the
presence of an out-of-plane magnetic field (not shown here, but developed in these bifur-
cated cases in a way analogous to the be shown in Sec. 7.3.2). Since there is no significant
temperature anisotropy developed for TSC-40ppc run, it follows that it will not develop
any reduction in Ve,z and thus no bifurcation, in agreement with our results. Instead, it just
displays the physically expected merging of magnetic tearing islands and reconnection at
the end.

Now, let us describe the theoretical predictions relating temperature anisotropy and
stability of the CS. For that, we need to define this quantity in our geometry. It will
be given by Ae = Te,‖/Te,⊥, with Te,‖ = Te,y and Te,⊥ = (Te,x + Te,z)/2 the temperatures
in the directions parallel and perpendicular to the asymptotic Harris magnetic field (in y

direction). This choice is because the Harris equilibrium (Eq. (3.19)) involves only the
perpendicular component of the temperature, Te,⊥, while Te,y is not involved in this initial
CS equilibrium. Thus, the time evolution of Ae for the five first runs described in Table 7.2
(isotropic, with initially Ae = 1) is displayed in Fig. 7.5. First, let us note that all the runs,
in particular the ones with TSC shape function, show a monotonous steady increase in the
anisotropy. This preferential electron heating in the parallel (y) direction is known from
the linear theory of tearing mode. This develops a parallel electric field (Chen et al. 1984),

161

http://dx.doi.org/10.1063/1.4901033


7 Instabilities of antiparallel Harris CS and anisotropic heating

and therefore electrons can be more easily heated in that direction (Karimabadi et al. 2004,
Vainshtein and Mazur 1982). On the other hand, the runs with CIC shape function also
develops parallel electron heating (and much more than the tearing-driven heating in the
TSC runs), but it cannot be due to the tearing mode as we already demonstrated: it is only
numerical.

Figure 7.5: Time history of electron temperatures anisotropies Ae = Te,‖/Te,⊥ for the

five (initially isotropic) runs with different shape functions and number of macroparticles

per cell. The theoretical thresholds for tearing mode stabilization are depicted by ∗ for

Eq. (7.3) and + assuming Ti,⊥ = Te,⊥. The curve ∗ is calculated with the instantaneous

value of Ti,⊥/Te,⊥ for the run CIC-40ppc. Reproduced with permission from P. A. Muñoz,

P. Kilian, and J. Büchner, Physics of Plasmas 21, 112106, (2014). Copyright 2014, AIP

Publishing LLC.

As we mentioned in Sec. 5.1.4, Chen et al. (1984) found that the tearing mode can be
stabilized if the electron temperature anisotropy is higher than the threshold Eq. (5.48) (or
the simplified version Eq. (5.41) found before by Laval and Pellat (1967) and Forslund
(1968)). For our parameters, it reads:

Ae =
Te,‖

Te,⊥
> 1.159

2
(
1 +

Ti,⊥

Te,⊥

)−1 , (7.3)

The factor in square brackets is 1 for Ti,⊥ = Te,⊥ , but deviates considerably from it during
the course of the CS evolution for the CIC runs due to the numerical electron heating.
For that reason we also plotted the full threshold in 7.5 using the maximum variation of
the factor in square brackets, corresponding to the run CIC-40ppc. Thus, all the other
possible cases will fall in between these curves.

Fig. 7.5 demonstrate that all the simulations that reached electron temperature anisotropies
higher than the previous threshold (all the CIC runs), developed bifurcation, suppress-
ing the tearing mode. As discussed in 5.1.4 the stabilization of tearing mode is because
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(Karimabadi et al. 2004, Karimabadi 2005) the appearance of another instability driven
by temperature anisotropy: the Weibel instability. This instability propagates perpendic-
ular to the “warmer” temperature (its source of free energy), Te,x in our case (since not
wavevectors are allowed in the z direction). In the other direction, Te,y for our geometry,
the Weibel mode is damped. But this turns out to be the same propagation direction as the
tearing mode (ky). Since both instabilities are driven by Landau resonance, they couple
resulting in a damping or suppression of tearing mode.

The effects of the temperature anisotropy are especially important for our simulation
parameters. As pointed out by Chen et al. (1984), these are enhanced for small Larmor
radius (according to Table 7.1, ρe/λDe = 2.86) and more realistic (large) mass ratios. The
latter can be understood since the electron temperature anisotropy build ups on electron
time scales (ω−1

pe , Ω−1
ce ), and therefore it will be more “accumulated” on ion time scales

Ω−1
ci

if the separation of these time scales, proportional to the ratio mi/me, is large enough.
Moreover, it is known (see discussion in Sec. 5.2.1), that the threshold of Weibel is mostly
dominated by the electron temperature anisotropy, the ion contributions are usually negli-
gible. An ion temperature anisotropy can only drive Weibel if its temperature anisotropy
is very large and, at the same time, the electron temperature anisotropy is negligible small
(Baumjohann et al. 2010). Therefore, since this scenario does not take place in any of
our simulations, all the effects related with ion temperature anisotropy can be completely
neglected in this work.

7.2.3 Numerical CS bifurcation and entropy

In the previous section we analyzed the effects of the heating developed by the CIC
runs on the stability of the CS, showing that it may lead to a non-physical evolution
of the system if it is not taken properly into account. But that is not a proof that the
heating arise only due to numeric considerations. In order to have an additional argu-
ment to distinguish that the numerical heating developed by the CIC shape functions is
different from the real physical heating, one can look at the entropy of the system. As dis-
cussed in Sec. 6.8.4, the entropy in a collisionless Vlasov plasma should be kept strictly
to zero. But the discretization of the phase space due to the introduction of a grid (via
the shape function) and finite time stepping in PIC codes can generate entropy (Buneman
1964). This entropy production due to coarse graining of phase space can be interpreted
as dissipation, being thus manifested through a diffusion coefficient Di j appearing in the
effective collision operator in the right hand side of the Boltzmann equation Eq. (6.44).
This coefficient Di j depends explicitly on numerical factors such as the shape function
(see Sec. 6.8.3 or Birdsall and Langdon (1991, Sec. 12.6) for further details). As a result,
the conservation of density in the phase space (Liouville’s theorem) is violated, leading
to a diffusion of the distribution function, manifested macroscopically as an effective (nu-
merical or non-physical) heating (the second numerical heating mechanism mentioned in
Sec. 6.8.2). Note that both numerical heating and entropy, under some assumptions, are
related via Eq. (6.47).

Therefore, an increase of entropy in momentum-conserving PIC codes indicates strong
numerical heating, dissipation or collisions (since all these quantities are directly related).
This can be shown in the time evolution of this quantity for our usual five runs in Fig. 7.6.
We use the information entropy S by Shannon (1948) defined by Eq. (6.46) (equal, ex-
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cept by a constant factor, to the thermodynamic Gibbs entropy). Since S is a continuous
variable, we approximate it by means of the histogram estimator (Moddemeijer 1989) de-
fined by Eq. (B.87), discretizing the phase space in bins ∆v3. The specific value changes
with the choice of ∆v and it is defined up to a constant offset depending on the relative
units of the velocity (see further details in Sec. 6.8.4). For this reason, we carried out a
convergence study (not shown here) to be sure that S is more or less invariant through a
wide range of choices of ∆v around an optimum value ∆v = c/40

Figure 7.6: Time histories of electron (a) and ion (b) entropies S (t) calculated according

to Eq. (B.87) for the five isotropic runs. This entropy can quantify the numerical colli-

sions. The electron entropy curves follow the same trend as the curves for the total energy

and electron temperatures shown in Fig. 7.1. And for the same reasons explained in that

Fig. 7.1, we break the y axis in two halves with different scales. Reproduced with permis-

sion from P. A. Muñoz, P. Kilian, and J. Büchner, Physics of Plasmas 21, 112106, (2014).

Copyright 2014, AIP Publishing LLC.

In Fig. 7.6, we see that the respective curves for the electron entropy in the CIC runs
show the same trend as the corresponding to the energies shown in Fig. 7.1(a): TSC
schemes preserve it better than CIC. The increase of macroparticle have the same effect,
but to a much less extent. This is to be expected according to our previous discussion
and Eq. (6.47). Then, this fact is a strong indication of the numerical heating dominating
the CIC runs. On the other hand, the ion entropy does not vary significantly (a range
of variation two order of magnitude smaller) for different shape functions and number
of macroparticles, since the ion heating time scales are much larger than those of the
electrons. Thus, the ion contribution to the total entropy is negligible.

Our results for CIC-40ppc case agree with a previous work by Lee and Büchner (2012).
By using the XOOPIC code, that only provides the CIC shape function, they observed
bifurcation of the CS. It was associated with the physical process of electrons experi-
encing chaotic scattering when they cross center of the CS (Büchner and Zelenyi 1989,
Zelenyi et al. 2003). They also observed a growing entropy (more precisely, the rela-
tive entropy, also called Kullback-Leibler divergence according to Kullback and Leibler
(1951)) since the beginning, similar to our result, associating it with a state thermodynam-
ically more probable (less free energy). As we argued, this can also be produced only due
to numerical heating.
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7.2.3.1 Collisions and location of bifurcation

According to the discussions in Sec. 6.8.3 based in the original work by Matsuda and Okuda
(1975), the numerical collisions in electromagnetic PIC codes weaken in presence of a
magnetic field. They are stronger in unmagnetized regions, like the center of a Harris CS
(even though later it becomes weakly magnetized, but it still much less than in the edges
of the CS, for example). This explains that the physical consequence of these collisions
seen in our CIC runs, bifurcation, starts at the center CS x = 0 and not in other locations
(like at the edges of the CS, even though these locations have less macroparticles per cell).

7.2.3.2 Collisions in 2D geometry

Previous works (Okuda 1970) have shown that the numerical diffusion coefficient
Di j behaves very differently in 2D3V plasma models in comparison with full 3D cases.
Since Di j measures the differences between the collisionless Vlasov and the (collisional)
Boltzmann equation, it follows that the nature of numerical collisions will be different
in our reduced 2D geometry. Moreover, Matsuda and Okuda (1975) also noticed that
the numerical collisions are highly anisotropic in 2D plasmas with an externally applied
magnetic field. As mentioned in Sec. 6.8.3, this can be understood because the coefficients
characterizing numerical collisions depend explicitly on the direction of the magnetic field
relative to the electric field fluctuations. But a 2D3V PIC code constrains the motion of
the macroparticles to the plane x-y, while solving the three components of the velocity.
Then, the neglected out-of-plane direction z will not be affected by collisions diffusing
particles in the vz phase space coordinate.

However, the argument and results shown in Matsuda and Okuda (1975) were carried
out for a plasma in a strong magnetic field. Therefore, it might not be useful to apply
it directly to our case, especially near the center of the CS. For this reason we tested
this theoretical prediction by means of two simulations tests with CIC shape functions
to enhance the numerical collisions. Both use CIC shape function to enhance numerical
collisions, but otherwise the physical parameters were identical to the run CIC-40ppc, but
without a current sheet initialization. One of them is purely 2D with a simulation box
[128∆x × 128∆x], while the other one is full 3D with size [128∆x × 128∆x × 128∆x].
The results show than the 3D run developed much smaller numerical heating electron
temperature anisotropy than the 2D case. Thus, we confirmed that for our parameters, the
2D runs overestimate the importance of numerical collisions compared to 3D cases, in
addition to make them anisotropic and so the electron temperature. Therefore, we expect
than in realistic runs of 3D Harris CS, these numerical effects will be much less important.

7.2.4 Numerical heating and background plasma effects

All the results shown in the previous sections were based in simulations of Harris CS
without a background plasma. This implies that there are very few macroparticles at the
edges of the CS, potentially enhancing the numerical collisions or scattering in these re-
gions, due to the stronger electromagnetic fluctuations. So, the natural question that we
will address in this subsection is: how will the inclusion of a background plasma, increas-
ing significantly the number of macroparticles in these regions, affect all the previous
conclusions?
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For this sake, we use the results of six additional runs, with parameters given in the
second part of Table 7.2 (identified with the suffix “back”). In a first place we compare
the conservation of energy and evolution of the temperature anisotropy for cases using
CIC shape function and different background populations: 10% and 20% of the peak
central density of the Harris sheet, respectively. Results are depicted in Fig. 7.7. The time
evolution of the numerically generated temperature anisotropy is practically identical to
the case CIC-40ppc, confirming that the numerical collisions and associated scattering
are not affected too much by the inclusion of the additional population. We also observed
a worse energy conservation for increasing background plasma densities, but this is not
related with the numerical collisions, but to other additional factors (not investigated or
shown here).

Figure 7.7: Time history of a) total energy (normalized to its initial value) and b) electron

temperature anisotropy Ae = Te,‖/Te,⊥ for the cases of a CS without background (CIC-

40ppc), background population at 10% of the peak density (CIC-40ppc-back01) and at

20% of the peak density (CIC-40ppc-back02). In all those runs the CIC scheme has been

used with 40ppc. Reproduced with permission from P. A. Muñoz, P. Kilian, and J. Büchner,

Physics of Plasmas 21, 112106, (2014). Copyright 2014, AIP Publishing LLC.

Next, we will prove that the previous conclusion still holds when varying the total
number of macroparticles. For this sake, in Fig. 7.8 we display the time evolution of
total energy and electron temperature anisotropy for runs with exactly the same parame-
ters as the shown in Fig. 7.1, but with the inclusion of a background population of 10%
of the peak central density of the Harris sheet. By comparing the total energy evolution
in Figs. 7.1(a) with Fig. 7.8(a), we checked that it is very weakly affected by the inclu-
sion of the additional population, for all cases with different macroparticle number and
shape function. The same is valid for the evolution of temperature anisotropy for the CIC
runs in Fig. 7.8(b) and Fig. 7.5. Thus, we confirmed that a background plasma does not
change significantly the numerical heating and their associated effects, such as bifurcation
or tearing stabilization (we checked that all these processes develop similarly). This can
be understood since bifurcation takes place at the center of the CS, where numerical col-
lisions are enhanced. A background population does not change significantly the density
here, only at the edge of the CS, a region not directly involved in these numerical pro-
cesses. A background population may become critical for a correct description of other

166

http://dx.doi.org/10.1063/1.4901033


7.2 Numerically developed anisotropic heating

physical processes, such as any estimation that requires the calculation of momenta of
distribution function away from the center of the CS.

Figure 7.8: Time history of a) total energy and b) electron temperature anisotropy

Ae = Te,‖/Te,⊥ for our standard runs described in Sec. 7.2.1, but with the addition of

a background population of 10% of the peak density. Compare with the Figs. 7.1(a)

and 7.5. Reproduced with permission from P. A. Muñoz, P. Kilian, and J. Büchner,

Physics of Plasmas 21, 112106, (2014). Copyright 2014, AIP Publishing LLC.

One additional observation in Fig. 7.8(b) deserves a further explanation. The TSC runs
show a sudden increase in the temperature anisotropy for later times when comparing to
the case without background in Fig. 7.5. This is a signature of the explosive phase of mag-
netic reconnection taking place (earlier than in the case without background), where sig-
nificant temperature anisotropies are developed naturally in the reconnection exhaust. As
reported by Karimabadi et al. (2005) via PIC simulation studies and Schmitz and Grauer
(2008) via Vlasov codes, the onset of magnetic reconnection is sensitive to the initial
conditions, although it does not have an overall strong dependence on the presence of a
background population, and therefore some small deviations are expected (as measured
by the reconnected flux). They also notices that the saturation of tearing instability have
a weak dependence on the background population. On the other hand, it is known that
reconnection rates are substantially reduced with increasing background plasma density
(Pritchett 2001, Karimabadi et al. 2005, Schmitz and Grauer 2008). This is equivalent to
an extended explosive phase of magnetic reconnection with background than without it
(results not shown here) . We can understand that because the quantity that determines the
relative “speed” of magnetic reconnection is the Alfvén speed VA in the outflow region
(see Sec. 4.1), with a dependence on the density ∝ 1/

√
n. Therefore, regions with low

density in cases of CS without background will have larger VA (in fact, asymptotically
infinite) and so the reconnection rates. As a result, the reconnection stage will be shorter
than in cases with a background (with smaller values of VA). This reconnection regime is
sometimes called “vacuum reconnection” (Pritchett 2001), characterized by the absence
of whistler waves due to the infinite Alfvén speed (see discussion in Sec. 4.2.2).
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7.2.5 Restriction to an antiparallel magnetic field configuration

All the results shown in the previous sections were based in simulations of Harris CS
without a guide magnetic field (in the out-of-plane direction). Let us discuss a little bit
about the possible effects when a finite guide field is imposed in our configuration. If it is
strong enough, electron can become magnetized (gyrotropic) at the center of the current
sheet, making their temperature highly isotropic on the reconnection plane x-y. This
would imply that the stabilization and saturation of tearing mode will be quite insensitive
to the practically negligible electron temperature anisotropy (i.e.: the tearing mode will
not developed any natural significant degree of anisotropy). The saturation mechanism
will have to do with other kind of processes, such as electron trapping in magnetic islands
(see Karimabadi 2005, Karimabadi et al. 2005, or discussion in Sec. 5.1.3.4).

Therefore, all the processes related with numerically developed temperature anisotropy
discussed in this section are critical mostly for antiparallel configuration of magnetic re-
connection. In presence of a guide field, they becomes much less important. Instead, other
numerical parameters play the key role for a correct modeling, such as the electron Lar-
mor radius on the guide field. We are going to analyze the guide field effects extensively
in the Chapter 8.

7.3 Initially imposed temperature anisotropies

In the previous section we showed the correlation between the (numerically devel-
oped) anisotropic heating and bifurcation. The purpose of this section is to prove a causal
relation between both mechanisms, by initializing a CS with a temperature anisotropy. As
we will see, in these cases the CS will develop a very complex and interesting dynamics.

7.3.1 Initial temperature anisotropy relaxation

The results to be shown are based in seven additional simulations runs with an ini-
tial electron temperature anisotropy (called “initially anisotropic” from now on), with
parameters defined in the third part of Table 7.2. All of them use TSC shape function,
in order to keep the temperature anisotropy triggered by numerical heating controlled:
we want to study only the consequences of the physically generated electron temperature
anisotropy Ae (defined in Sec. 7.2.2). The temperature anisotropy is imposed by changing
only Te,y = Te,‖, while keeping Te,⊥ = Te,x = Te,z equal to the value necessary to keep
the initial Harris equilibrium in Eq. (3.19). We chose more runs with Ae > 1 rather than
Ae < 1, representing thus the naturally developed anisotropies during the course of the
tearing mode growth evolution of the CS (see Fig. 7.5). Because initially we have Ti = Te ,
we also have an ion temperature anisotropy Ai = Ti,‖/Ti ,⊥. The rest of parameters are
identical to the run TSC-40ppc, with the exception of the macroparticle number in some
of the runs.

The time evolution of the electron temperature related quantities Te,x, Te,y and Ae for
the first 5 anisotropic runs with 40ppc: TSC-40ppc-A0.64 , TSC-40ppc-A1.21, TSC-
40ppc-A1.44, TSC-40ppc-A1.69 and TSC-40ppc-A1.96 (see details in Table 7.2) is shown
in Fig. 7.9. By comparing with the isotropic case TSC-40ppc also displayed in the same
figure, the CS relaxes towards an isotropic state during a short transient time: Ae goes
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down to 1 (Fig. 7.9(c)), consequence of the decrease of the initially imposed parallel Te,y,
while at the same time the perpendicular temperature Te,x (similarly Te,z, not shown here)
increases above its initial equilibrium value to compensate the previous effect. Both paral-
lel and perpendicular components of the electron temperature approaches to an asymptotic
value, proportional to the initially imposed parallel Te,y.

Figure 7.9: Time history of quantities characterizing the five runs with initially imposed

anisotropy Ae (“anisotropic runs”), compared to the “isotropic run” TSC-40ppc. a) av-

erage electron temperatures Te,x, b) average electron temperatures Te,y = Te,‖ and c) aver-

age electron temperature anisotropy Te,‖/Te,⊥ for different initially imposed temperature

anisotropies Ae ∈ [0.6, 2.0]. The theoretical thresholds for stabilization of tearing mode

are shown with lines + Eq. (5.41) and ∗ Eq. (5.48). The latter one is calculated with the

instantaneous value of Ti ,⊥/Te,⊥ for the run TSC-40ppc-A1.96. Reproduced with permis-

sion from P. A. Muñoz, P. Kilian, and J. Büchner, Physics of Plasmas 21, 112106, (2014).

Copyright 2014, AIP Publishing LLC.
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7.3.1.1 Enhancement of tearing mode with the opposite anisotropy

Although not relevant for the purpose of this chapter, let us explain the seemingly
strange behaviour of the run TSC-40ppc-A0.64 in Fig. 7.9. This is the only one with an
opposite electron temperature anisotropy in comparison with all the rest of the simulations
considered so far. We observed a faster development of tearing mode than in the isotropic
case TSC-40ppc. The explosive phase of reconnection takes place already at tΩci ∼ 20,
explaining the sudden increase (beyond the scale) in the curves for the temperatures and
anisotropy. This is consequence of the enhancement of tearing mode for anisotropies
Ae < 1, a well known fact since Chen et al. (1984).

7.3.1.2 Influence of the number of macroparticles per cell on the anisotropy relax-

ation

Now, how can we be sure that the relaxation of the imposed anisotropy is not a nu-
merical artifact? (like bifurcation discussed in the previous section). All the anisotropic
runs are still Harris equilibria, with an anisotropy that should be preserved in an ideal col-
lisionless Vlasov system without additional instabilities. However, as we will see, these
states turn out to be unstable equilibria, prone to temperature driven microinstabilities.
But first, we need to confirm that numerical collisions, tending to isotropize distribution
functions in the x-y plane, are not affecting our conclusions. For this sake, in Fig. 7.10
we show a convergence study on the macroparticle number of the time evolution of Ae

for anisotropic runs with initial Ae = 1.96: TSC-40ppc-A1.96, TSC-360ppc-A1.96 and
TSC-1000ppc-A1.96 (see details in Table 7.2).

Figure 7.10: Time history of the average electron temperature anisotropy Ae = Te,‖/Te,⊥
for cases with an initially imposed temperature anisotropy Ae = 1.96, TSC shape func-

tion and different number of macroparticles per cell (40, 360 and 1000). For compar-

ison, the result for an isotropic initial distribution (Ae = 1.0) is also plotted with a

solid line. Reproduced with permission from P. A. Muñoz, P. Kilian, and J. Büchner,

Physics of Plasmas 21, 112106, (2014). Copyright 2014, AIP Publishing LLC.
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For later times, there is indeed a reduction in the decaying rate of Ae for a higher
macroparticle number, consequence of the reduction in the numerical noise (scaling as
1/
√

N) and so the (numerical) collisions and isotropization (see Fig. 7.10). This numeri-
cal isotropization, with the same dependence on N as the numerical noise (Matsui 2008),
is due to pitch angle scattering (see discussion at the end of Sec. 6.8.3): a redistribution of
the particles velocities in the momentum space, without changing significantly their total
speed (∼ to the total kinetic energy) due to the good energy conservation properties of the
TSC scheme. Waves are generated from the surrounding numerical electromagnetic fluc-
tuations due to the coarse graining effects (similar to a physical turbulence), transferring
momentum via wave-particle interaction from the perpendicular to the parallel direction.
Since pitch angle scattering is stronger in regions with weak magnetic field, we expect
stronger effects at the center of the CS, and not at their edges. Moreover, it has serious
consequences for the development of the tearing mode, since it behaves analogously to
numerical collisions. Indeed, it has been shown by Coroniti (1980) that (physical) pitch
angle scattering can relax the anisotropy induced via tearing mode by diffusing the elec-
trons along the magnetic field lines, and therefore cancelling the mechanism of tearing
mode growth rate if it is strong enough.

7.3.2 Temperature anisotropy relaxation via Weibel instability

Although the long term behavior of Ae does depend on the macroparticle number, the
initial transient period showing a sudden drop does not. Indeed, Fig. 7.10 demonstrates
that even the run TSC-1000ppc (with 16 times less numerical noise and pitch angle scat-
tering as 40ppc) relaxes to practically the same anisotropy level as the cases with much
less macroparticles per cell. This is a strong signature of its physical origin. In order
to understand the physical mechanism, let us focus in this initial short term period for
one case, TSC-360ppc-A1.96. The profiles integrated along the CS (y) direction of the
in-plane temperature anisotropy and Bz, close to center, are shown in Fig. 7.11.
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Figure 7.11: Time history of the out of plane magnetic field and temperature anisotropy

averaged along y, at different distances x from the center of the CS, for the run TSC-

360ppc-A1.96. a) and b) Magnetic field |Bz|. c) and d) Electron temperature anisotropy

Te,y/Te,x. The left plots a) and c) are for the early stages of the system while the right plots

b) and d) are for the long term evolution. Reproduced with permission from P. A. Muñoz,

P. Kilian, and J. Büchner, Physics of Plasmas 21, 112106, (2014). Copyright 2014, AIP

Publishing LLC.

Three stages can be distinguished (1) the initial between tΩci = 0 − 0.5 with constant
anisotropy, (2) between 0.5 < tΩci < 1.5 with a sudden anisotropy drop until a satura-
tion value Ae ∼ 1.2 and (3) tΩci > 1.5, with a slow monotonously decreasing anisotropy
relaxation, produced by numerical collisions and reduced with an increasing number of
macroparticles per cell (see Fig. 7.10). It is interesting to note from Fig. 7.11(d) that re-
gions away from the center of the CS will be isotropized slower. This is in agreement with
the our previous discussions in 7.2.3.1: numerical collisions and pitch angle scattering are
reduced in regions with stronger magnetic field.

In the initial stage (1), the conditions in the regions close to the center of the CS are
favorable for the development of the (anisotropy temperature driven) Weibel instability
(see Weibel 1959, or Sec. 5.2.1 for further details). This is because of the initially im-
posed anisotropy Te,y > Te, x,Te,z and the unmagnetized conditions there (with very high
β plasma). Growth rates and the corresponding timescales of Weibel instability are much
shorter (on the order of ω−1

pe ) than those of tearing mode (Ω−1
ci ). Therefore, the aforemen-

tioned coupling between these instabilities (leading to stabilization of tearing mode) can
be completely neglected during this period tΩci < 0.5. One of the main signatures of this
instability is the generation of magnetic fields perpendicular to both propagation direction
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(x, according to the discussion of Fig. 7.5) and warmer component of the temperature (y
direction), i.e.: the out-of-plane ẑ direction, as can be seen in the time evolution of Bz in
Fig. 7.11(a). Note that regions away from the center of the CS do not show a significant
increase of Bz , since they have stronger background magnetic field (and correspondingly
lower β plasma) which is known to weaken Weibel instability (cf. Sec. 5.2.1). This gener-
ation of magnetic field is correlated with a corresponding decrease of electron temperature
anisotropy (see Fig. 7.11(c)), the source of free energy of Weibel, and again significant
only close to the center of the CS.

7.3.2.1 Spatial structure of Weibel instability

For calculation of both threshold and growth rates of Weibel mode, we need a value
for the wavevector kx . We cannot just naively use the maximum value kx,max as given by
Eq. (5.52), since it might predict long wavelengths, crossing to the low β plasma regions
away from the center of the CS where the unmagnetized condition for the existence of
Weibel (Ωce ≪ ωpe) is not satisfied any longer. Indeed, the value λx,max = 2π/kx,max gets
larger for smaller anisotropies. For our parameters, an initial value Ae = 1.96 corresponds
to λx,max = 0.8di, while after the initial transient period Ae ∼ 1.2, corresponding to λx,max =

1.8di .

In order to solve the previous issue with the choice of k x, we followed the approach
by Lu et al. (2011). They proposed that Weibel instability in a CS will have λx,max ∼ 2L,
since the halfwidth determines the typical length scale of variation of the background
magnetic field (the factor 2 is because is measured from the center to opposite directions).
Therefore, we can assume λ ∼ di for our parameters at the saturation time after the initial
anisotropy drop. This can be tested by measuring the length scale of the spatial structure
of Bz, displayed in Fig. 7.12.:
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Figure 7.12: Contours of the out of plane magnetic field Bz for the run TSC-360ppc-

A1.96. The snapshots correspond to three characteristic times during the evolution of

the Weibel instability. Reproduced with permission from P. A. Muñoz, P. Kilian, and J.

Büchner, Physics of Plasmas 21, 112106, (2014). Copyright 2014, AIP Publishing LLC.

The “chessboard” (filamented) structure of Bz close to the center of the CS is a char-
acteristic signature of the Weibel instability in these scenarios, as shown in previous
studies of magnetic reconnection in both electron-positron plasmas (Swisdak et al. 2008,
Zenitani and Hesse 2008, Liu et al. 2009) as well as in electron-proton plasmas (Lu et al.
2011, Schoeffler et al. 2013). The temperature anisotropy necessary for the development
of Weibel instability is generated by the particles bouncing inside of the magnetic islands,
also known as the Fermi mechanism (see more details in Schoeffler et al. 2013). This is
not the same phenomena seen in our case, since at this initial stage there is no magnetic
islands or physically generated anisotropies at all.

We can see that the size across x of the Bz structures is small at the beginning, as
expected due to the high level of anisotropy. As the source of free energy (temperature
energy) is depleted, they get larger, in agreement with Eq. (5.53) (see Fig. 7.12(b)). Their
saturation size at tΩci ∼ 1.5 is λmax ∼ 1di , in agreement with our previous estimation.
The Weibel structures cannot grow further, and in particular not to the size predicted by
Eq. (5.52) (λx,max = 1.8di), due to the constraint on the magnetic field strength.

And how about the size of the structures of Bz along y direction? The Weibel instability
should not propagate in the direction of the warmer temperature Te,y according to linear
theory. However, following Liu et al. (2009), there is mechanism for producing such
ky = 2π/λy wavevectors when this instability is embedded in the center of a CS, like in
our case. Basically, it is produced by the electrons gyrating around the Weibel generated
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magnetic field in Bz (see also Schoeffler et al. 2013). Therefore, the wavelength λy should
have a size on the order of 2ρe,z , with ρe,z calculated in the Weibel generated Bz close to
the center of the CS. At the peak of Weibel activity, tΩci = 1.5, we measured in average
Bz ∼ 0.1B∞y inside of each cell of the “chessboard” structure. Then, the electron Larmor
radius will be ρe,z/di ∼ 0.35. This is one quarter of the measures size of Weibel cells
in y direction (1.3di), only a factor of two of difference with the theoretical estimate by
Liu et al. (2009).

On the other hand, the previous argument also allows to explain the reduction in the
size of Weibel structures along y during the decaying phase (tΩci = 1.5). Because the
anisotropy and so the source of free energy of Weibel gets depleted, the generated Bz will
becomes weaker, implying smaller ρe,z and so λy.

7.3.2.2 Weibel threshold condition

Thus, we have validated the required kx. So, now we can calculate the theoretical
estimate for the threshold Eq. (5.54) (as derived for unmagnetized and homogeneous plas-
mas). It becomes

Ae > 1 +
(
kxc/ωpe

)2
∼ 1.21. (7.4)

This value agrees well with the observed anisotropy after tΩci & 1.5 (see Fig. 7.11(c)),
and it is higher than the required for tearing mode stabilization (Ae = 1.159 according
to Eq. (7.3)). Then, we can infer that a CS initially unstable to Weibel in its center will
already be stabilized the tearing mode. And in the other way around: If a CS increases
monotonously its anisotropy (by means of either physical or numerical processes), first
will stabilize tearing mode and only after than will become unstable to the Weibel mode.
This is precisely the behaviour seen in the CIC runs (see discussion in Fig. 7.5).

7.3.3 Mirror instability produced via Weibel instability

Now, let us analyze with more detail the behaviour of the CS in the stage (2) 0.5 <

tΩci < 1.5. After tΩci ∼ 0.5, we found that the weakly magnetized (high β plasma)
center of the CS (due to the Weibel generated Bz), but with a still high anisotropy, be-
comes unstable to another temperature anisotropy driven instability, known to operate
under these conditions: the mirror mode (see Hasegawa 1969, Gary 1993, and discussion
in Sec. 5.2.2).

7.3.3.1 Field aligned temperature anisotropy

In order to prove this claim, first we note that a necessary condition for the triggering
of mirror instability is Te,⊥ > Te,‖. This is the tricky part: ‖ and ⊥ directions are calculated
with respect to the local magnetic field. This is different from Weibel instability, where
these directions are measured with respect to the (initially known) imposed temperature
anisotropy . But the topology of the total ~B generated by Weibel instability (not only in the
z direction, but also in-plane) is complex (turbulent), in addition to fluctuate very quickly.
Therefore, the parallel direction will have to be calculated by using ~B/|~B| for each location
in space and time. Then, we will have to change the frame of reference (by means of a
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rotation) of the temperature tensor Ti j to keep it locally aligned with the magnetic field and
thus calculate Te,‖. The change of reference frame give us additionally degrees of freedom
in the perpendicular direction (since we have only one out three rotation axis specified),
but that it is not necessary to calculate Te,⊥ (since it only requires the diagonal components
of the tensor). All the details of the calculation can be found in Appendix B.2.5. By
taking into account the previous considerations, we can plot the magnetic-field-aligned
temperature anisotropy Te,‖/Te,⊥ for three characteristic times in Fig. 7.13. Locations with
Te,⊥ > Te,‖, a necessary (but not sufficient) condition for the mirror mode, are enclosed
in black contour lines. They appear only after tΩci > 0.5, reach maximum size around
tΩci ∼ 1.5, and after the anisotropy is depleted they start to disappear slowly (these times
will be justified later).

Figure 7.13: Contours of the electron temperature anisotropy Te,‖/Te,⊥ = P‖,e/P⊥,e =

β‖,e/βe,⊥ for the run TSC-360ppc-A1.96. The snapshots correspond to the same three

times shown in Fig. 7.12. Note that regions with Te,⊥ > Te,‖ are shown inside of the black

contour lines. Reproduced with permission from P. A. Muñoz, P. Kilian, and J. Büchner,

Physics of Plasmas 21, 112106, (2014). Copyright 2014, AIP Publishing LLC.

7.3.3.2 Mirror threshold condition

Let us focus now at the time of maximum activity tΩci ∼ 1.5 (to be justified later)
to prove the sufficient condition (threshold) for the mirror mode Eq. (5.59) D > 0. It
has higher growth rates as D gets larger. First note that we can neglect the last term in
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that expression, a correction due to Hall decoupling between electrons and ions. That is
because it is proportional to the difference in the electron to ion temperatures, zero in our
initialization (both species are equally anisotropic), besides of not being enhanced at later
times as we checked from our simulation results. Thus, a plot showing the evaluation of
the full left hand side D of the mirror threshold condition is displayed in Fig. 7.14. Thus,
we can see that the mirror condition is fulfilled inside of small scale structures very close
to the center of the CS, with maximum size on electron scales ∼ de across the x direction
(much smaller than the corresponding to Weibel cells). Note that these structures are
different and cannot be explained by the Weibel instability by itself.

Figure 7.14: Contours of the mirror threshold value from Eq. (5.59): log10(D). Only

positive values are shown (corresponding to instability). This plot is for the run TSC-

360ppc-A1.96 at the time tΩci = 1.5, corresponding to the peak of activity of both Weibel

and mirror instabilities. Compare with the corresponding plots for Bz in Fig. 7.12 and

temperature anisotropy Te,‖/Te,⊥ in Fig. 7.14. Note that only a small region close to the

current sheet is shown, in order to visualize the mirror structures that have a maximum

typical length scale of c/ωpe across the x direction. Reproduced with permission from P.

A. Muñoz, P. Kilian, and J. Büchner, Physics of Plasmas 21, 112106, (2014). Copyright

2014, AIP Publishing LLC.

In order to detect when the mirror mode is active, we display in Fig. 7.15(top row)
the time evolution of the ratio of grid points (in an area close enough to the center of the
CS) satisfying the necessary condition Te,‖/Te,⊥ < 1 and the ones fulfilling the sufficient
condition D > 0. They are proportional to the area of the regions unstable to mirror
mode. Below, in Fig. 7.15(bottom row) we displayed the respective mean values of these
quantities. By means of these diagrams, we can see that mirror mode is active 0.5 <

tΩci . 5, correlated with the times in which there is Weibel generated Bz. That is to be
expected, since the mirror mode can only exist in magnetized plasmas. Furthermore, this
instability reaches peak activity (both in size and strength) around tΩci = 1.5, correlated
with the maximum of the Weibel generated magnetic field Bz (see Fig. 7.11(a)), although
with a weak temperature anisotropy. Between 1.5 < tΩci . 5, Te,‖/Te,⊥ < 1 (the source
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of free energy) decreases, and then the mirror instability is shutdown afterwards. It is
important to remark that this temperature anisotropy is different and not related with the
required anisotropy to drive the Weibel mode unstable (cf. Fig. 7.11(c)).

Figure 7.15: Time evolution of quantities related with the mirror instability for the run

TSC-360ppc-A1.96. a) Number of grid points in |x| < L that satisfy Te,‖/Te,⊥ < 1 divided

over the total in this region. Note that Te,‖/Te,⊥ is the electron temperature anisotropy

aligned with the local magnetic field, i.e.: the ‖ direction is in the ~B/|~B| direction. The

choice of the |x| < L is basically because encompass all the area that becomes unstable to

mirror instability b) Mean value of Te,‖/Te,⊥ for the grid points that satisfy the condition

Te,‖/Te,⊥ < 1. c) Number of grid points in |x| < L that satisfy the mirror threshold

condition Eq. (5.59), divided over the total in this region. d) Mean value of the mirror

threshold condition (left hand side of Eq. (5.59)) calculated for the points that satisfy

that condition. Reproduced with permission from P. A. Muñoz, P. Kilian, and J. Büchner,

Physics of Plasmas 21, 112106, (2014). Copyright 2014, AIP Publishing LLC.

7.3.3.3 Size of mirror mode structures and propagation direction

The mirror unstable structures seen in Fig. 7.14 are highly dynamic (at electron time
scales), as a result of the turbulence generated. They deform and kink the initially antipar-
allel Harris magnetic field lines, since its propagation direction is perpendicular ⊥ to the
local magnetic field, mostly the Bz generated via Weibel instability.

Even though the mirror structures change on (fast) electron time scales, it is still possi-
ble to estimate their size, not varying too much during its peak activity (tΩci ∼ 1.5). This
can be then compared with the theoretical wavelengths predicted by the linear theory (see
Sec. 5.2.2), in order to have another argument for the existence of mirror mode in our
system. In order to do that, first we need to keep in mind that the shorter wavelengths
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allowed by mirror (non-negligible growth rates) are constrained by finite ion Larmor ra-
dius effects (Pokhotelov et al. 2000). This implies that the (perpendicular) wavelengths at
maximum growth rate will have to be around k−1

⊥ ∼ ρi. The tilted size of the measured
mirror structures along y direction agrees well with this prediction. This can be seen by
noticing that a typical mirror island has a size lx × ly = l‖ × l⊥ = 0.2di × 2.0di, while
λ⊥,max = 2π/ρi ∼ 3di.

According to the linear theory (see Sec. 5.2.2), mirror mode also predicts a parallel
propagation, although less significant than the main perpendicular one. The Weibel gen-
erated magnetic field is mostly in z but it also has a Bx component. Then, the parallel
direction will have to be along x direction (since no out-of-plane propagation is allowed
in our geometry), in such a way that k⊥ = ky ≫ k‖ = k x. The specific propagation an-
gle tan(θ) = k⊥/k‖ is given then by the expression Eq. (5.62), proportional to a factor
involving the electron temperature anisotropy in the mirror condition D (as it appears in
Eq. (5.59)). This angle θ allow us to determine the typical λ‖,max of mirror mode. Inside of
these structures it is meaningful to estimate the order of magnitude of the corresponding
parameters entering into the previous expression, even though their range of variations can
be very large (especially the β plasmas). This is because θ is weakly dependent on these
ones: the propagation direction does not change too much from perpendicular. Keeping in
mind that consideration, we can assume typical values βi,‖ ∼ βe,‖ ∼ 80, with field aligned
anisotropies Ae ∼ Ai ∼ 0.99, obtaining:

tan(θ) =
k⊥

k‖
=

1
√

A
=

√√√√ 3β−1
i,⊥

(
1 + βi,⊥−βi,‖

2

)

(
Ti ,⊥
Ti ,‖
− 1

)
+

Te ,⊥
Ti,⊥

(
Te ,⊥
Te ,‖
− 1

)
− 1

βi ,⊥

∼ 11◦ (7.5)

This values matches well with the tilting angle of the mirror structure (θ = tan−1(2.0di/0.2di)
∼ 85◦), confirming thus another signature of this instability.

7.3.4 Growth rates of the initial Weibel/mirror instabilities

We already compared both thresholds and wavevectors of Weibel/mirror instabilities.
In order to have an additional argument for their existence in our system, let us compare
their growth rates with the predictions of linear theory. First we note that both instabilities
operate together between 0.5 < tΩci < 1.5, as evidenced by the increasing |Bz | (absolute
value because it alternates sign) during that period (correlated with the area of the regions
Te,‖/Te,⊥ > 1). Therefore, we can measure growth rates γ by means of a linear fitting to
|Bz(x = 0)| during this period (at the center of the CS because it is most unstable region).
Since our idea is to study the dependence of γ on the imposed anisotropy, we use the
results of 5 simulations runs with 360ppc and different Ae described in the fourth part of
Table 7.2: TSC-360ppc-A1.3, TSC-360ppc-A1.4, TSC-360ppc-A1.6, TSC-360ppc-A1.8
and TSC-360ppc-A1.96. The results for the growth rates are shown as black points in
Fig. 7.16(a), while the saturation peak time of |Bz(x = 0)| in Fig. 7.16(b). As expected,
an enhanced temperature anisotropy will increase growth rates as well as the maximum
value Bz , and therefore will reach saturation sooner. The instabilities will disappear for
Ae . 1.2, corresponding to Weibel threshold calculated in Eq. (7.4). This also applies to
the mirror instability, since it is not allowed if there is no Bz (generated by Weibel).
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Figure 7.16: a) Comparison among simulated growth rates of the Weibel instability

during the linear stage on dependence of the initially imposed electron temperature

anisotropy Te,y/Te,x, a fit according to Eq. (5.51) (for fixed k), a fitting according to

Eq. (5.52) (for kx,max), and the theoretical growth rates calculated from the initial pa-

rameters in Eq. (5.51) (for fixed k). See text for details. b) Saturation time tsat of the

Weibel instability on dependence of the initially imposed electron temperature anisotropy

Te,y/Te,x. Adapted from Muñoz et al. (2014).

Now, let us compare the different ways of estimating the growth rates according to the
theoretical estimation. The results in Fig. 7.16 show:

• Continuous line: Fit according to γ(Ae)/Ωci = (c1/Ae) × (Ae − 1 − c2). This is the
functional dependence given by Eq. (5.51) for the Weibel instability, but with a fixed

kx (contained in both free parameters c1 and c2). The linear regression gives c1 =

12.3 and c2 = 0.20. This allows to calculate kx and then estimate the wavelength
λx = 1.0di . It agrees well with the size of the Weibel structures in Bz .

• Dashed-dotted line: Fit according to γ(Ae)/Ωci = (c3/Ae) × (Ae − 1)3/2. This is
the functional dependence given by Eq. (5.52) assuming kx = kx,max, being given
by Eq. (5.53). The linear regression gives c3 = 10.22. It reproduced the mea-
sured behaviour for larger Ae & 1.4, while it predicts significant growth for lower
anisotropies where Weibel should be stable.

• Dashed line: directly apply Eq. (5.51) with the measured maximum kx = 2π/(1.0di)
of the Weibel structures. It completely overestimate the measured growth rates (by
a factor of 2-3). There are many possible reasons for this significant deviation from
linear homogeneous theory: our system is clearly inhomogeneous, the weak mag-
netic field that should tend to decrease growth rates and the simultaneous presence
of mirror instability

In conclusion, the linear theory for Weibel mode can only predict the dependence of
growth rates on the anisotropy, knowing beforehand the allowed wavelength of the Weibel
unstable mode in our geometry (kx). This, in turn, depends on the typical gradient scale
of the magnetic field: 2L ∼ 2ρi ∼ 1.0 di. This is the result showed by the continuous line
in Fig. 7.16 (and to a lesser degree, by the dashed-dotted line in the same plot). In any
case, this result is still a significant progress, even in this complex scenario where there is
even another instability operating simultaneously (mirror).
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All previous estimations were for Weibel growth rates. We did not try to do something
similar for the mirror mode, because their typical γ’s, as given by Eq. (5.57) or Eq. (5.60),
are very sensitive to variations in its parameters. The last is true especially for βi, which
varies over some orders of magnitude inside of the mirror structures and so is the range of
variation of the predicted γ. Therefore, in this case comparison with the linear theory is
not so meaningful to predict the behaviour of the large scale magnetic field or momenta:
the growth is more dominated by the Weibel than mirror instabilities.

Summarizing the last subsections, we have found evidence, by means of the threshold
condition, propagation direction and other similar signatures, that not only Weibel insta-
bility is acting in the center of the CS, but also the mirror instability. In fact, there have
been some studies that have pointed out the close relationship between the mechanisms
behind both (see Sec. 7.3.3)

7.3.4.1 Other possible temperature driven instabilities

In Fig. 7.13 we can also note that at the edges of the CS, outside of the mirror struc-
tures, there are regions with Te,‖ > Te,⊥ prone to a temperature driven instability with this
opposite condition: the firehose instability. However, we have not found signatures of
its presence in our system (see Sec. 5.2.4), such as absence of resonant protons, no clear
wave vector (aligned with the magnetic field) in those regions. The evidence seems to
indicate that is because its predicted growth rates are about one order of magnitude lower
than those of the Weibel mode. Nevertheless, their effects relating the kinking of mag-
netic field lines are similar to the observed in our case, as it has been reported by previous
works analyzing the natural evolution of a Harris current sheet (Matteini et al. 2013).

7.3.5 Consequence of Weibel/Mirror instabilities: bifurcation

Here we are going to prove that the main consequence of an initially imposed anisotropy
Ae > 1.21, the Weibel (and therefore mirror) instability threshold according to Eq. (7.4),
is the formation of a bifurcated CS. Note that this value is higher than the anisotropy
threshold for tearing mode stabilization Ae > 1.16 (see Eq. (7.3)), implying thus a more
strict requirement for the development of bifurcation in Jz than for suppression of tearing
mode (see also Sec. 7.3.2.2). On the other hand, it is important to mention in this context
that stabilization of tearing mode and mirror instability are also closely related: the force
responsible for both mechanism has similar origins (Chen et al. 1984, Shi et al. 1987).

We checked the previous claim by noticing that Jz develops a deeper dip in its center
(bifurcation) when the initial Ae is higher (plots not shown here), after the initial transient
stage when Weibel instability is active. For values below the Weibel threshold, no bifur-
cation is visible. The evolution of this process can be exemplified in Fig. 7.17, where
it is shown the profiles along y of some quantities related with bifurcation, at different
distances from the center of the CS.
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Figure 7.17: (Short) time evolution for some quantities related with bifurcation, averaged

along y, at different distances x from the center of the CS, for the run TSC-360ppc-A1.96.

a) Electron density ne. b) Electron bulk speed Ve,z . c) Electron current density Je,z. d)

Ion current density Ji,z. We do not show the ion density ni since its values in the course

of the evolution are always very close to ne, i.e.: the quasineutrality condition is kept

everywhere to a large extent. Reproduced with permission from P. A. Muñoz, P. Kilian,

and J. Büchner, Physics of Plasmas 21, 112106, (2014). Copyright 2014, AIP Publishing

LLC.

In Fig. 7.17(c) we can see the characteristic dip in Je,z at x = 0, the signature of
bifurcation (and practically no reduction in Ji,z). It takes place during the same period
in which the initial anisotropy is exhausted (see Fig. 7.11) as a result of the activity of
Weibel instability. This is also correlated with the growing phase of the mirror mode (see
Fig. 7.15). It does not grow beyond tΩci & 1.5 since the numerical pitch angle scatter-
ing due to the anisotropy, responsible for this process, is stopped. So, Je,z at the center
of the CS remains with the minimum values reached during this short period. As ex-
pected (see discussion of Fig. 7.4), the reduction in Je,z is mostly due to Ve,z (Fig. 7.17(b)).
The density ne (Fig. 7.17(a)) is also reduced, but to a much less extent. This can be
attributed to a signature of mirror mode due to the increase of magnetic pressure: the
fluctuations in both quantities should be in antiphase (as predicted by a fluid model. See
Southwood and Kivelson 1993).

As we mentioned before, the highly dynamic mirror structures oscillates around the
center of the CS. This process leads to a reduction in Ve,z inside of a narrow strip with
an extension equal to the maximum amplitude of these oscillations, remaining in this
stage even after these structures disappear tΩci ≫ 1.5. We can estimate the width of the
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bifurcated structured in Jz as function of the initial imposed anisotropy, since it has to
be on the same length scale as the component of the mirror wavevector in the parallel
direction k‖. Indeed, by assuming a fixed k⊥ (see explanation in Sec. 7.3.3), this quantity
has to be proportional to

√
A by Eq. (5.62). Then, using Eq. (5.61) and Eq. (5.59), it turns

out that the extension across x of the mirror structures, and so the bifurcation width, is
directly proportional to the instantaneous value of the anisotropy A−1

e − 1 = Te,⊥/Te,‖ −
1. For values higher than 0, this is simply the necessary condition for the triggering of
mirror mode. This field aligned anisotropy never deviates too much from the marginal
stability condition inside of the mirror structures, explaining bifurcation happening only
close to the CS. Regions away from the center, not experiencing the mirror instability (no
Te,⊥/Te,‖ > 1), will not decrease their values of Jz and therefore no bifurcation will be
observed.

7.3.6 Influence of the number of macroparticles per cell on the Weibel/mirror

instabilities

Since the depletion of the initial anisotropy (the driver of bifurcation) depends on the
macroparticle number (see Fig. 7.10), it is convenient to check for possible numerical
effects on its development. This can be exemplified in Fig. 7.18 where it is shown the
evolution of the profiles of Jz across the CS (analogous to Fig. 7.4) for cases with high-
est anisotropy level (Ae = 1.96) and different ppc. We can see that more macroparticles
per cell reduce a little bit the drop in Jz at the center in the run TSC-360ppc-A1.96 com-
pared to TSC-40ppc-A1.96. Nevertheless, it is still stabilizing the tearing mode. There
is a trend towards the reduction, but not complete suppression, of bifurcation in the limit
of a very large number of ppc. Any spontaneous instability requires some background
noise/fluctuation level (either physical or numerical) in order to exist, and thus bifurca-
tion would be suppressed only when the numerical noise is strictly zero: a non physical
scenario (since there is always a thermal fluctuation level in nature).
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Figure 7.18: Evolution of the total current density profile Jz showing bifurcation for runs

with the highest considered initially imposed temperature anisotropy Ae = 1.96, TSC

shape function and different number of macroparticles per cell: a) TSC-40ppc-A1.96 and

b) TSC-360ppc-A1.96. The profiles are obtained by integrating the current density along

the CS: Jz(x) = (1/Ly)
∫ Ly/2

−Ly/2
Jz(x, y)dy. Reproduced with permission from P. A. Muñoz,

P. Kilian, and J. Büchner, Physics of Plasmas 21, 112106, (2014). Copyright 2014, AIP

Publishing LLC.

It is interesting to compare the different evolution of bifurcation for this case of ini-
tially imposed anisotropy Fig. 7.18 with the case of numerically generated anisotropies
due to the use of CIC schemes (see Fig. 7.4). Anisotropy temperature, the driver of this
process, increases in the second case but not in the first one (after the initial transient) due
to the good energy conserving properties of the TSC scheme. This explains why bifur-
cation does not continue developing when an initially anisotropy is imposed for the TSC
runs, while it does not stop to grow with the CIC runs where numerical effects continu-
ously feed the source of free energy of this instability. Also note that in the CIC runs,
the process that leads to bifurcation is not only due to pitch angle scattering like in the
TSC schemes, but it has also contributions from the overall numerical heating with the
associated increment in the total particle energy.

Now, let us analyze closer the initial evolution of these processes for the run with a re-
duced macroparticle number TSC-40ppc-A1.96, by showing the corresponding evolution
the quantities showing signatures of the Weibel instability Fig. 7.11.
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Figure 7.19: Time history of the out of plane magnetic field and temperature anisotropy

averaged along y, at different distances x from the center of the CS, for the run TSC-40ppc-

A1.96. a) and b) Magnetic field |Bz|. c) and d) Electron temperature anisotropy Te,y/Te,x.

The left plots a) and c) are for the early stages of the system while the right plots b) and d)

are for the long term evolution. To be compared with Fig. 7.11. Reproduced with permis-

sion from P. A. Muñoz, P. Kilian, and J. Büchner, Physics of Plasmas 21, 112106, (2014).

Copyright 2014, AIP Publishing LLC.

By comparing with the case with nine times more macroparticles per cell, TSC-360ppc-
A1.96 shown in Fig. 7.11, we note a sharp decrease in Te,y/Te, x from the very beginning
at the CS center x = 0: there is no period in which the anisotropy is kept to its initial
value (Fig. 7.11(c)) like in the former case for 0 < tΩci < 0.5. The consequence is that
Weibel instability also operates from the beginning, as evidenced from the relaxation of
anisotropy and the corresponding generation of Bz (Fig. 7.11(a)) at a faster rate than for
the case with more ppc. This can be attributed to the enhanced noise level, providing the
necessary the magnetic field seed from which Weibel instability can grow. This, in turn,
favors an earlier development of field aligned anisotropies Te,⊥/Te,‖ > 1: the necessary
condition for mirror instability. On the other hand, both Weibel and mirror instabilities
saturate more or less at the same time, once this initial anisotropy is exhausted. As a
result, the center of the CS will experience more time unstable to the mirror instability
for 360ppc than for 40ppc, explaining the stronger bifurcation in the latter case (deeper
reduction in Je,z), as shown in Fig. 7.20 (compare with Fig. 7.17).

Finally, it is interesting to note that the asymptotic value reached by Bz for very long
times is independent of the distance to the center of the CS, being only dependent on the
number of macroparticles per cell (see Fig. 7.11(a) and Fig. 7.19).
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Figure 7.20: (Short) time evolution for some quantities related with bifurcation, averaged

along y, at different distances x from the center of the CS, for the run TSC-40ppc-A1.96.

a) Electron density ne. b) Electron bulk speed Ve,z . c) Electron current density Je,z. d) Ion

current density Ji,z . We do not show the ion density ni since its values in the course of the

evolution are always very close to ne, i.e.: the quasineutrality condition is kept everywhere

to a large extent. To be compared with Fig. 7.17. Reproduced with permission from P.

A. Muñoz, P. Kilian, and J. Büchner, Physics of Plasmas 21, 112106, (2014). Copyright

2014, AIP Publishing LLC.

7.3.7 Influence of ions in the temperature anisotropy driven instabil-

ities

In this subsection we discuss the effects of an ion temperature anisotropy on the de-
velopment of the aforementioned processes. For this sake, we used the results of several
simulations runs not shown here for brevity. In the first set of runs, we initialize the CS
with anisotropic electrons identical to the runs TSC-40ppc-AX (with X ∈ [0.64, 1.96])
shown in Table 7.2, but enforcing isotropic ions Ai = Ti ,‖/Ti,⊥ = 1. This allows to study
the isolate the influence of anisotropic electrons. We got almost identical results to the
already shown in e.g., Fig. 7.9 or Fig. 7.19 (that is why it is not worthwhile to repeat them
here). There are small differences, however. This can be expected because our choice of
parameters implies an initial temperature ratio different from one Ti,‖/Te,‖ , 1, favoring
different processes related with the Landau damping of some wave modes, as well as the
thresholds and growth rates of Weibel/mirror instabilities.

In the second set of runs, we carried out simulations with an “opposite” anisotropy: the
CS is initialized enforcing isotropic electrons Ae = Te,‖/Te,⊥ = 1 but allowing anisotropic
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ions with Ai ∈ [0.64, 1.96], and therefore calling them TSC-40ppc-AiX (with X ∈ [0.64, 1.96]).
Otherwise, the parameters are identical to the first set of runs. The results shown that the
ion anisotropy is practically unchanged during the course of the evolution of the system
(before the explosive phase of reconnection). The growth of tearing mode very similar to
the isotropic run TSC-40ppc. The negligible tendency towards the isotropization of ion
anisotropy can be entirely explained by numerical pitch angle scattering due to the low
value of ppc. This is in agreement with the theory of anisotropic tearing by Quest et al.
(2010): the tearing mode will be stabilized by an ion anisotropy only if it is much larger
than any of the values of Ai considered here. Then, this is not important for the numer-
ical simulations of CS, since it is not likely at all such scenario due to the numerically
produced heating, affecting mostly electrons. There is also no other temperature driven
instabilities such as Weibel instability, since they require anisotropic electrons instead of
ions (more rigorously, the ion effects are smaller by a factor mi/me). The latter fact has
a consequence an absence of bifurcation. Finally, it is interesting to mention than in the
hypothetical case of an initially given magnetic field at the center of the CS (replacing the
Weibel generated one), isotropic electron but anisotropic ions, the mirror instability can
be triggered, since it also depends on ion anisotropy to more or less the same extent as for
the electron anisotropy. (see Eq. (5.59)).

Therefore, we have proved that in an initially anisotropic CS, the stabilization of tear-
ing mode together with Weibel/mirror instabilities developing in an earlier stage and pro-
ducing bifurcation afterwards, are only due to the electron anisotropy, with ions playing a
secondary role.

Let us close this section by summarizing the main result. We confirm that an imposed
electron temperature anisotropy Ae > 1 in a CS can reduce tearing mode growth rates,
and even stabilizing it completely if it is strong enough. And beyond a specific threshold,
it can drive temperature anisotropy instabilities such as Weibel and mirror, leading to a
bifurcated structure in Jz for cases with non-negligible numerical noise and associated
pitch angle scattering (always present in PIC simulations).

7.4 Influence of numerical parameters on the tearing in-

stability

The purpose of this section is to confirm and reproduce the theoretical predictions
about tearing mode linear growth rate if (and only if) all the previous numerical consider-
ations are taken into account. In particular, we demonstrate the influence of some numer-
ical parameters: shape function, macroparticle number and mass ratio on these growth
rates,measuring how fast is the build-up phase of magnetic reconnection.

7.4.1 Influence of the shape function

7.4.1.1 Time evolution of power in tearing islands

For the run TSC-40ppc, the CS develops from the beginning a long chain along y

direction of small magnetic islands arising from the numerical noise (mimic of the phys-
ical thermal fluctuations, but greatly enhanced due to the macrofactor). As expected
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from the linear theory (see details in Sec. 5.1), these structures start to merge generat-
ing larger magnetic islands until they saturate for a size on the order of di. For our
parameters, and according to the discussion in Sec. 7.1.3, there are be seven unstable
modes satisfying ky L ≤ 1. The time evolution of these modes can be estimated, following
Katanuma and Kamimura (1980), by integrating the Fourier modes of the vector poten-
tial |Az(x, ky)| inside of the electron singular layer thickness ±∆NS =

√
2ρeL (see details

in Appendix B.2.3). The results for the run TSC-40ppc and CIC-40ppc for comparison
purposes are shown in Fig. 7.21.

Figure 7.21: Time history of the first seven Fourier modes
∫ x=∆N s

x=−∆Ns
|Az(x, ky)| dx . The

dashed gray line is obtained as a sum of all Fourier modes. The dashed-dotted black line

is the sum of the first seven Fourier modes shown in this plot. Left panel: TSC-40ppc

Right panel: CIC-40ppc. Reproduced with permission from P. A. Muñoz, P. Kilian, and J.

Büchner, Physics of Plasmas 21, 112106, (2014). Copyright 2014, AIP Publishing LLC.

First of all, we can note in Fig. 7.21(left-panel) that all the seven modes reach sat-
urated stage at the same time as the reconnected flux (see Fig. 7.3(b)). On the other
hand, the suppression of tearing mode can be evidenced in Fig. 7.21(right-panel) as the
non growing behaviour of the same seven modes or magnetic islands, correlated with the
reconnected flux (see Fig. 7.3(a)): they are kept at the initial noise level. As we demon-
strate in the previous sections, this is evidence of the stabilizing effect of bifurcation,
dominating the evolution of the CS, and in agreement with a number of previous studies
(Camporeale and Lapenta 2005, Matsui and Daughton 2008).

In Fig. 7.21(a) is also plotted the sum of all Fourier modes (gray) and the sum of the
first seven ones (black). The discrepancy between both curves at early times is evidence
that the shortest wavelengths modes contribute to the total power only at the beginning.
The global structure is then dominated by large scale magnetic islands, with a negligible
contribution of the shorter scales (tearing mode is a macroscopic instability). On the other
hand, for the bifurcated CS in the CIC-40ppc run shown in Fig. 7.21(b), the curves for
the sum of all Fourier modes allow us to infer that the shortest wavelengths modes with
kyL ≫ 1 carry a significant part of the total power throughout the evolution of the CS, in
contradiction with the linear theory.

7.4.1.2 Identification of linear/non linear stage

Before the actual calculation of tearing growth rates, we need to identify the linear
stage of the evolution of the different tearing modes showed in Fig. 7.21 (for the linear
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regression). Because the complex interactions of these multiple modes at different time
periods, the procedure is not straightforward. We follow a criterion based on the behaviour
of the shorter wavelengths modes with kyL > 1 (mode number > 7), stable according to
the linear theory. The linear stage is chosen up to the time in which they start to grow,
tΩci ∼ 35. This is the breaking point in time, in the sense that later the CS enters into the
non-linear stage, not being possible a comparison with linear theory anymore. However,
note that this is only a first order approximation, since some modes reach non-linear
stage before than other ones. Taking into account all these details, we can nicely see a
comparison in Fig. 7.22, showing the time history of the profiles of the vector potential
along the center of the CS, Az(x = 0), up to the end of the linear stage (left panel) and up
to the end of the non-linear stage (right panel), corresponding to the explosive phase of
reconnection, just before of the disruption of the CS.

Figure 7.22: Time history of the profiles of vector potential Az(x = 0, t) for the run TSC-

40ppc. Left panel: up to the limit of linear stage of tearing mode evolution (tΩci ∼ 35).

Right panel: up to the explosive phase of reconnection (tΩci ∼ 60). In these stacked plots,

the maxima/minima of Az are O/X points of the magnetic islands. Reproduced with permis-

sion from P. A. Muñoz, P. Kilian, and J. Büchner, Physics of Plasmas 21, 112106, (2014).

Copyright 2014, AIP Publishing LLC.

Fig. 7.22(left panel) shows clearly four magnetic islands dominating the system at the
end of the linear stage. This is in agreement with the linear theory (see Pritchett et al.
1991, or discussion in Sec. 5.1.2.2): the most unstable mode should have kyL ∼ 0.545
or M = 4. This mode is shown as a green line in the left panel of Fig. 7.21. By using
this value, we can estimate their size H s along y: Hs/di = 2π/(ky di) = 6.66. But these
islands are very shallow: the difference in Az between their O and X points (reconnected
flux) only exceeds marginally the surrounding noise level. This can be expected from
this build-up phase of magnetic reconnection: the conversion of magnetic energy is not
efficient.

On the other hand, Fig. 7.22(right panel) shows only one dominating magnetic is-
land: during the non-linear stage, the power is continuously transferred towards the largest
wavelength mode allowed in the system (kyL = 0.136 or M = 1), something not predicted
by the linear theory. This magnetic island has a much larger reconnected flux than during
the linear stage, evidence of the explosive and energetically efficient phase of magnetic
reconnection.
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7.4.1.3 Comparison with linear growth rates

By applying the previous method, we can finally perform a linear regression to the
seven (integrated) Fourier modes of Az (shown in Fig. 7.21(left-panel)) during the linear
stage of the evolution of the CS (up to tΩci ∼ 35, shown in Fig. 7.22(left-panel)) and
obtain the tearing mode growth rates γ as function of the modes ky L shown in Fig. 7.23.
We also show a few short-wavelengths modes kyL > 1 to prove that they are indeed
linearly damped. The error bars are to compensate for the fact that some modes reach the
linear stage earlier than other ones. We chose several time windows varying the length of
the linear fitting from very early and up to tΩci ∼ 35. Each one of these choices provides a
slightly different γ (for a strictly exponential growth during that period, all of them would
be identical). Their mean value is plotted in Fig. 7.23, while their standard deviation are
represented by the error bars lengths.

Figure 7.23: Dots connected by the solid line: simulated growth rates γ of the Fourier

modes
∫ x=∆N s

x=−∆N s
|Az(x, ky)|dx (shown in Fig. 7.21left-panel) vs wave number ky L for the run

TSC-40ppc (see text for the calculation method). Dashed line: analytical estimate of the

growth rate according to Eq. (7.6) for thin CS and mi = me. Reproduced with permis-

sion from P. A. Muñoz, P. Kilian, and J. Büchner, Physics of Plasmas 21, 112106, (2014).

Copyright 2014, AIP Publishing LLC.

The simulation results in Fig. 7.23 are compared to an analytical formula for the tear-
ing mode growth rate in thin CS derived by Pritchett et al. (1991) and given in Eq. (5.14).
For our parameters is:

γ

Ωci

= 0.2591 kyL (2 + ky L)(1 − ky L) (7.6)

The differences between the analytical curve and our results are due to several reasons.
First of all, as we already mentioned in the discussion of Eq. (5.14), the analytical curve
have strong simplifying assumptions, such as equal mi = me. More accurate numerical so-
lutions of the Vlasov equation (Brittnacher et al. 1995, Daughton 1999, Silin et al. 2002)
have shown than with realistic mass ratios the growth rates are reduced by a factor of 1.5
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to 2 (see Schindler 2007, Sec. 10.4). This might explain the discrepancy for the fastest
growing mode kyL ∼ 0.545 with γ/Ωci = 0.163. Other differences can be understood
since we are simulating multimode tearing, with a corresponding coupling and non-linear
transfer of energy among different modes (Karimabadi et al. 2005). This is the reason
because it is not worthwhile to compare our simulations results against more accurate nu-
merical expressions (such as the previously mentioned), since the numerical uncertainties
are larger than any improvement over the simple estimate Eq. (7.6).

7.4.2 Influence of the number of macroparticles

Here we are going to investigate the effects of the number of macroparticles per cell
on the tearing mode growth rates. In order to do that, we use the simulation results of
the run TSC-640ppc (see Table 7.2), with 16 times more particles than the previously
analyzed TSC-40ppc, and thus reduction of numerical noise to one-quarter. The results
for the time evolution of the integrated Fourier tearing modes and corresponding growth
rates are shown in Fig. 7.24.

Figure 7.24: Left panel: Time history of the first seven Fourier modes
∫ x=∆N s

x=−∆N s
|Az(x, ky)|dx

for the run TSC-640ppc. To be compared with Fig. 7.21(left-panel), for the run TSC-

40ppc with sixteen times less macroparticles per cell. The dashed gray line is obtained

as a sum of all Fourier modes. The dashed-dotted black line is the sum of the first seven

Fourier modes shown in this plot.

Right panel: Dots connected by the solid line: Simulated growth rates γ of the previous

Fourier modes vs wave number kyL for the run TSC-640ppc (see text for the calculation

method). Dashed line: analytical estimate of the growth rate according to Eq. (7.6) for

thin CS and mi = me. Compare with the run TSC-40ppc (sixteen times less macroparticles

per cell) shown in Fig. 7.23. Reproduced with permission from P. A. Muñoz, P. Kilian,

and J. Büchner, Physics of Plasmas 21, 112106, (2014). Copyright 2014, AIP Publishing

LLC.

By comparing the corresponding Fourier modes for different number of macroparti-
cles per cell, one can see a delay in the onset of the explosive phase of reconnection for the
run TSC-640ppc. This also implies a delay in the dominance of the most unstable mode
(M = 4), decreasing its growth rates, in agreement with previous studies (Matsui 2008).
A better match with the theoretical result is expected for higher values of ppc with the cor-
responding lower numerical noise level. Nevertheless, the fastest growing mode is still
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the same, agreeing with the linear theory. Regarding other modes, the discrepancy can be
understood since some non-linear effects are enhanced in presence of higher numerical
noise level, modifying the transfer of power at different stages among the different tearing
modes, with a corresponding variation in the measured growth rates (Matsui 2008), lower
in general for higher ppc. In particular, note that the modes M = 1 and M = 7 have
much smaller error bars in TSC-640ppc than TSC-40ppc. This is consequence of the fact
that numerical noise mostly affects the modes with smaller growth rates, shortening the
duration of their linear growth phase when it is enhanced (for TSC-40ppc).

7.4.3 Influence of the mass ratio

In the last part of this section, we investigate the influence of the mass ratio in all the
aforementioned processes. For this purpose, we use simulations runs with very similar
parameters to our standard run TSC-40ppc but with a lower mass ratio mi/me = 25. This
a value typically used in many former studies of magnetic reconnection, such as the iconic
“GEM challenge”(Birn et al. 2001). The results showed no significant numerical heating
with the CIC scheme in comparison with our standard case CIC-40ppc. The overall evo-
lution was very similar to these with the TSC scheme: the energy was well preserved and
no significant numerical temperature anisotropies were seen, with the consequent absence
of numerical artifacts leading to stabilization of tearing mode, such as bifurcation. The
CS developed, with both CIC and TSC schemes, the growth of the tearing mode leading
finally to the explosive phase of magnetic reconnection, with all the features predicted by
the linear theory. In particular, we measured similar growth rates for both cases.

The previous behaviour can be understood recalling that the evolution of tearing mode
takes place at ion scales,Ω−1

ci , while the number of iterations performed by the code has to
be proportional to ω−1

pe due to stability reasons. A smaller mass ratio will imply a shorter
separation of time scales between electron and ions, since it will decrease the frequency
ratio Ω−1

ci
/ω−1

pe ∝ mi/me (see relations in Appendix A.3.1). There are two consequences
of this fact. First, the number of iterations before the onset of the processes depending on
Ω−1

ci
, such as tearing mode, will be smaller for lower values of mi/me. And second, the

accumulation of numerical errors, stochastic heating and consequently total energy will
be reduced for smaller mass ratios, since it depends on the number of timesteps and thus
on ω−1

pe (see Hockney and Eastwood 1988, Sec. 9.2).
The mass ratio is also essential at shorter time scales than those of the tearing mode.

Indeed, it plays a key role during the initial evolution of the runs with an initially imposed
anisotropy discussed in Sec. 7.3. It can be shown that both Weibel and mirror instabilities
have growth rates increasing with higher values of mi/me (see Sec. 5.2.1 and Sec. 5.2.2).
Thus, PIC simulations with a too small mass ratio will underestimate the importance of
these instabilities, leading to an incorrect description of the physical evolution of the CS.
Moreover, the dependence of the growth rates on mass ratio is not the same for these
anisotropy driven instabilities, as well as the tearing mode and many other kinetic insta-
bilities. The change of this parameter might change the dominant instability in a CS,
modifying completely the predictions given by PIC simulations (see for further details
Bret 2009, Bret and Dieckmann 2010).

Thus, our conclusion for this additional run with small mass ratio is that this choice
might hidden numerical instabilities (related with the anisotropic heating) that will only
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appear with more realistic (higher) mass ratios. We thought that the use of low mass
ratios is the reason behind the fact that bifurcation was not seen in past PIC simulations
of CS. However, PIC simulations of CS with low mass ratio might produce a completely
different evolution of many physical quantities related with the reconnection process, as
it has been pointed out by Karimabadi (2005).

Finally, we can conclude this section by saying that for a correct description of the
time evolution of the tearing unstable modes, is essential to use at least the TSC instead
of the CIC shape function, unless a very large number of macroparticles per cell are used
in the simulation, something impractical from the point of view of computational savings.
This requirement becomes essential in regimes with realistic (higher) mass ratios, in order
to avoid instabilities associated with the numerical heating.

7.5 Conclusions

In this chapter, we have investigated the effects of numerical parameters on PIC simu-
lations of collisionless Harris current sheets, in order to have a correct physical description
of their evolution. Our main finding is that higher order shape functions are more efficient
than increasing the number of macroparticle per cell for avoiding numerical instabilities.
In particular, the use of a quadratic interpolation (TSC shape function) improves signifi-
cantly the energy conservation over long times than the traditionally used linear interpo-
lation (CIC shape function). As a result, PIC simulations with TSC shape function allow
to suppress numerical collisions and anisotropic heating at computationally less cost than
a larger number of macroparticles per cell. This is especially critical for larger (more re-
alistic) mass ratios and for long PIC runs. Our results agree with a previous study of laser
wakefield interactions by PIC code simulations (Cormier-Michel et al. 2008).

The previous conclusion is based in the fact that lower order shape functions (such as
the often used CIC) or a insufficient number of macroparticles per cell can enhance the nu-
merical collisions inherent to all PIC codes, leading to results with large deviations from
the ideal collisionless Vlasov plasma model. This is because numerical collisions due
to the coarse-graining of phase space correspond to irreversible processes, enhancing the
entropy of the system due to an effective diffusion coefficient of the Boltzmann equation
(a measure of the collisionality). We found that this undesirable process can be efficiently
avoided by choosing higher order shape functions (see Fig. 7.6), since the diffusion coef-
ficient, and so the differences between the predictions of Vlasov and collisional plasmas,
are reduced by this numerical parameter (see Eq. (6.44) and Eq. (6.43)).

Since numerical collisions can be seen as an effective scattering, they cause numerical
heating, leading to an artificial (and irreversible) increase in the total energy of the system
(see Fig. 7.1(a)). It is important to remark than this effective-scattering heating is different
from the grid heating studied since many decades ago (Langdon 1970). The latter is
produced when the grid cell size is insufficiently resolved (larger than Debye length), not
in our case. We also confirm that this numerical heating affects mostly electrons, being
negligible for ions since it depends inversely on the mass ratio.

The previous numerically generated electron heating is anisotropic (see Fig. 7.5). As
pointed out by Matsuda and Okuda (1975), this is due to the anisotropic nature of numer-
ical collisions in 2D3V PIC code simulations embedded in magnetic fields. We found
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that this anisotropic heating can lead to the stabilization of the tearing mode, the build-
up phase of magnetic reconnection. We confirm that the theoretical threshold for this
process(Eq. (7.3)), as derived from the theory of (physical) anisotropic tearing mode
(Chen et al. 1984), can predict accurately the level of numerical anisotropy (due to ei-
ther low order shape functions or too small number of macroparticles per cell) necessary
for tearing suppression in our PIC simulations. This prediction also applies well for sim-
ulations that keep total energy well preserved (TSC schemes) but are initialized with an
electron temperature anisotropy.

We found that electron temperature anisotropies can drive additional instabilities in
a CS. Above a certain threshold, feasible to develop in PIC simulations using low order
shape functions, CS can bifurcate by reducing the out-of-plane component of the electron
density current Je,z close to the neutral line at the center. This is, in turn, due to a reduction
in the out-of-plane component of the electron bulk velocity Ve,z . Bifurcation has shown to
be produced due to electron chaotic scattering (Lee and Büchner 2012), a process that can
be developed if the numerical anisotropy is not controlled appropriately. Moreover, bifur-
cation takes place at the center of the CS, since collisions and associated scattering are
stronger in regions where the magnetic field strength is minimum (Matsuda and Okuda
1975). We also confirmed that bifurcated CS inhibit tearing mode, in agreement with
previous studies (Camporeale and Lapenta 2005, Matsui and Daughton 2008).

We also showed that CS can spontaneously bifurcate if an electron temperature anisotropy
is imposed initially in the system, even in PIC simulations using interpolation schemes
with good energy conserving properties (TSC shape function). The bifurcation strength
is dependent, to a certain degree, on the noise level as evidenced by the macroparticle
number. This is consequence of being generated by numerical scattering, which disap-
pear only in the limit of negligible noise (infinite macro-particle number), a non-physical
limit. We found the threshold for this process to be around Ae & 1.2, just a little bit above
the analytical estimate for tearing mode stabilization given by Eq. (7.3), a result derived
from the theory of anisotropic tearing instability. It is convenient to keep in mind than
this threshold should be taken just a first order approximation, since it was derived for col-
lisionless Vlasov plasmas, a non valid assumption for the typical collisions levels usually
found in PIC simulations of this physical system

We also explained the physical mechanism by which the CS bifurcates in simulations
with an initially imposed temperature anisotropy. The initial state is still a Harris equilib-
rium, but it turns out to be unstable (besides of tearing mode) to the temperature anisotropy
driven Weibel instability close to the unmagnetized neutral line. Above a certain thresh-
old (Eq. (7.4)), the imposed anisotropy will have to be relaxed at very fast time scales
(much shorter than those of tearing mode). This process is practically independent on the
macroparticle number. We found several predicted signatures of this instability, in par-
ticular the generation of filamented structures in the out-of-plane magnetic field Bz. This
magnetic field provides the seed for the generation of field aligned temperature anisotropy,
producing the conditions for the triggering of mirror instability. Both instabilities grow
together during a short period close to the center of the CS, producing enhanced scattering
due to release of the source of their free energy: the temperature anisotropy. Finally, this
process leads to a bifurcation of the CS.

We also proved that only the electron temperature anisotropy is the quantity that mat-
ters for all the aforementioned numerically instabilities. In particular, by isolating the in-
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dividual contributions of ions and electrons, we confirmed that ion anisotropy do not play
a relevant role in stabilization of tearing mode, at least for the levels of anisotropy feasi-
ble to be developed in PIC simulations of CS. This also agrees with previous theoretical
findings (Quest et al. 2010). Furthermore, a CS with an initially imposed ion temperature
anisotropy will not be relaxed before the tearing growth mode takes over. Indeed, the
previous mechanism by which Weibel and mirror instabilities might be triggered in this
scenario will only take place under the presence of an electron temperature anisotropy.

Finally, taking into account all these numerical considerations, in particular the choice
of the TSC shape function interpolation scheme, we could calculate growth rates of
the tearing mode, matching to some degree with the linear theory (see Fig. 7.23 and
Fig. 7.24(right-panel)). The discrepancies can be explained due to the presence of multi-
ple tearing modes, with the consequent non linear exchange of power among them, but
also due to the enhanced noise level arising as a result of the coarse graining effect (insuf-
ficient number of macroparticle per cell).
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8 Instabilities of Harris CS in the

presence of small guide fields

Strong magnetic guide fields along the current direction is an essential feature of cur-
rent sheets in the solar corona outside magnetic null points. For this reason it is of fun-
damental importance to understand the stability properties of collisionless current sheets
and magnetic reconnection in the presence of a relatively strong guide field. In the Hall-
MHD model (see Sec. 4.3), previous investigations have shown that a guide field affects
the properties of dispersive waves allowing fast magnetic reconnection, the dissipative
mechanisms responsible for the breaking of the frozen-in condition (see Sec. 4.2.3 and
Sec. 4.2.4). On the other hand, kinetic studies revealed the influence of the magnetiza-
tion by the guide fields of the electron orbits responsible for the tearing instability (see
Sec. 5.1.3). In general, guide field makes the reconnection process less efficient.

However, many unresolved questions remain, in part due to the analytical and numer-
ical difficulties of treating the complications due to the addition of a guide field to the
Harris CS equilibrium. Also, a high numerical resolution is necessary for having reliable
PIC simulations addressing the onset of magnetic reconnection (tearing instability), since
the numerical stability conditions and other constraints are much more severe in the case
of strong guide fields rather than in the antiparallel configuration discussed in Chapter 7.
As a result, there is no agreement yet in the main contribution to the reconnected elec-
tric field in Harris CS equilibria with guide fields. In particular, the generalized Ohm’s
law, which has to be analyzed using a mean field approach, was not considered carefully
enough in the past. Also, the properties of secondary instabilities resulting from the recon-
nection process under the guide field have not been completely understood yet. For these
reasons, in this chapter we address these questions, starting with CS with relatively small
guide fields (bg . 7), taking into account the computational constraints to be discussed
later.

This chapter is organized as follows. First, in Sec. 8.1, we describe the simulation
setup of single and double Harris CS with guide field . In Sec. 8.2 we analyze the nu-
merical considerations to be taken into account for a proper modeling of guide field re-
connection. Once this point is settled, we analyze the evolution of tearing instability
and the onset of magnetic reconnection. In Sec. 8.3 we analyze the mechanism of guide
field reconnection by calculating the terms of the generalized Ohm’s law which break
the frozen-in condition and balance the reconnection electric field. Next, in Sec. 8.4 we
discuss the mean field generalized Ohm’s law in CS with guide fields as a result of the in-
teraction of particles with electromagnetic fluctuations and the micro-instabilities causing
them. Finally, we summarize our findings in Sec. 8.5.
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8.1 Simulation setup

8.1.1 Double Harris CS

In this chapter from Sec. 8.2 onward 1 , we simulate a double Harris CS equilibrium
adding a guide field (see Eq. (3.23)) and a constant background plasma population of elec-
trons and ions (see Eq. (3.24)). This allows to use (double) periodic boundary conditions
in the reconnection plane x − y and thus to avoid any artificial numerical effect related
with reflecting boundaries, in particular in the background population. The model locates
the center of the two CS at x = Lx/4 and x = 3Lx/4, respectively. The magnetic field is
implemented by repeating the single magnetic field profile Eq. (3.23) twice along x, with
opposite sign in their shear:

~B(x) = B∞y

[
tanh

(
x − Lx/4

L

)
− tanh

(
x − 3Lx/4

L

)
− 1

]
ŷ + Bzẑ (8.1)

Consistently (from Ampère’s law), each CS is formed by two oppositely directed current
density Jz:

Jz =
1
µ0

∂By

∂x
=

B∞y

µ0L

[
cosh−2

(
x − Lx/4

L

)
− cosh−2

(
x − 3Lx/4

L

)]
(8.2)

For such profile, the Harris populations (for Ti = Te ) are formed by the density profile:

n{e,i} =
B∞y

eµ0L

[
cosh−2

(
x − Lx/4

L

)
+ cosh−2

(
x − 3Lx/4

L

)]
(8.3)

The constant particle drift velocity of the single Harris sheets are inverted for each half of
the x domain.

V{i,e},z(x) =


±Uz if 0 < x < Lx/2,

∓Uz if Lx/2 < x < Lx

(8.4)

where the signs ± correspond to ions and electrons, respectively. Note that at the center
the velocity changes discontinuously in 2Uz . But this strong shear is not a problem at
all, since the Harris population vanishes (zero density) at that place if the CS are well
separated (so, no particle experiences that effect). All these profiles can be seen in Fig. 8.1

1 Only in the first section about onset of magnetic reconnection and tearing mode, Sec. 8.1, a single CS
without background will be used.
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Figure 8.1: Components of the magnetic field ~B and current density ~J profiles for a

Harris CS with guide field bg = 1.73 given by Eq. (8.1) and Eq. (8.2), respectively. . It is

assumed that the left CS is at x/L = −4 and the right CS at x/L = 4. Compare with the

corresponding force free profiles shown in Fig. 9.1.

Similar to the previous chapter, we do not apply any initial perturbation, allowing thus
the study of both onset of spontaneous instabilities (tearing) and later the fully-developed
nonlinear stage of magnetic reconnection. Since the evolution of the left and right CS are
similar, we focus on the diagnostics of the left CS at x = Lx/4 in the rest of this chapter,
unless stated otherwise.

8.1.2 Parameters

As mentioned in Appendix A.3.3, in addition to the four basic parameters necessary
to fully specify a Harris sheet, now we also have to specify the density of the background
population nb and the strength of the magnetic guide field.

L

di

= 0.5,
ωpe

Ωce

= 4.16,
mi

me

= 100,
Ti

Te

= 1, (8.5)

nb

n0
= 0.2, bg =

Bz

B ∞y
∈ [0, 7] (8.6)

We use the same conventions for the calculation as in the previous chapter. Note that
guide fields up to seven times the Harris asymptotic magnetic field are chosen (although
many of the results will be shown only up to a guide field of bg = 3). Numerically we use
the TSC shape function to minimize effects related with artificial heating (see Chapter 7).
Now, let us specify the remaining parameters chosen for the simulation setup, as well as
other derived parameters and the relations between them:
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Parameter Standard Case

mi/me 100
Ti/Te 1
ωpe/Ωce 4.1666√
kBTe/me/c 0.12

L/di 0.5
L/ρi 1.0
Lx/di 25.13 = 8π
Ly/di 12.56 = 4π

VDe0/c 0.024
VDe0/vth,e 0.2√
kBTi/mi/c 0.012
ρi/di 0.5
ρi/de 5.0
ρi/λDe 41.667
di/λDe 83.333
L/λDe 41.667

ω−1
pi /ω

−1
pe 10.

Ω−1
ci /ω

−1
pe 416.667

0.5Lx/L 25.13
2πL/Ly 0.25

ωpe [Hz] 5.0 ∗ 109

λDe/∆x 1.432
ρe/∆x 5.9683
ρi/∆x 59.683
L/∆x 59.683
ω−1

pe/∆t 23.87324
Ω−1

ce /∆t 99.47183943
Ω−1

ci /∆t 9947.184
Nx/Ny 3000/1500

B∞y [G] 68.2275

nb/n0 0.2
ppc Harris 300/250

ppc background 60/50
total ppc per specie 3.77429 · 108

Table 8.1: Parameters chosen for the double Harris CS simulations discussed in this

chapter. The relations between them were obtained through the expressions given in Ap-

pendix A.3.1 and Appendix A.3.3.

According to the discussion in Sec. 7.1.3, the choice of the simulation box along y

was chosen to allow the three eigenmodes known to be the most unstable: M = 1, 2, 3
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with 2πML/Ly = ky L = 0.25, 0.5, 0.75. The corresponding wavelengths are λ = Ly/M =

1.0Ly, 0.5Ly, 0.25Ly. This allow us to study multimode tearing but without the additional
complications due to possible shorter wavelengths, less energetic eigenmodes, as these
considered for non-guide field reconnection in Chapter 7.

When this double CS is used, we discuss the CS instabilities by showing plots centered
only in the left CS at x = Lx/4. The periodicity in the boundary conditions guarantees
us that the evolution of the right half-plane will be similar (but not totally identical in
singular details).

The specific order in which the input parameters of this Harris CS are initialized in
the ACRONYM code is described in Appendix A.3.3.

8.2 Onset of guide field reconnection: Tearing instability

The final purpose of this chapter is studying the physical effects of fully-developed
magnetic reconnection. But first we analyze the onset of the tearing mode, since we are
not using any definite initial perturbation. In this section we discuss simulations with
parameters specified in Table 8.1 but for a single CS without background, nb/n0 = 0.
Consistently, we use reflecting boundary conditions, similar to these used in Chapter 7.
The reason is for computational efficiency: this approach allows to reach stronger guide
fields by using fewer particles due to not considering a plasma background and a second
CS. The trade-off are noisier momenta of the distribution function at the edge of the CS,
something not practical for the analysis of the terms in the Ohm’s law.

8.2.1 Numerical considerations with guide field

In order to simulate correctly the tearing instability, in this subsection we briefly dis-
cuss an important numeric issue that deserves to be considered not only for that kind of
study, but also for any kinetic investigation of guide field reconnection in general.

As we discussed in Sec. 7.2.5, the addition of a strong guide field to a Harris config-
uration magnetizes and isotropizes the electrons throughout the CS in the reconnection
plane. Therefore, a stabilization of tearing mode instability related with a temperature
anisotropy does not play an important role as in the non-guide field case (see Chapter 7).
In addition, as predicted by Matsuda and Okuda (1975), the in-plane numerical collisions
are reduced in presence of a magnetic field and so any effect related with an increasing
of entropy. In our simulations, we measured this quantity, finding decreasing values for
higher guide fields, in agreement with this prediction (these results are not shown here).

8.2.1.1 Effects of guide field on the accuracy of particle mover

On the other hand, the gyro-frequency of electrons in the guide field become large
and and the Larmor radius smaller if bg is high enough. As we discussed in Sec. 6.8.1,
this does not cause any problem for the stability of the Boris pusher used by ACRONYM.
For the accuracy, however, the electron gyrofrequency in the guide field Ωce has to be
well resolved. Hence, the timestep has to be chosen small enough according to Eq. (6.36).
This condition is easily satisfied for guide fields up to bg = 7, according to the parameters
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8 Instabilities of Harris CS in the presence of small guide fields

given in Table 8.1 and the relations given in Eq. (A.7):

Ωce,bg∆t = bg

√
2
(
1+

Ti

Te

)
vth,e

c
ωpe∆t ≈ 0.01bg≪ 0.3 (8.7)

where the subscript bg denotes quantities calculated on the guide field, e.g., ρe,bg = ρe/bg.
Here, 0.3 is taken to achieve a 1% of precision loss for the Boris pusher. We recovered this
effect in the increasing in-plane electron temperatures and total energies for large guide
field strengths, as we can see in Fig. 8.2. The out-of-plane electron temperature Te,z is
also affected by this slow heating, but to a much less extent due to the 2D nature of our
setup.
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Figure 8.2: Time history of some global quantities for different guide fields. Left: Total

energy. Right: Average electron temperature Te, x

In closing this issue, it might be interesting to mention that the “wiggles” in the initial
stage of both total energy and electron temperature shown in Fig. 8.2 are related with a
slight lack of initial equilibrium in our setup. The initialization with the Harris equilib-
rium as given by Eq. (3.19) is not relativistically self-consistent, in the sense that does
not distinguish between ~v and ~u = γ~v entering into the expressions for the temperature
that sustains the magnetic pressure (Eq. (3.19)). In particular, the relativistic covariant
definition of temperature (related with the stress-energy tensor) involves the covariance
between ~u and ~v, introducing differences with its non-relativistic definition when the drift
speed and/or electron thermal speeds are in the mildly relativistic regime, as in our case.
An interesting fact is that the pressure tensor loses its symmetry with the relativistic defi-
nition (it is related with the fact that the momentum flux m~u may have different direction
compared to the number density flux n~v). We carried out some simulation tests chang-
ing the definition of temperature in the Harris equilibrium by its relativistic counterpart
Eq. (3.19). The results showed that the initial wiggles practically disappeared (plots not
shown here), and that is why we thought that this behaviour is very likely due to this
reason. For further details about the relativistic correct definition of temperature, see the
articles by Melzani et al. (2014), Sarbach and Zannias (2013), Hesse and Zenitani (2007),
Davidson (1988, p. 7) or Davidson (1974, Sec. 1.3.3).
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8.2 Onset of guide field reconnection: Tearing instability

8.2.1.2 Resolution of electron gyration and bifurcation

However, we noticed an unexpected side-effect related with the electron gyromotion
on the guide field when its associated Larmor radius ρe,bg was not well resolved by the
grid, something not directly related with any stability or accuracy condition of the algo-
rithm. For this specific purpose, we analyze a different simulation to the ones specified
in Table 8.1: a run initialized with a single Harris CS, no background, a relatively high
guide field and other parameter similar to the ones used in Chapter 7 (note especially the
higher value of mass ratio).

L

di

= 0.5,
ωpe

Ωce

= 3,
mi

me

= 180,
Ti

Te

= 1, (8.8)

nb

n0
= 0.0, bg = 7, Lx/Ly = 2πdi/4πdi , ∆x = 1λDe, c∆t/∆x = 0.5. (8.9)

For this case, the ratio between electron gyromotion on the guide field and the grid cell
size (given by the relation in Appendix A.3.3):

ρe,bg

∆x
=

c/vth,e

bg

√
2
(
1 + Ti

Te

)
1

∆x/λDe

≈ 3.03
bg

(8.10)

Ωce,bg∆t ≈ 0.027bg≪ 0.3 (8.11)

where we have also calculated the time resolution Eq. (8.7) for this case, Now, for a guide
field of bg = 7, 2 the ratio ρe,bg/∆x ≈ 0.43, i. e. the Larmor gyroradius is under-resolved
by the grid by a factor of two. After an initial short transient time, we could notice a drop
in Jz at the center of the CS, as can be seen in Fig. 8.3. This is analogous to the bifurcation
seen in the previous chapter (in particular, see Sec. 7.2). However, it is not directly related
with an overall anisotropic heating such as in that case, but it is very localized. Moreover,
the drop on Jz it does not become deeper as the time goes on. This structure remains
in a quasi-steady state for very long times. It stabilizes the tearing mode, inhibiting the
formation and merging of magnetic islands. In this sense, it is more related with the
bifurcated structure developed in Harris sheets with initial temperature anisotropy (see
Sec. 7.3), although the physical process does not have to do with enhanced collisions
at the center of the CS, since (as we already mentioned) they are strongly reduced in
presence of a magnetic field.

In order to test the origin of this bifurcated structure of the CS, we carried out two
additional simulations (subscripts “2” and “3”) with the same physical parameters but
changing the grid cell size and time step. In the run “2”, we use a double grid resolution:
∆x2 = 0.5∆x, in addition to a necessary half time step ∆t2 = 0.5∆t to fulfill the CFL
condition Eq. (6.34) with the same degree of accuracy as the original run: c∆t2/∆x2 = 0.5.

2 In our standard set of simulations given in Table 8.1, the ratio ρe,bg/∆x = 5.96, which would require
much larger guide fields to see the effect to be shown, and thus much longer simulation times and spatial
resolution. In addition, the reduced mass mi/me = 100 for the standard parameter set used in this chapter
makes faster the development of reconnection process, hiding any numerical effect related with the accu-
mulation of numerical heating and/or errors in the interpolation scheme. A higher mass ratio mi/me = 180
used in this special run is more prone to this kind of effect, as we demonstrated in the Chapter 7. This
justifies, in part, the choice of this different setup.
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8 Instabilities of Harris CS in the presence of small guide fields

Note that we keep the same physical simulation box, and therefore this simulation run
have double of grid points along each direction, in addition to 4 times more total particles
and it requires double number of timestep to reach the same physical time. In the run
“3” we only change the time step to one half: ∆t3 = 0.5∆t, while keeping the grid cell
size to its original value ∆x3 = ∆x. In this way, the CFL condition is over-resolved
c∆t3/∆x3 = 0.25 (so, it is even better).

Figure 8.3: Out-of-plane current density for the strong guide field, very late in its evo-

lution, with parameters specified in Eq. (8.8) and different time steps and grid cell sizes.

Left: Run “1” with original values of ∆x and ∆t. Center: Run “2” with ∆x2 = 0.5∆x and

∆t2 = 0.5∆t. Right. Run “3” with ∆t3 = 0.5∆t and ∆x3 = ∆x

Comparing Fig. 8.3(left) with Fig. 8.3(right), we can see a practical identical behavior
when changing only ∆t, an indication that bifurcation it is not related with the accuracy of
the algorithm. On the other hand, there is a striking difference between Fig. 8.3(left) and
Fig. 8.3(center), obtained by changing only the spatial resolution (grid cell size). We can
see in the higher resolution simulation the formation of a magnetic island (with its X point
close to the bottom of the simulation box), a signature of the tearing mode growth, the
“right” physical behaviour as we explained in Chapter 7: bifurcation does not appear and
there is no stabilization of tearing mode. This is associated with an enhanced anisotropy
T x > Tz very localized at the center of the CS with a spatial extent on the order of ρe,bg (not
shown here). In contrast to the expectations mentioned at the beginning of this section, it
seems that collisions with the associated enhanced scattering do play a role even in this
case of strong guide field, but different from the antiparallel case, they are anisotropic
when comparing in-plane (x-y) with the preferential out-of-plane direction z (and not
between x and y). A higher grid resolution implies that the numerical inter-particle force
due to the grid is smoothed out, and so any numerical effect related with collisions that
may lead to bifurcation.

As we briefly mentioned in the discussion of Eq. (6.36), in principle there is no con-
straint in the relative ratio ρe,bg/∆x due to the Boris algorithm, because it always gives
the same particle orbit when the fields are interpolated back to the particles, independent
on the previous ratio. However, this fact is only valid for homogeneous magnetic fields.
Indeed, Melzani et al. (2013) noticed a numerical instability in cases where ρe,bg is not
well resolved by the grid cell size, manifested in a sudden increase of the total energy in
their simulations of uniform and cold magnetized plasmas. They attributed that instability
to the coupling between the aliases of the wavenumbers associated with the electron gyra-
tion kn = k±2πn/(2ρe,bg) (with n integer) and the local perturbations in the magnetic field,
a mechanism analogous to the finite grid or aliasing instability when the Debye length
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8.2 Onset of guide field reconnection: Tearing instability

is not well resolved (see Sec. 6.8.2.1). Melzani et al. (2013) also pointed out that, since
this instability develops slowly, particles that experience short time in regions with under-
resolved Larmor radii should not affect too much to the onset of it. Our simulation of CS
exhibits an inhomogeneity in the magnetic field with maximum at the center, where the
Harris By component reverses sign. Therefore, that inhomogeneous region may be more
prone to this kind of numerical kinetic instabilities that regions away from the center of
the CS, explaining thus the location of bifurcation. Moreover, due to the strong out-of-
plane bg, the particles are confined to be close to that position for longer times (cross-field
motions are severely restricted), providing thus the ingredient necessary to the onset of in-
stabilities that require heating for their triggering. To the best of our knowledge, we could
not find any other report about this kind of instabilities for parameter regimes of under-
resolved Larmor radii. That is the reason why we thought it is important to report the
possible origin of bifurcation in CS with strong guide field due to this process. However,
more work is needed to reveal the details of the physical mechanism behind bifurcation
in our setup.

8.2.2 Evolution of tearing instability on dependence on guide field

If we take properly into account the previous numeric issue, i.e., resolving spatially
the electron gyration on the guide field by the grid size well enough, one can indeed see
the slow growth of tearing mode manifested in the formation and merging of magnetic
islands. This can be obtained by using the parameters given in Table 8.1 (in particular,
note that ρe/∆x = 5.96).

First, let use compare the evolution of tearing mode for different guide fields by show-
ing the evolution of the reconnected flux Ψ (defined in 4.1) and the integrated Fourier
power of the vector potential |Az(x, ky)| for the most unstable mode kyL = 0.5 (following
the method used in Sec. 7.4.1.1).
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Figure 8.4: Time histories of quantities showing the evolution of tearing mode on depen-

dence on the guide field. Left: Reconnected flux Ψ. Right: Integrated Fourier power of

the vector potential
∫ x=∆N s

x=−∆N s
|Az(x, ky)| dx for the most unstable mode m = 2 or kyL = 0.5.

In Fig. 8.4(left), the peak in the reconnected flux Ψ indicates the explosive phase of
reconnection, after the CS is disrupted due to the counterstreaming flows in y direction
resulting from the periodic boundary condition (recall discussion of Fig. 7.3). Since this
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8 Instabilities of Harris CS in the presence of small guide fields

peak is reached for later times for stronger guide fields, we infer that the entire recon-
nection onset is delayed for high bg. This time dependence for different guide fields is
summarized in Fig. 8.5. Note also that the maximum peak value of the reconnected flux
is reduced for stronger guide fields, indication of the reduced efficiency of magnetic re-
connection in converting the available magnetic energy stored in the system under the
influence of the guide field. The large guide field behavior, however, seems to converge
towards an asymptotic value for the largest bg considered in this study.

0 2 4 6
Guide field Bg/B0y

0

50

100

150

t/
Ω

C
i

0 1 2 3 4 5
guide field Bg/B0y

0.00

0.05

0.10

0.15

γ/
Ω

C
i

mode 1
mode 2
mode 3
mode 4

Figure 8.5: Left: Reconnection onset time (explosive phase) vs guide field strength bg,

estimated from the time history of reconnected flux shown in Fig. 8.4(left). Right: Growth

rates γ of the first modes of Az(ky) vs guide field strength bg. The dashed lines represent

the analytical expression Eq. (8.12).

The delay in the magnetic reconnection onset (see Fig. 8.5(left)) is also related with
a slow down of the merging of magnetic tearing islands for higher bg. This process
takes place during the initial linear stage of the evolution of the CS (the build-up phase),
where magnetic reconnection is not energetically efficient. This behavior can be seen
in Fig. 8.4(right), representing the time evolution of the most unstable tearing mode
kyL = 0.5 (M = 2) on dependence on bg: the slope is reduced for higher guide fields.
The dependence of this slope (growth rate γ) on bg, along with the other 2 unstable tear-
ing modes of this CS (M = 1, 3), is shown in Fig. 8.5(right). The calculation method
for γ is identical to the already explained in Sec. 7.4.1.3. The dashed lines are from the
analytical expression of kinetic tearing growth rates for thick CS Eq. (5.31), which for our
parameters it reads:

γbg

Ωci

= 0.155(1 − (ky L)2)
1
bg

(8.12)

Note that the latter expression in valid in the limit of strong guide field, given by the
expression Eq. (5.26). For our parameters, this is bg = 0.213, so all the values shown for
finite guide field are in the strong regime. As we discussed in Sec. 5.1.3, the previous
analytical expression should not be taken as an accurate expression in our case, since it
involves approximations valid beyond our parameter range (especially thick CS L ≫ ρi).
More accurate relations are only available as numerical solutions of the linearized Vlasov
equation (see, e.g. Daughton 1999, Karimabadi et al. 2005). The main point here is just
to emphasize the inverse proportionality of γ ∝ 1/bg.

The previous two observations are in agreement with many previous studies. In fact,
it has been known since some time ago that magnetic reconnection (in any plasma model
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8.3 Mechanism of guide field reconnection

involving at least the Hall term) is less efficient in presence of a guide field, in both
build-up (or tearing) and explosive phase. We just discussed the reasons related with the
tearing in the last paragraphs. The efficiency of the explosive phase (or fully-developed,
steady state magnetic reconnection) is related with the peak values of the reconnected
flux ψ, or equivalently, with its derivative the reconnection rates dψ/dt (proportional to
the first one assuming an exponential growth, as it is often the case). Reconnection rates
are reduced with increasing guide field since the dynamics of the waves allowing the
fast magnetic reconnection mechanism is reduced towards smaller scales, fundamentally
dominated by kinetic Alfvén waves (see Sec. 4.2.2). Their dispersive properties make this
process possible even when the responsible whistler waves in an antiparallel configuration
are not allowed, but their phase speed and their ability to open the separatrices decreases
with bg. For a extended discussion and previous works in agreement with our results, see
Sec. 4.3.3.

Before closing this section, it is necessary to make a technical remark. The fact
that we are using periodic boundary conditions along y makes the time period of fully-
developed or steady state reconnection very short. It reaches their peak when the flux
(see Fig. 8.4(left)) does, and then drops suddenly (not shown here). This is because the
counterstreaming outflows destroy that configuration very quickly. In principle, this can
be avoided by choosing longer simulation boxes or open boundary conditions, as it has
been pointed out by Karimabadi et al. (2005). In the latter case, however, the definition
of reconnected flux becomes more involved.

8.3 Mechanism of guide field reconnection

In this section, our purpose is to identify the physical mechanism that allow fast mag-
netic reconnection during the short phase where it reaches steady state in out setup. In
other words, we will be analyzing the fully-developed stage of magnetic reconnection. As
we stated in Sec. 8.1 , now we switch to a double CS adding a background population as
well, in order to have less noisy momenta of the distribution function (better statistics by
avoiding close to vacuum regions with few particles per cell), necessary for the calculation
of the term in the Ohm’s law.

As we discussed in Sec. 2.2.1, there are several mechanisms for breaking the frozen-
in condition Eq. (2.49), each one identified with the non-ideal terms in the Ohm’s law
Eq. (2.27). Recall that this expression is derived from the second moment of the collision-
less Vlasov equation specialized for electrons. In this subsection we are going to show
the dependence of these terms on the guide field. But before, we need to address (another)
numerical issue, with physical measurable consequences.

8.3.1 Calculation methods for averages and derivatives

Special care has to be taken when calculating both spatial and time derivatives in the
right hand side of Eq. (2.27) from the raw data given by a PIC code. This is because the
high PIC shot noise leads to unreliable results if these derivatives are not properly done.
There is also another more important issue with physical consequences. The generalized
Ohm’s law in the form Eq. (2.27) can only be applied for collisionless plasmas. As we
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8 Instabilities of Harris CS in the presence of small guide fields

saw in previous chapter, the PIC noise mimic a collisional system. That is why it is conve-
nient to get rid of noise by averaging that expression in both time and space, resembling
an ensemble average. This can reduce to a large extent any numeric collision operator in
the right hand side of the Boltzmann equation, thus recovering a system more similar to
a Vlasov plasma. However, this procedure has a trade-off: the electromagnetic fields and
quantities involving the distribution function in the left hand side of the Vlasov equation
Eq. (2.19) are now ensemble averaged quantities. Then, when deriving the momenta of
the Vlasov equation, there will appear additional terms due to correlations in the fluctu-
ating parts of these quantities, as it has been shown in Sec. 4.2.5. The final result is that
the mean field generalized Ohm’s law Eq. (4.28) includes an additional term (in compar-
ison with the instantaneous Ohm’s law Eq. (2.25)) due to this correlated electromagnetic
fluctuations Eq. (4.29), acting as an effective or “anomalous” resistivity.

8.3.1.1 Time average and derivatives

In order to decrease noise due to high frequency waves at electron time scales (ω−1
pe ),

we choose to average the electromagnetic fields ~E, ~B, the current ~J and all the momenta
of the distribution function up to order fourth (density n, bulk velocity ~V, pressure tensor
Pi j, heat flux ~q and kurtosis K) over an extended time period. By means of extensive tests
(not shown here), we found that the optimum choice for the length of this average is about
∆T = 0.5Ω−1

ci , half of the typical reconnection time scales. We are going to denote these
time averages with the symbol:

〈A〉∆T,MA, used (8.13)

where “MA” indicates a moving average, also known as boxcar filter or simply mean value
of all the values of A in the time series of length ∆T (see Appendix B.1.2.1). It is also
possible to use more advanced filters, such as approximations via least square methods to
detect some special features such as peak values or local maxima or minima in between
the time series (see a general discussion in Appendix B.1).

It is also necessary a time derivative of the bulk flow velocity (Eulerian accelera-
tion, calculated in a given position) in the inertia term in the generalized Ohm’s law in
Eq. (4.25). This is calculated via a Savitzky-Golay filter (“SG”. See Appendix B.1.2.5 for
further details) with a length equal to the same time period ∆T used for the time average
of the quantities discussed in the last paragraph. It will be denoted as:

∂Ve,z

∂t
≈

〈
∂Ve,z

∂t

〉

∆T,S G

(used) (8.14)

The choice of the same time period is in order to be self-consistent: both Eq. (8.13) and
Eq. (8.14) will diminish noise in the same amount (because their cut-off frequencies will
be similar). The choice of a Savitzky-Golay filter is in order to have smoother derivatives
(see Appendix B.1.3.2), better detection of local maxima or minima in between the time
period chosen for the average and also because it is a single pass algorithm on the time
series: it does not require to store previous values for the calculation of derivatives.

In contrast, the straightforward way of calculating numerical derivatives is via finite

208



8.3 Mechanism of guide field reconnection

differences (FD, see Appendix B.1.3.1 for details) applied to the time series ∆T

∂Ve,z

∂t
≈

〈
∂Ve,z

∂t

〉

∆T,FD

(not used) (8.15)

but they turns out to be unreliable when applied to noisy data, especially over extended
time windows like in this case (Ahnert and Abel 2007). As we explained in Appendix B.1.3.1,
this can be understood in short because they are intrinsically prone to the phenomena
known as “catastrophic cancellation”: when two quantities with similar magnitude are
subtracted, the result might have a high relative error (loss of significant digits) due to the
limitations of floating point arithmetic. A time derivative calculated locally (i.e.: a short
time window ∆T ) is also not convenient due to the errors introduced by the highly fluctu-
ating PIC quantities, especially close to the reconnection peak time, the more interesting
one. Our purpose in this section is to obtain the behaviour of magnetic reconnection over
its typical ion time scales (Ω−1

ci ), and that is why we chose this extended average.
In principle, it is also possible to calculate derivatives via finite differences first smooth-

ing out the time series of timesteps contained in ∆T , with a final result at least as smooth
as the calculated via SG filters Eq. (8.14). But that approach is not practical when applied
to the in-time running diagnostics in a PIC code. It would be necessary to store all the
intermediate timesteps for the calculation of derivatives via finite differences afterwards,
an unnecessary memory consuming operation in two-passes. If the spatial average is de-
noted as 〈A〉∆X,filter, where “∆X,filter” denotes some spatial filter (see next Sec. 8.3.1.2 for
further details) over a typical length scale ∆X, the two steps in this method are:

∂Ve,z

∂t
≈

〈
Ve,z

〉
∆x,filter →

〈
∂
〈
Ve,z

〉
∆x,filter

∂t

〉

∆T,FD

(not used) (8.16)

We will also be using the same approach Eq. (8.14) for calculating the rate of changes
(again, Eulerian derivatives calculated in a fixed position) of the momenta of the distribu-
tion function up to order two (density ∂nα/∂t, bulk velocity ∂Vα,i/∂t and diagonal elements
of the pressure tensor ∂Pα,ii/∂t). They are directly related with transport coefficients. All
these running time diagnostics are implemented in ACRONYM.

8.3.1.2 Spatial average and smoothing

There are several more or less equivalent approaches for the calculation of spatial
derivatives (necessary, e.g. for the pressure term in Ohm’s law ∂Pe,xz/∂x), also prone to
the short wavelength PIC numerical shot noise. Following the same observations pointed
out in the last subsection, it is not convenient to apply finite differences to the raw data.
One can try to apply the same approach as for time derivatives and using in one-pass a
S-G filter:

∂Pe,xz

∂x
≈

〈
∂Pe,xz

∂x

〉

∆X,S G

(not used) (8.17)

over a typical length scale ∆X. However, in this case this kind of filter lose some of
its advantage in comparison with its use for time series, since a two passes algorithm
on spatial data does not increase at all the computational cost (it is a post-processing
diagnostic operation). In addition, a S-G filter for derivatives, although good to denoising
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small scale structures, it introduces noise to large scales, something unwanted in our case
(note that we do not have that problem for the time derivatives). The other approach is
smoothing out the data first and then apply finite differences:

∂Pe,xz

∂x
≈ 〈

Pe,xz

〉
∆X1,filter →

〈
∂
〈
Pe,xz

〉
∆X1,filter

∂x

〉

∆X2,FD

(not used) (8.18)

The filters have to be low-pass such as moving average, binomial (commonly used in
current smoothing routines in PIC codes, see Appendix B.1.2.2) or Gaussian (converging
to binomial for large ∆x. See Appendix B.1.2.3). Each one differs in their frequency
response and the choice depends on the problem to be analyzed (see Appendix B.1 for a
general discussion). Note that the filter lengths ∆X1 and ∆X2 do not have to be the same .
But our approach is, in order to be consistent with Eq. (8.14), applying a combination of
the previous methods: first a smooth derivative using a S-G derivative filter (to preserve
small scale features) and then a Gaussian filter (to smooth out noise introduced by the
S-G filter to large scales):

∂Pe,xz

∂x
≈

〈
∂Pe,xz

∂x

〉

∆X,SG

→
〈〈
∂Pe,xz

∂x

〉

∆X,SG

〉

∆X,gauss

(used) (8.19)

Note that we have chose the same filter length for both smoothing and derivatives ∆X =

∆X1 = ∆X2. This is done by choosing an equivalent cutoff wavelength in the frequency
response of both filters (see discussion of Eq. (B.21) for further details).

8.3.1.3 Mean field generalized Ohm’s law

Now, after the previous numerical consideration, we can finally calculate each term
in the generalized Ohm’s law. From now on, let us omit the subscript related with the
running-time average for all the quantities according to Eq. (8.13), in such a way that we
will be denoting, e.g.,

Ez → 〈Ez〉∆T,MA (8.20)

Thus, and using the previous filters for both spatial and time derivatives, the explicit form
for calculating all terms in the generalized Ohm’s law Eq. (2.25), without taking into
account the contribution by correlated electromagnetic fluctuations Eq. (4.29), is given
by:

〈Ez〉∆X,gauss +
〈
Ve,xBy − Ve,yBx

〉
∆X,gauss

= (8.21)

−
〈

1
ene

(〈
∂Pe,xz

∂x

〉

∆X,SG

−
〈
∂Pe,yz
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(8.23)

In all the calculations to be shown in this chapter, the time averages and time derivatives
with SG-filter have used a filter width of ∆T/∆t time steps. Both time and spatial deriva-
tive with SG-filter {∆T,SG} and {∆X,SG} use a polynomial order P = 2. The spatial
derivative with SG filter uses a width of N = 5 (or M = 2), corresponding to a cutoff

210



8.3 Mechanism of guide field reconnection

wavelength of the corresponding smoothing filter of λx,SG−cutoff = 3.53∆x = 2.46λDe . The
final Gaussian filter is chosen to have σ = 1.59, corresponding to the same cutoff wave-
length: λx,GAUSS−cutoff = 3.53∆x = 2.46λDe. The specific values of the coefficients for all
these filters can be calculated with the formulas given in Appendix B.1.

As we explained at the beginning of this Sec. 8.3.1, any mismatch between the left and
right hand side of this mean field Ohm’s law Eq. (8.21) can be attributed to the effects of
anomalous correlations between the instantaneous fluctuating quantities Eq. (4.29). This
avoids the direct calculation of that term, which would require a complete information
of the full time series of the instantaneous fluctuating quantities. However, the specific
values of this term will depend on the chosen filter width in both time and space. This is
equivalent to introduce a different separation of scales between the mean and fluctuating
quantities in the Vlasov equation, which will affect any transport coefficient based on
this (see discussion in Sec. 4.2.5). Therefore, a rigorous calculation would have to taken
into account all these effects, by means of an extensive parametric study of convergence
on dependence on the chosen filter, in both space and time. The latter is particularly
computationally demanding since it is done in running-time in the PIC code. This work
has not been done in this thesis. Only a few examples for some specific cases were carried
out, which will be presented next. Thus, our results regarding the anomalous effects in
the mean field Ohm’s law should be considered only as a first approximation.

8.3.2 Dissipative mechanism in the antiparallel limit

In order to compare how the dissipative mechanism changes with the guide field, let
us display the contribution of each one of these Ohm’s law terms for the limit case of
bg = 0 as well as the total left and hand side, respectively. The results of the calculation
by the methods explained in the previous subsection are shown in Fig. 8.6.

211



8 Instabilities of Harris CS in the presence of small guide fields

(a) Ez,pressure (b) Ez,inertia (c) ERHS = Ez,pressure + Ez,inertia

(d) (Total) Ez (e) Ez,convective (f) ELHS = Ez + Ez,convective

(g) Jz (h) ERHS − ELHS
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Figure 8.6: Terms of the generalized Ohm’s law for bg = 0 at reconnection peak time.

Each term was calculated with a proper time and spatial averaging according to the

description and parameters given in Sec. 8.3.1.3. All the terms are in dimensionless units

normalized to B0VA (same as the reconnection rate).

First of all, in general the net difference between all the terms in the Ohm’s law, as can
be seen in Fig. 8.6(h), it is fulfilled to a large extent everywhere. The small differences,
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8.3 Mechanism of guide field reconnection

shown in the profiles Fig. 8.6(i)-(j) as teal color dashed line, can be attributed to the noise,
since it seems to be random, not significantly localized and smaller than any the other
terms.

Next, note that “chess-pattern” structure inside of the main magnetic island for the
electron pressure term Epressure and, to a lesser degree, for the electron inertia term Einertia.
As we found in the previous chapter Sec. 7.3.2.1, these structures are very similar to
these formed due to Weibel instability (see Sec. 5.2.1). Indeed, we found a temperature
anisotropy Te,y > Te,x in all the inner region of the main magnetic island (see Fig. 8.7(a))
above the theoretical threshold Eq. (5.54). This is due to the preferential electron parallel
heating resulting of the development of tearing mode. In a very similar way, the out-
of-plane magnetic field Bz generated by the Weibel instability generates a temperature
aligned anisotropy Te,‖ < Te,⊥ (calculated with the methods explained in Sec. 7.3.3.1 and
Appendix B.2.5) mostly close to the center of the magnetic island (see Fig. 8.7(b)). Their
magnitude has the right threshold for the destabilization of the mirror mode (Eq. (5.59)).
This is a complete analogous process to the interplay between Weibel and mirror instabil-
ities seen in the previous chapter (see Sec. 7.3.3), but in this case is completely generated
by the natural anisotropies developed by the system and not by any numerical effect. The
effect of this instability can be seen (see Fig. 8.7(c)), where it is shown the non-gyrotropy
Dng of the distribution function calculated by the method explained in Appendix B.2.6.
It measures relative importance of the off-diagonal terms of the pressure tensor, being
recently proposed by Hesse et al. (2014). Strong deviations from a gyrotropic pressure
tensor, and therefore deviations from the thermal equilibrium, are correlated with the lo-
cations where Te,‖ < Te,⊥.

(a) Te,y/Te ,x (b) Te ,‖/Te ,⊥ (c) Non-gyrotropy DNG

Figure 8.7: Contour plots with quantities showing signatures of the temperature driven

Weibel instability for the limit case bg = 0 at reconnection peak time

Only very few (and relatively recent) works have noticed these Weibel structures (see,
e.g., Lu et al. 2011, Schoeffler et al. 2013), but it has not been recognized as a ubiquitous
feature of magnetic reconnection. This might be related with the spatial resolution nec-
essary to resolve well these structures and the low noise level associated with the use of
TSC shape functions in our simulations. From the previous Chapter 7, if these consid-
erations are not taken into account, numerical collisions dominate the system tending to
the isotropization, making disappear any effect related with anisotropy. In simulations
with similar parameters but lower spatial resolution and lower number of macroparticles
per cell (not shown here), the Weibel signatures related with anisotropy are completely
absent.
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8 Instabilities of Harris CS in the presence of small guide fields

As can be seen in Fig. 8.6(i)-(j), close to the X point, the reconnected electric field
is mostly balanced by a combinations of the pressure and inertia term, in agreement with
previous studies (see Sec. 4.2.3 and Sec. 4.2.4). However, and different from those works,
we can also notice an important contribution from the electron inertia Ez,inertia > 0 at
the boundaries of the main magnetic island Fig. 8.6(b). Since there is practically no
reconnected electric field in that regions, the electron pressure has to compensate this
additional electric field by showing Ez,inertia < 0 (see Fig. 8.6(a)).

But, what is the physical mechanism of these relative large contribution to the electric
field Ez far away from the X point? The usual suspect for the pressure term, the electron
meandering close to the neutral line, cannot be responsible, since in the borders of the
secondary magnetic islands the asymptotic Harris B∞y is dominant, confining the electron
to gyrate in small confined regions. Unexpectedly, we found that in these regions the
electron bulk velocity Ve,z is decreasing very quickly (deceleration ∂Ve,z/∂t < 0), even
faster than in the diffusion region close to the X point (Fig. 8.10(g)). This is the component
carrying the current Jz that sustain the current sheet. Therefore, this slow down is a
signature of a diffusive process taking place at these locations (related with “anomalous”
resistivity). Its effects seems to be a conversion of the bulk flow velocity into in-plane
electron heating ∂Te,y/∂t > 0, mostly along along the boundary of the magnetic island (see
Fig. 8.13(d)). The other components of the temperature/pressure tensor are not heated in
these locations over other places inside of the magnetic island or in the diffusion region.
In addition there is also generation of a non-thermal tail of the electron in-plane 1D VDF
f (vy ) throughout the border of the magnetic island, as evidenced by the kurtosis Ke,y

(see Fig. 8.14(a)). As we mention in Appendix B.2.1, a non-thermal population can be
characterized via this 4th order moment of the distribution function, since it indicated
the relative importance of the “tails” of a distribution in comparison with a Maxwellian
VDF. In any case, the fact of a non-negligible Ke,y and absence of this kind of deviations
in the other components of the rate of increase of temperature or kurtosis, indicate that
the electron inertia contribution is a good proxy for detecting places where this kind of
behaviour are expected.

8.3.3 Guide field dependence

The addition of a guide field at least as high as the asymptotic Harris magnetic field
(bg = 1) changes radically the structure of all the terms in the Ohm’s law, in both diffusion
region as well as inside of the magnetic island (compare Fig. 8.6 with Fig. 8.8). The first
observation is that the characteristic “chess board” structure in the pressure term Epressure,
signature of the Weibel instability, disappears completely inside of the main magnetic
island. This is due to the magnetization of electrons on the guide field, reducing to a
large extent any in-plane temperature anisotropy inside of that region, the source of free
energy of the Weibel instability. Therefore, there is no similar structures to the ones seen
in Fig. 8.7 for all the guide field strengths considered in this study.
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8.3 Mechanism of guide field reconnection

(a) Ez,pressure (b) Ez,inertia (c) ERHS = Ez,pressure + Ez,inertia

(d) (Total) Ez (e) Ez,convective (f) ELHS = Ez + Ez,convective

(g) Jz (h) ERHS − ELHS
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Figure 8.8: Terms of the generalized Ohm’s law for bg = 1 at reconnection peak time.

Each term was calculated with a proper time and spatial averaging according to the

description and parameters given in Sec. 8.3.1.3. All the terms are in dimensionless units

normalized to B0VA (same as the reconnection rate).
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8 Instabilities of Harris CS in the presence of small guide fields

(a) Ez,pressure (b) Ez,inertia (c) ERHS = Ez,pressure + Ez,inertia

(d) (Total) Ez (e) Ez,convective (f) ELHS = Ez + Ez,convective

(g) Jz (h) ERHS − ELHS
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Figure 8.9: Terms of the generalized Ohm’s law for bg = 3 at reconnection peak time.

Each term was calculated with a proper time and spatial averaging according to the

description and parameters given in Sec. 8.3.1.3. All the terms are in dimensionless units

normalized to B0VA (same as the reconnection rate).
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8.4 Deviations in the generalized Ohm’s law and cross-field instabilities

The balance of the terms sustaining the reconnected electric field also changes drasti-
cally with the guide field. The asymmetry introduced by the reduced shear in magnetic
field and the typical length scale ρe,bg reduce any large scale feature (as present in the
limit bg = 0) of the pressure Ez ,pressure or electron inertia Ez ,inertia contributions to the re-
connected electric field. They are now very concentrated in small regions in the close
neighborhood of the X point and along the boundaries of the secondary magnetic island
(see, e.g., Fig. 8.8(a)-(b)). Only in a subset of these areas the frozen in condition is
violated, allowing the rearrangement of magnetic field lines leading to magnetic recon-
nection (see Fig. 8.8(c)). These regions becomes smaller for higher guide fields (see, e.g.,
Fig. 8.9(a)-(b)-(c)), consequence of the reduced ρe,bg. This is even another reason for re-
solving properly the electron Larmor radius on the guide field by the grid cell size ∆x.
Although it is possible to have a stable scheme under-resolving this quantity according to
the discussion in Sec. 8.2.1.2, it will not be possible to make reliable estimations about
the origin of the reconnected electric field when the scales of the pressure or inertia term
fall below ∆x. The importance of the inertia term increases with the guide field in com-
parison with the pressure term, in agreement with previous simulations and theoretical
studies (see Sec. 4.2.4). For our next discussions note also that the inertia term is always
symmetric with respect to the central line of the CS, while the pressure contribution to the
reconnected electric field becomes asymmetric under the influence of the guide field. It is
positive in the pair of separatrices with low density.

8.4 Deviations in the generalized Ohm’s law and cross-

field streaming instabilities

An important observation in the previous plots is that the balance of terms in the
Ohm’s law loses accuracy with increasing guide field (compare Fig. 8.8(h) with Fig. 8.9(h)).
This is not only due to the enhanced noise, but also an indication of enhanced correlated

electromagnetic fluctuations levels, appearing as additional terms Ez ,anomalous in the mean

field Ohm’s law (recall Sec. 4.2.5 and the definition Eq. (4.29)). This is different from the
antiparallel case (see Fig. 8.6(h), because the guide field localizes the deviations in the
Ohm’s law at some specific locations. Although we are going to present some arguments
in favor of these kind of processes taking place in our system, a more extensive paramet-
ric study of the effects of guide field and filters on noise are required to fully confirm this
claim. A detailed analysis of the full time series from the simulation is required to rigor-
ously separate the steady state from the fluctuating parts, and thus to have a more reliable
calculation method for the ensemble averages (and not only in time, but also in space).

The additional fluctuating term Ez,anomalous not modeled by the simple two-fluid Ohm’s
law is very localized along the separatrices and in the outer boundary of the main magnetic
island. Their length scales, increasingly smaller for higher guide fields due to the reduced
electron Larmor radius ρe,bg, can only be resolved by a good enough spatial resolution
(simulations with guide fields but smaller resolution, not shown here, do not display this
behaviour). The effect of this Ez,anomalous term is correlated with a slow down of the cur-
rent carriers, as can be seen in the deceleration of the out-of-plane bulk velocity ∂Ve,z/∂t

(see Fig. 8.10(bottom-row)). Therefore, their effects are closely related with the electron
inertia contribution to the reconnected electric field Ez ,inertia. In particular, ∂Ve,z/∂t in-
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8 Instabilities of Harris CS in the presence of small guide fields

creases a little bit for larger guide fields (e.g.:bg = 3), but what it is more important: their
peak values become localized at the edges of the magnetic island, where is the main term
responsible for sustaining the out-of-plane electric field in the opposite direction to the
reconnected one: Ez < 0. This electric field does not contribute to reconnection, only tak-
ing place close to the X point, but additional secondary processes related with turbulence.
Note that the relative importance of this electric field with opposite polarity outside of the
edge of the main magnetic island increases with the guide field (compare, e.g., Fig. 8.6(d)
with Fig. 8.8(d) and Fig. 8.9(d)).

(a) bg = 0 (b) bg = 1 (c) bg = 3

(d) bg = 0 (e) bg = 1 (f) bg = 3

(g) bg = 0 (h) bg = 1 (i) bg = 3

Figure 8.10: Contour plots of different components of the electron bulk (Eulerian) accel-

eration ∂~Ve/∂t at reconnection peak time for different guide fields (in C.G.S. units). These

derivatives were calculated in running-time with the methods explained in Sec. 8.3.1.1.

Top row: In-plane ∂Ve,x/∂t. Middle row: In-plane ∂Ve,y/∂t. Bottom row: Out-of-plane

∂Ve,z/∂t.

8.4.1 Electron bulk acceleration and cross-field instabilities

On the other hand, and different from the usual case where the anomalous electric field
Eanomalous arises from current aligned streaming instabilities, in this case that contribution
can also arise from cross-field streaming instabilities such as the modified two-stream
instability MTSI (see Sec. 5.4.2.2 and also Yoon and Lui (2006)), allowed to grow in our
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8.4 Deviations in the generalized Ohm’s law and cross-field instabilities

2D geometry because it has practically perpendicular propagation (in-plane) to the local
magnetic field (mostly along ẑ for larger guide field such as bg = 3). If operating, the
component Ez ,anomalous should have contributions from the electromagnetic term Eq. (4.29),
proportional to

[
δ(ne

~Ve) × δ~B
]

z
. The MTSI instability gains importance only in a guide

field configuration, because their source of free energy are the always present in-plane
streaming flows, with typically Alfvénic speeds in the outflow region. In this case, due
to the effects of guide field, these particles are deflected from the separatrices toward the
edges of the secondary magnetic islands. They concentrate in concentric thin layers where
these particles experience an opposite directed in-plane acceleration and deceleration (see
Fig. 8.10(middle-row)). This might lead to instabilities with a shear flow as their source
of free energy. In particular, MTSI, since it grows faster in the perpendicular direction to
the magnetic field. One signature of this cross-field streaming instability taking place is
that after the time shown in this plot, these regions become turbulent, dissipating the free
energy stored in the counter-propagating electron flows. This can be seen in Fig. 8.11.

(a) Ez,pressure (b) Ez,inertia (c) Ez,RHS − Ez,LHS

Figure 8.11: Some terms of the generalized Ohm’s law for bg = 3 for a time after

the reconnection peak time (compare with Fig. 8.9). Each term was calculated with a

proper time and spatial averaging according to the description and parameters given in

Sec. 8.3.1.3. All the terms are in dimensionless units normalized to B0VA (same as the

reconnection rate).

The same regions (boundary of magnetic island) where this wave activity is taking
place also show enhanced increase in density ∂ne/∂t in very thin layers (see Fig. 8.12(c))3

. This implies a very large gradient in density, potentially prone to LHDI (see Sec. 5.4.2.4).
This instability has oblique propagation, being also allowed in our 2D geometry with an
out-of-plane guide field. And their typical time and length scales are similar to these of
MTSI. Note that this kind of instabilities develop away from the X point and diffusion
region, since in that regions the flows have very low speeds, being accelerated only in the
outflow region and along the separatrices (see Fig. 8.10(middle-row)).

3 Note the fast increase of density ∂ne/∂t for the antiparallel case bg = 0 is concentrated throughout the
magnetic island, although more in the outflow region next to the X point (Fig. 8.12(a)). But already with a
guide field bg = 1 (Fig. 8.12(b)) the increase in density shifts to the boundary of the magnetic island, due to
the change of electron trajectories in the outflows produced by the guide field. A stronger guide field makes
this effect even more notorious and localized in very thin layers, with the corresponding generation of steep
density gradients prone to LHDI (Fig. 8.12(c)).
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8 Instabilities of Harris CS in the presence of small guide fields

(a) bg = 0 (b) bg = 1 (c) bg = 3

Figure 8.12: Contour plots of the rate of change (Eulerian derivative) of electron number

density ∂ne/∂t (in C.G.S units) at reconnection peak time for different guide fields. This

derivative was calculated in running-time with the methods explained in Sec. 8.3.1.1.

There is even another reason why these kind of cross-field instabilities can develop
only under the presence of a guide field. This is because higher guide field Harris CS
simulations delay the onset of the fully-developed stage of magnetic reconnection (recall
Fig. 8.4). Therefore, the previous instabilities with typical time scales on the order of the
lower hybrid frequency Ω−1

lh
, will have more time to develop and to reach saturated state

in comparison in cases with lower guide fields.
All the previous observations are arguments in favor of the identification of Fig. 8.11

as signature of instabilities driven by streamings and gradients at the boundaries of the
magnetic islands. And this seems to be always correlated with the presence of an impor-
tant contribution of the electron inertia Ez,inertia to the negative electric field (Ez < 0), a
deceleration of the out-of-plane electron bulk flow ∂Ve,z/∂t < 0 and the appearance of
non-negligible Ez,anomalous in the mean field Ohm’s law. All these processes become in-
creasingly more important for higher guide fields. The fact that guide field reconnection
can give origin to higher levels of anomalous resistivity (due to the higher saturation levels
of MTSI) is in agreement with previous studies (Yoon and Lui 2006).

8.4.2 Thermal and non-thermal effects of the instabilities and devia-

tions in Ohm’s law

Another consequence of the previous instabilities, as well as the deviations in the
Ohm’s law, is in the rate of electron heating. Indeed, it is remarkably different between
the antiparallel cases and the guide field ones where the deviations and streaming insta-
bilities are taking place. In the antiparallel case, the tearing mode induces a preferential
heating along its wavenumber vector ~ky over both x and z directions. The temperature
increases faster in this direction ∂Te,y/∂t > ∂Te,x/∂t ∼ ∂Te,z/∂t , mostly in the outer
boundary of the main magnetic island in comparison with its inside. In the perpendicular
direction the heating takes place mostly uniformly everywhere inside of the island. The
addition of a guide field changes gradually this picture. For bg = 1, the heating ratios
along the tearing direction y and z becomes similar, while x decreases its importance:
∂Te,z/∂t ∼ ∂Te,y/∂t > ∂Te,x/∂t. What it is more important is that there is no signifi-
cant increase of temperatures inside of the magnetic islands anymore. All the heating
activity moves to the separatrices and the outer boundary of the secondary magnetic is-
lands, where the anomalous momentum transfer due to Ez,anomalous as well the cross-field
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8.4 Deviations in the generalized Ohm’s law and cross-field instabilities

streaming instabilities seen in Fig. 8.11 are active. A stronger guide field reduce further
the importance of the in-plane heating (more isotropic now), becoming dominant only
in the out-of-plane direction (due to the free streaming of electrons along that direction):
∂Te,z/∂t≫ ∂Te,y/∂t ∼ ∂Te,x/∂t.

(a) bg = 0 (b) bg = 1 (c) bg = 3

(d) bg = 0 (e) bg = 1 (f) bg = 3

(g) bg = 0 (h) bg = 1 (i) bg = 3

Figure 8.13: Contour plots of different components of the electron heating rates (Eule-

rian derivatives) ∂Te/∂t at reconnection peak time (in C.G.S. units) for different guide

fields. These derivatives were calculated in running-time with the methods explained in

Sec. 8.3.1.1. Top row: In-plane ∂Te,x/∂t. Middle row: In-plane ∂Te,y/∂t. Bottom row:

Out-of-plane ∂Te,z/∂t.

There are also non-thermal consequences of the previous deviations in the Ohm’s
law and instabilities. As can be seen in Fig. 8.14, the location of non-thermal electrons
changes radically between the antiparallel and guide field cases. In the antiparallel case,
there is a dominant Ke,z > 0 in the immediate neighborhood of the diffusion region, in-
dicating non-Maxwellian tails in the 1D VDF f (vz). As we mentioned previously, there
is non-negligible in-plane kurtosis Ke,y in a extended region close to the diffusion region
as well as in the border of the magnetic island, with opposite signs (see Fig. 8.14(left-
column)). The absolute values of these deviation are much smaller than those in Ke,z . On
the other hand, a guide field makes all the deviations from the Maxwellian VDF very
localized in the diffusion region and the border of the magnetic island. For bg = 1 (see
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8 Instabilities of Harris CS in the presence of small guide fields

Fig. 8.14(middle-column))., both Ke,y and Ke,z indicate similar deviations from equilib-
rium in both y and z direction. But for larger guide fields, bg = 3 (see Fig. 8.14(right-
column)), the z component becomes dominant over extended regions along the border
of the magnetic island, signature of enhanced non-thermal processes taking place there.
Therefore, this indicates an additional consequence and correlation with the places where
the cross-field streaming instabilities and deviations Ez,anomalous are expected to operate

(a) bg = 0 (b) bg = 1 (c) bg = 3

(d) bg = 0 (e) bg = 1 (f) bg = 3

Figure 8.14: Contour plots of electron excess kurtosis for different guide fields at recon-

nection peak time (in C.G.S. units). This 4th order momenta of the distribution function is

explained in Appendix B.2.1. Top row: In-plane Ke,y. Bottom row Ke,z. The x component

is not shown since it is negligible in comparison with the other components of the kurtosis.

8.5 Conclusions

In this chapter, we analyzed instabilities and reconnection in Harris CS with small
guide fields bg < 7 (focusing especially in the range 0 < bg < 3 ). First, and during the
course of a calibration of numerical parameters suitable for PIC simulations of guide field
reconnection, we found that tearing mode can be stabilized and the CS can develop a bi-
furcated structure if the electron Larmor radius on the guide field ρe,bg is not well resolved
by the grid cell size ∆x. It is necessary at least ρe,bg > 0.5∆x to avoid this artificial effect.
That condition becomes more difficult to fulfill for more realistic parameters: higher mass
ratios (mi/me) and lower electron thermal speeds vth,e. It is important to remark that this
effect has nothing to do with stability or accuracy conditions of the algorithm used by the
PIC code (Boris pusher to advance the particles), and it has not been reported before in
this kind of setup. Furthermore, it is of a different nature that the bifurcation of CS seen
in the previous Chapter 7 driven by temperature anisotropies: it does not become deeper
with time and it is not associated with an increase in the total energy.

Once the previous numerical consideration was properly taken into account, we could
recover the expected delay in the reconnection onset for increasing guide fields, with the
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associated reduction of tearing growth rates for guide fields as high as bg = 7 in agree-
ment with theoretical estimations. Note that the requirement of resolving well enough
the electron Larmor radius on the guide field makes the PIC simulations for even higher
guide fields computationally more demanding, and that is why in the next Chapter 9 we
are going to change the approach for reaching the large guide field limit.

Then, we developed calculation methods for time and spatial averages (in both running
time and post-processing) required for a proper calculation of the terms in the generalized
Ohm’s law, as well as numerical derivatives of some momenta of the distribution function.
By means of that, we explored the dissipative mechanism responsible for the breaking of
the frozen-in condition. In the limit case of an antiparallel configuration, the reconnected
electric field is sustained mostly by the non-gyrotropy of the pressure tensor, and to a
lesser extent by the electron inertia, in agreement with the theoretical expectations and
many previous works.

In the limit case of zero guide field we also found signatures of Weibel instability in-
side of the magnetic island. We noticed that this process, driven by temperature anisotropy,
it is only possible with a good enough spatial resolution and relatively high number of
macroparticles per cell. Otherwise, numerical collisions dominate the system tending to
the isotropization of the distribution functions and suppressing any temperature driven
instability.

Next, under the influence of a guide field, we confirmed that the reconnected electric
field is sustained by the effects of both non-gyrotropy of the pressure tensor as well as the
electron inertia, but now confined to smaller scales. The latter term becomes increasingly
more important for larger bg, as the length scales of the electron gyroradius ρe,bg on the
guide field decrease. This emphasizes even more the requirement of a good resolution of
the grid cell size to be able to distinguish these effects.

However, we noticed that the balance of terms in the generalized Ohm’s law loses
accuracy for higher guide fields. This is not only due to the enhanced noise level, but
it seems to be additional processes responsible for this behaviour. Indeed, we found
signatures that the appearance of an unbalanced term in the mean field Ohm’s law is
possibly due to anomalous electromagnetic fluctuations Ez,anomalous , especially relevant for
the magnetic island, away from the diffusion region and X point. The argument for this
claim are: 1) a very localized region where this unbalance holds: mostly in the boundaries
of the magnetic island 2) a spatial correlation with the deceleration of the electron bulk
flow speed ∂Ve,z/∂t < 0, always related with anomalous resistivity, 3) some signatures of
additional streaming and gradient driven instabilities that might result as consequence of
this effect. In addition, we also noticed that the electron inertia term Ez ,inertia is a good
proxy for the locations where this anomalous term should be operating.

Finally, we found that the aforementioned instabilities associated with the locations
where Ez,anomalous is non-negligible have basically two different origins. The first one is pos-
sibly the cross-field streaming instability MTSI, due to counterstreaming electron flows
in the boundaries of the secondary magnetic islands. The second one is LHDI, due to
the strong density gradient quickly developed in the same regions due to pile-up of elec-
trons deflected by the guide field. Both instabilities, with similar time and length scales,
only appear under the influence of a guide field, and they become stronger for larger bg.
Their effects are an enhanced electron heating along the z direction, the generation of
non-thermal tails of the electron distribution function (mostly in the same z direction) and
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8 Instabilities of Harris CS in the presence of small guide fields

turbulent wave activity in these regions after their saturation time.
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Disclaimer for Chapter 9

The work to be shown in the following chapter was result of a code benchmark col-
laboration with D. Told and F. Jenko (at Max-Planck-Institut für Plasmaphysik and De-
partment of Physics and Astronomy, University of California, Los Angeles, USA). The
gyrokinetic simulations with the GENE code were carried out by D. Told. However, the
PIC simulations, analysis and comparison of results was done by the author of this thesis.

Roughly part of the first half of this chapter is based on and follows very closely
the line of argumentation of the article: P. A. Muñoz, D. Told, P. Kilian, J. Büchner
and F. Jenko “Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnec-

tion. I: Macroscopic effects of the electron flows”, Physics of Plasmas 22, 082110, (2015)
(Muñoz et al. 2015), also available as arXiv eprint:1504.01351. Most of the text has been
rewritten and mostly expanded and/or moved to the Introductory chapters or Appendix,
although some parts can still be traced to the original source. In particular, some sen-
tences or sections of paragraphs can be similar or identical to sections of the previous
(non-referred) versions available on the arXiv eprint.

In particular, comparing with the published version:

• 11 from 13 figures of Muñoz et al. (2015) have been used in this chapter, explicitly
indicated in the caption (from a total of 33 figures).

• Sec. 9.3.2 is based on Section III-B of Muñoz et al. (2015).

• Sec. 9.4.1 is based on Section IV-A of Muñoz et al. (2015).

• Sec. 9.4.2 is based on Section IV-B of Muñoz et al. (2015).

• Sec. 9.5.1 is based on Section V-A and Appendix A of Muñoz et al. (2015).

• Sec. 9.5.2 is based on parts of Section V-B of Muñoz et al. (2015).

• Sec. 9.5.3 is based on parts of Section V-B of Muñoz et al. (2015).

• Sec. 9.5.4 is based on parts of Section V-C of Muñoz et al. (2015).

• Sec. 9.5.5 is based on Section V-D of Muñoz et al. (2015)

• Sec. 9.5.6 is based on Section V-E of Muñoz et al. (2015).

• Sec. 9.9.1 (few paragraphs) are based on parts of Section VI of Muñoz et al. (2015).

• Sec. 9.9.2 (few paragraphs) are based on parts of Section VI of Muñoz et al. (2015).

http://dx.doi.org/10.1063/1.4928381
http://arxiv.org/abs/1504.01351




9 Instabilities of force free CS in

moderate and large guide fields:

comparison with gyrokinetic

simulations

Since in laboratory and fusion environments the plasma β is even smaller than in the
solar corona (equivalent to very strong guide magnetic fields bg →∞), it is often used an
approximation of the Vlasov-Maxwell system, called gyrokinetic theory. This approach,
to be explained in Sec. 9.1, eliminates the particle fast gyromotion on strong magnetic
fields. However, for moderate guide fields strengths, more typical in the solar corona, it
is not clear to what extent GK can be applied.

There is an additional numerical interest in this kind of approach/codes. As we already
showed in previous chapters, PIC simulations of magnetic reconnection can be computa-
tionally very demanding if more realistic parameters are used. This is because the stability
conditions require resolve electron time (ω−1

pe ,Ω
−1
ce ) and length (ΛDe) scales (Sec. 6.8.1),

although the global evolution is on time (Ω−1
ci

) and length (L≫ di) scales orders of magni-
tude larger. Besides of that, it is necessary to keep controlled the numerical noise, which
requires the computationally demanding requirement of a higher large number of particles
per cell and higher order shape functions. Otherwise, numerical instabilities can be trig-
gered that can completely hidden the development of the physical phenomenon wanted
to be modeled (see Sec. 6.8.1). There have been proposed several approaches to tackle
the previous problem since several decades ago, some of them explained in Sec. 6.7.1
and Sec. 6.8.1.2. One of the most successful and popular in modeling laboratory and
fusion plasmas (not mentioned in the general discussion about PIC codes in Chapter 6)
is precisely the aforementioned gyrokinetic theory, showing huge speeding ups over the
computationally demanding PIC simulations. Only recently it has started to be applied
for applications to magnetic reconnection (see Sec. 9.1.2), but in the limit of very large
guide fields. This approach might also be incredible useful for solar coronal simulations
of magnetic reconnection, but again, it is uncertain how reliable can their results be trusted
in the more realistic limit of moderate guide fields.

For these reasons, in this chapter we aim towards the identification of the parameter
regimes, i.e.: guide field strength, for where the gyrokinetic approach can give an accu-
rate description of magnetic reconnection in the solar corona. We investigate the limits
of its applicability by means of a detailed comparison benchmark with the fully-kinetic
PIC code ACRONYM, which does not have any approximation regarding guide field
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9 Instabilities of force free CS in large guide fields and comparison with GK

strengths.

Only recently there was a benchmark study of magnetic reconnection with both plasma
models carried out by TenBarge et al. (2014), showing exciting results (see details in
Sec. 9.1.2). This motivated us to follow their approach and extend their work, by answer-
ing some of the unsolved questions that remained in the original paper. In this chapter,
we are going to investigate the differences in the development of magnetic reconnection
between both codes, especially in the PIC low guide field regime. In other words, we
want to establish the limits of applicability of the GK simulations: how low can the PIC
guide field be in order to have a similar description of this physical process. As we men-
tioned, this is of particular relevance for the range of guide fields typically found in the
Solar corona (large, but far from being as dominant as in fusion plasmas). We are going
to show that the answer depends of several numerical and physical parameters, and it is
also dependent on the spatial location (some areas show better convergence between both
codes for lower guide field than other ones). There are numerical reasons for that, related
with a necessary different initialization of both codes and the way in which the pressure
equilibrium condition is considered. These numerical constraints lead to a different phys-
ical evolution of the system in the PIC low guide field regime, breaking the comparison
with the GK results, mostly due to the effects of a shear flow and secondary magnetic
islands.

This chapter is divided as follows. First we introduce the gyrokinetic theory and
the recent progress in gyrokinetic simulations of magnetic reconnection in Sec. 9.1.2.
We describe the setup of the simulations in Sec. 9.2. Then, in Sec. 9.3, we show our
reproduction of the previous comparison study by TenBarge et al. (2014) in which our
work is based. This is done in order to identify precisely to what extent the linear scaling
reported by them is satisfied in our case, as well as to identify the open problems and
differences. Those are manifested in both magnetic and thermal pressures. In Sec. 9.4, it
is discussed how a core magnetic field appears in the PIC low guide field regime as a result
of the different treatment of the pressure equilibrium condition between both codes, in the
framework of a two fluid model. Next, in Sec. 9.5, we discuss the physical mechanism
behind that process, due to an initial shear flow in the PIC low guide field regime. The
differences in the behaviour and location of the different components of the diagonal
terms of the pressure tensor (thermal fluctuations) are discussed in Sec. 9.6. Afterwards,
in Sec. 9.7, we focus in the non thermal features given by the off-diagonal terms of the
pressure tensor and dissipative mechanisms, in addition to non-thermal features revealed
via the analysis of the electrons VDFs and energy spectra. In Sec. 9.8 we studied how
cross-streaming instabilities develop in the PIC low guide field regime than cannot be
captured by the gyrokinetic approach. The effects of a high β plasma are analyzed in
Sec. 9.9. In Sec. 9.10 we make some remarks about the reliability of the PIC results in the
high guide field regime due to the role of the numerical noise. And finally we summarize
our findings in the conclusion, Sec. 9.11.
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9.1 Gyrokinetic approach

9.1 Gyrokinetic approach

9.1.1 Gyrokinetic theory

When a plasma is strongly magnetized, the particles mostly perform a gyromotion
around the guiding center, in the perpendicular direction to the magnetic field. If all
the perpendicular motions different to this gyration are considered small enough, we
have the so called gyrokinetic approximation (see the original approach described in
Frieman and Chen (1982), or the more recent review in Brizard and Hahm (2007)). This
approach reduces the dimensionality of solving the Vlasov-Maxwell the system from a
phase space of 6 to 5 components (Howes et al. 2006), by eliminating the electron gyro-
motion from the dynamics of the system.

The gyrokinetic equations can be applied when the following conditions are satisfied
(Howes et al. 2006):

1. Strong magnetized conditions:

ρi =
vth,i

Ωci

≪ L (9.1)

where L is a typical length scale of the gradients in a system. It is important to note
that this condition do not require low beta plasmas. High beta plasmas, such those
of the solar wind, also satisfies this condition even though they have weak magnetic
field, because the spatial variations of the gradient are extended over large L. This
also defines the so called ordering parameter ǫ:

ǫ =
ρi

l0
≪ 1 (9.2)

where l0 is a typical length scale, smaller than the parallel wavelengths of the fluctu-
ations. ǫ is used for the formal expansion of all the equations used in the gyrokinetic
approach.

The definition Eq. (9.2) has an important consequence for the study of thin current
sheets. From Eq. (A.4), these structures have to be sustained by out-of-plane drifts
speeds Ud/vth,i, inversely proportional to the halfwidth measured in units of ρi. This
means that the drift speed, and thus the current, is on order ǫ . Thinner current sheets,
of order L . ρi , will break the GK ordering.

2. Low frequency phenomena

ω ∼ vth,i

l0
∼ O(ǫΩci)≪ Ωci (9.3)

where ω is the typical frequency of the fluctuations of the distribution function
δ f1, magnetic δ~B, and electric fields δ~E, respectively. The collision frequency is
also assumed to have this frequency: ν ∼ ω (gyrokinetic cannot treat properly
systems with collisional frequencies much higher than ω). This allows to average
over the Larmor radius of the particles, eliminating the dimension perpendicular to
the magnetic field.
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9 Instabilities of force free CS in large guide fields and comparison with GK

3. Small fluctuations with respect to the equilibrium. Let F0, B0 and E0 = vth,iB0 the
equilibrium distribution function, magnetic and electric fields, respectively. Then,
we have.

δ f1

F0
∼ δ

~B

B0
∼ δ~E

vth,iB0
∼ O(ǫ) (9.4)

The equilibrium distribution function is allowed to vary slow enough:

1
F0

∂F0

∂t
∼ O(

1
theat

). (9.5)

where theat is the so called heating time-scale:

theat =
1
ǫ2

l0

vth,i

∼ O(
1

ǫ3Ωci

) (9.6)

4. Small/large spatial variations across/along the magnetic field.

k⊥ ∼
b × ∇δ f1

δ f
∼ b × ∇δ~B
|δ~B|

∼ b × ∇δ~E
|δ~E|

∼ O(
1
ρi

) ⇔ k⊥ρi ∼ 1 (9.7)

k‖ ∼
b · ∇δ f1

δ f
∼ b · ∇δ~B
|δ~B|

∼ b · ∇δ~E
|δ ~E|

∼ O(
1
l0

) (9.8)

where b is the direction of the equilibrium magnetic field. The two previous con-
ditions imply that the anisotropy of the fluctuations in the gyrokinetic approach is
also of order epsilon:

k‖

k⊥
=
ρi

l0
∼ O(ǫ) (9.9)

This equation reproduces a key prediction/conjecture of the theory of MHD tur-
bulence: the energy cascade of the magnetic field have at its very end parallel
wavelength much larger than the perpendicular ones: k‖ ≪ k⊥ . This prediction
is also supported by a large number of observations in the solar wind and in MHD
simulations (see, e.g.: Howes et al. 2006, Schekochihin et al. 2009, and references
therein).

Another important consequence of Eq. (9.9) is that imposes an additional constraint
on the perpendicular bulk speed ~u⊥. It is known than in strongly magnetized plas-
mas, the motion of particles perpendicular to the magnetic field is dominated by
drifts. Assuming no strong gradients, the dominant drift will be the ~E × ~B, which
implies, by using Eq. (9.4),

~u⊥ ∼
δ~E × ~B0

B2
0

∼ O(ǫvth,i) (9.10)

Thus, the maximum spatial fluctuations perpendicular to the magnetic field are of
the order

l⊥ ∼
~u⊥

ω
∼ 1

k⊥
∼ O(ρi) (9.11)
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9.1 Gyrokinetic approach

As a consequence, the GK ordering breaks down for perpendicular speeds on the
order of the ion thermal speed. Thus, the usual GK approach is valid for subsonic
speeds. However, recently there have been extensions of the theory that do allow su-
personic speeds under some circumstances (see Sharma et al. 2015, and references
therein).

Under the previous assumptions is possible to derive the gyrokinetic equations. See
the detailed derivation in, e.g., Brizard and Hahm (2007) or the theses by Merz (2008),
Told (2012). The gyrokinetic model have been widely used for studies of turbulence in
fusion research (Jenko et al. 2000, Brizard and Hahm 2007) and astrophysical turbulence
(Howes et al. 2006, Schekochihin et al. 2009).

It is important to mention that the gyrokinetic equations order out fast MHD waves,
Langmuir oscillations and cyclotron resonances. On the other hand, they retain finite-
Larmor effects, parallel Landau damping, transit time damping and slow MHD waves (as
long as they are anisotropic k‖ ∼ ǫk⊥).

Now, codes based in the gyrokinetic approach have proved to be useful to model
strongly magnetized plasmas, where that plasma model holds. Their main numerical
advantage is that they can reduce the computationally cost of the simulations in some
order of magnitude in comparison with PIC codes. This is because they allow to overcome
the limitation in grid size and time stepping from PIC codes: ∆x < λDe and ∆tωpe < 1,
respectively, to the more relaxed conditions:

∆x < ρi , ∆tΩci < 1 (9.12)

In this way, GK simulations can allow the use of larger ion to electron mass ratios, larger
simulations boxes and longer time scales than those used by PIC codes. One consequence
of the GK ordering is the fact that the background magnetic field B varies on timescales
much larger than the particle gyromotion. As a consequence, the magnetic moment µ
Eq. (2.60) is an adiabatic invariant. For this reason, it is used in GK codes to define the
perpendicular velocity grid, usually normalized with respect to a factor depending on the
thermal particle energy µnorm = kBTi/B. The parallel velocity grid is defined indepen-
dently, being normalized to a factor depending on both thermal and ion sound speeds (not
involving the background magnetic field).

The results of the gyrokinetic simulations to be shown in this thesis were performed
by GENE code1 (“Gyrokinetic Electromagnetic Numerical Experiment”). It is a Eulerian
gyrokinetic code (fluid-like, no intrinsic noise), using explicit finite-difference methods of
the predictor-corrector type with a dissipative scheme. The code is second-order accurate
in phase space and time (see more details in Merz 2008, Told 2012).

9.1.2 Gyrokinetic simulations of tearing instability/magnetic recon-

nection

Simulations based on the gyrokinetic approach have proved to be successful to model
very accurately fusion and laboratory plasmas since some decades ago. However, only
recently has started to be applied to study magnetic reconnection, with different purposes

1See Jenko et al. (2000). Freely available at http://genecode.org/
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9 Instabilities of force free CS in large guide fields and comparison with GK

and results. There are several drawbacks of this approach, however. The gyrokinetic
model has to assume an initial equilibrium with a very strong guide field very Bg/B∞y ≫ 1.
In addition, several wave modes that might play a key role in reconnection but have
high frequencies ω . Ωce, are ordered out. The first gyrokinetic simulations of tearing
mode/magnetic reconnection were performed by Sydora (2001), Wan et al. (2005a) and
Wan et al. (2005b), using a initial Gaussian current distribution that gives a magnetic field
with an error function profile. These studies allowed the use of realistic mass ratios, some-
thing prohibitively expensive for PIC simulation at that time. Later, gyrokinetic simula-
tions by Rogers et al. (2007) used an initial sinusoidal magnetic field equal to Eq. (3.25)
for the reconnecting component, while the out-of-plane component is taken to be constant
and high enough. Their analysis was restricted for cases with the ion sound Larmor ra-
dius less than the electron skin depth ρs = (vth,i + vth,e/

√
mi/me)/Ωci < de. They studied

linear and non-linear tearing growth rates and reconnection rates, finding good agreement
with previous theoretical estimations based in two fluid and kinetic models (in the two
asymptotic regimes of large and small tearing stability parameter ∆′) for low beta plasma
regimes. They applied linear theory obtained with fluid models (Porcelli 1991) valid in
the range 2(me/mi) ≪ βtotal ≪ (me/mi)1/4. For high beta plasma regimes, however, they
reported large deviation from the existing analytical estimations, possible due to the role
played by finite Larmor radius. These deviations from fluid theories were confirmed by
Numata et al. (2011), which expanded the previous work by studying a wider parameter
range of plasma beta, but using a different magnetic field profile and small collisional
effects.

Wang et al. (2008, 2011) performed simulations of magnetic reconnection with a hy-
brid model in between the traditional gyrokinetic and PIC approaches called GeFi: “Gy-

rokinetic electrons plus Fully kinetic ions” (developed in Lin et al. 2005, 2011). With
this code, their simulation model could access to frequency ranges ω < Ωce, allowing
whistler and lower-hybrid waves, besides of including finite electron Larmor radius ef-
fects (off-diagonal components of the pressure tensor, of critical importance in studies
of magnetic reconnection). They used this code to study drift instabilities in a Harris
current sheet with finite guide field, something not allowed by the traditional gyrokinetic
approach. Consistently, they compared their simulations results with the predictions of a
gyrokinetic eigenmode theory extended to include finite Larmor radius effects. Wang et al.
(2011) also benchmarked their results with those obtained with a Darwin PIC code sim-
ulation. They found large deviations between the linear tearing growth rates calculated
with both codes for thinner CS L ≪ ρi and stronger guide fields Bg & B∞y. Later, this
model was applied to study other instabilities in the reconnection process, such as LHDI
(Tummel et al. 2014).

Pueschel et al. (2011) performed simulations of magnetic reconnection with the same
code used in our study (GENE), covering a much wider range of parameters than those
used in previous studies. They initialized a current sheet with several periodic sinusoidal
magnetic field profiles (one of them similar to the one used in Rogers et al. 2007). Their re-
sults still showed good agreement with the same fluid theory used by Rogers et al. (2007)
during the linear stage

Another studies by Numata and Loureiro (2014, 2015) studied tearing instability with
an initial magnetic field profile based on a modified Harris current sheet, multiplied by a
special function to enforce periodicity (in addition to a strong guide field). They focused
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9.1 Gyrokinetic approach

mostly in the effects of a small but non negligible collisionality. The main finding of
this study is that gyrokinetic simulations of reconnection in low beta plasma show strong
electron heating via Landau damping, in agreement with previous studies using fluid-
kinetic codes (Loureiro et al. 2013b). Ion heating is much smaller, being relevant only in
high beta environments (Numata and Loureiro 2014).

It is important to remark that gyrokinetic simulations of magnetic reconnection can
be truly collisionless, not being affected by numerical collisions like in PIC simulations.
A consequence of this fact is that a completely saturated state of magnetic reconnection
can be run backwards in time, in such a way that particle energy can be given back to the
magnetic field lines (Ishizawa and Watanabe 2013).

Zacharias et al. (2012) and Kobayashi et al. (2014) applied gyrokinetic model to study
reconnection in a system with strong gradients in both density and temperature, finding
suitable range of parameters where reconnection can be stabilized or destabilized by them.

Hornsby et al. (2014b,a,c) studied interaction of unstable tearing modes with (3D) gy-
rokinetic turbulence. In a similar way, Pueschel et al. (2014) applied gyrokinetic codes
to study secondary magnetic reconnection events in fully developed 2D turbulence, aris-
ing from a reconnection driven by linear tearing mode. They used the same initial si-
nusoidal current sheet as in Rogers et al. (2007) and Pueschel et al. (2011), but repeated
many times inside of the simulation box. They found a strong temperature anisotropy
arising from the linear tearing mode (in contradiction with previous studies), a result im-
portant for our future discussions.

It is important to remark that most of the previous studies make comparisons of simula-
tion results with fluid theories, because gyrokinetic theory of magnetic reconnection is far
from being complete, and is much less developed than the full kinetic collisionless theory.
Although gyrokinetic theory is a radical simplification from the Vlasov theory, its intrin-
sic mathematical complexity is not less than considering the full Vlasov-Maxwell system
(Zocco and Schekochihin 2011). In this sense, gyrokinetic simulations of magnetic re-
connection have also been benchmarked against gyrofluid codes (which retain some of
the kinetic effects present in gyrokinetic models) to study tearing modes (Zacharias et al.
2014).

The main question that arises from the gyrokinetic simulations of magnetic reconnec-
tion is to what extent they can model accurately this process, in the sense of an agreement
with the results given by the fully-kinetic PIC simulations. This is a question of central im-
portance in order to have reliable results, without resorting to expensive PIC simulations.
As mentioned previously, only very recently the first attempt for solving this question
was started by TenBarge et al. (2014). They carried out and compared PIC with GK sim-
ulations of magnetic reconnection in the large guide field limit. The global evolution
was similar in both cases, with a quadrupolar structure of thermal and magnetic pressures
around the X point. The PIC runs displayed a convergence to the GK morphology of these
structures for increasingly larger guide fields. They showed that most of the reconnection
related quantities, such as the reconnection rate, outflow speeds, out-of-plane magnetic
field, scale linearly with the guide field in the PIC case, converging to the GK result in
the large bg limit. The good agreement among these values is obtained after a proper
normalization and matching between the ǫ parameter of GK with bg in PIC. This is under
the assumption of a total plasma β constant for different PIC guide fields, which implies
a reduction in the reconnected magnetic field B∞y to obtain the effect of a stronger guide
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field. They also noticed that the morphological convergence between the results given by
both codes required lower guide fields for high beta plasmas (βi = 1). The work to be
shown in this chapter is an extension of theirs.

9.2 Simulation setup

9.2.1 Force free CS

9.2.1.1 Justification for the use of a force free CS

Different from the previous chapters, the initialization of the CS cannot be a Harris
equilibrium in gyrokinetic simulations. This is because the equilibrium distribution func-
tion for the background in GK is always a non-drifting Maxwellian f0 = (n0/(

√
2πvth)3)

exp
[

1
2v2

t h

(
v2
⊥ + v2

z

)]
(see, e.g., the theses by Merz (2008, Sec. 2.5) and Told (2012, Sec.

2.4.1)). Then, the particles that carry the initial current in the Harris case (spatially varying
drifting Maxwellians) are considered to be a perturbation on this background. This means
that both density and drift speed are perturbed quantities in the electron VDF Eq. (3.11):

f = f0 + δ fharris = f0 + δ


n(x)

(
√

2πvth,e)3
exp


−1

2v2
th,e

(
v

2
⊥ + (vz − Ud )2

)

 (9.13)

= f0 +




δn(x)

(
√

2πvth,e)3
exp


−1

2v2
th,e

(
v2
⊥ + (vz − δUd)2

)


 (9.14)

≈ f0 +
δn(x)

(
√

2πvth,e)3
exp


−1

2v2
th,e

(
v2
⊥ + v2

z

)

1 +✘✘
✘✘2vzδUd + . . .

2v2
th,e

 (9.15)

≈ f0 +
δn(x)

n0

n0

(
√

2πvth,e)3
exp



−1

2v2
th,e

(
v2
⊥ + v2

z

)
︸                                     ︷︷                                     ︸

= f0

+O(δ2) (9.16)

= f0

(
1 +

δn(x)
n0

)
+O(δ2) (9.17)

where we can identify δ fharris = f0
δn(x)

n0
. But according to the gyrokinetic equations (see,

e.g., Merz (2008, Sec. 2.5.2) or Told (2012, Sec. 2.5.2)), the perturbed parallel current
density J‖ = Jz is proportional to:

δJe,‖ ∝ e

∫
vz δ f dv‖dv⊥ = e

∫
vz f0

δn(x)
n0

dv‖dv⊥ = 0. (9.18)

Therefore, there is no initial current that can sustain the sheared Harris magnetic field to
first order in GK. For this reason we use instead a force free CS ~J × ~B = 0. We discussed
and compared it to the Harris equilibrium in Sec. 3.2.2. Since there is no known kinetic
equilibrium of a force free configuration with a guide field (see Sec. 3.2.2.3), we chose the
magnetic field profile given by Eq. (3.42), corresponding a one with constant magnitude
that rotates around the center of the CS by an angle given by Eq. (3.44). The sheared
magnetic field is sustained by the current given by Eq. (3.45), with a Jz component with
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the same form as in the Harris case. This current is chosen to be carried only for electrons
(and stationary ions), with the VDF Eq. (3.47) featuring a spatially varying drift speed
~Ve,y/z(~x) and constant density n0. Because the equilibrium VDF in GK has the same last
property of constant density, the full GK VDF is equal to the perturbation of the force free
VDF:

f = δ fff = δ


n0

(
√

2πvth,e)3
exp



−1

2v2
th,e

(
v2

x + (vy − Ve,y(~x))2 + (vz −Ve,z(~x))2
)

 (9.19)

=
n0

(
√

2πvth,e)3
exp


−1

2v2
th,e

(
v2

x + (vy − δVe,y(~x))2 + (vz − δVe,z(~x))2
) (9.20)

≈ n0

(
√

2πvth,e)3
exp



−1

2v2
th,e

(
v2
⊥ + v2

z

)


1 +

2vyδVe,y (~x) + . . .

2v2
th,e





1 +

2vzδVe,z(~x) + . . .
2v2

th,e


 + O(δ2)

(9.21)

= f0

1 +
vyδVe,y(~x)

v2
th,e

+
vzδVe,z(~x)

v2
th,e

 +O(δ2) (9.22)

In this way, now we have a non-zero initial perturbed current in the parallel direction

δJe,‖ ∝ e

∫
vzδ f dv‖dv⊥ = e

∫
vz f0

1 +
vyδVe,y(~x)

v2
th,e

+
vzδVe,z(~x)

v2
th,e

dv‖dv⊥ (9.23)

= e
δVe,z(~x)

v2
th,e

∫
v2

z f0dv‖dv⊥ , 0 (9.24)

while in the perpendicular direction is still zero:

δJe,⊥ ∝ e

∫
v⊥ δ f dv‖dv⊥ = e

δVe,y(~x)

v2
th,e

∫
vy v⊥ f0dv‖dv⊥ = 0 (9.25)

by using the symmetry properties of f0. Then, the force free VDF Eq. (3.47) can provide
an initial current in the out-of-plane direction capable to sustain the reconnected magnetic
field, and this is the reason because we are going to use it instead of the Harris equilibrium
for a comparison with GK. On the other hand, Eq. (9.25) indicates that there is no initial
perpendicular current in the GK initialization (to a first order), different from the Harris
case. This will be a source of differences in the results to be shown.

9.2.1.2 Double force free CS to be used

Now, in order to avoid numerical issues related with the boundary conditions for a
single force free CS, and following the approach by TenBarge et al. (2014), we use instead
a double force free CS with periodic boundary conditions. The left one is centered in
x = Lx/4 and the right one in x = 3Lx/4. In order to have a zero asymptotic magnetic
field, this has to rotate in opposite directions for each CS, being given by:

By = B∞y

[
tanh

(
x − Lx/4

L

)
− tanh

(
x − 3Lx/4

L

)
− 1

]
(9.26)

Bz = B∞y

√
b2

g + cosh−2

(
x − Lx/4

L

)
+ cosh−2

(
x − 3Lx/4

L

)
(9.27)
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with bg =
Bg

B∞y
the guide field. Consistently, we have the corresponding current density

profile:

Je,z =
1
µ0

∂By

∂x
=

B∞y

µ0L

[
cosh−2

(
x − Lx/4

L

)
− cosh−2

(
x − 3Lx/4

L

)]
(9.28)

Je,y = −
1
µ0

∂Bz

∂x
=

B∞y

µ0L


tanh

(
x−Lx/4

L

)
cosh−2

(
x−Lx/4

L

)
+ tanh

(
x−3Lx/4

L

)
cosh−2

(
x−3Lx/4

L

)

√
b2

g + cosh−2
(
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L

)
+ cosh−2

(
x−3Lx/4

L

)



(9.29)

Both profiles can be seen in Fig. 9.1
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Figure 9.1: Components of the magnetic field ~B and current density ~J profiles for a

double force free CS with total magnetic field BT = 2 and bg = 1.73, given by Eq. (9.27)
and Eq. (9.29), respectively. It is assumed that the left CS is at x/L = −4 and the right CS

at x/L = 4. Compare with the corresponding Harris CS profiles shown in Fig. 8.1.

The initial in-plane current given by Eq. (9.29) represents a counterstreaming electron
shear flow with magnitude Ve,y = −Je,y/(en0), parallel to the asymptotic magnetic field.

Note that we are going to assume initially the same constant density for both ion and
electrons, ne = ni = n0, besides of a spatially constant and equal temperature for both
species Ti = Te.

Because the evolution of the left and right CS are very similar, we are going to focus
only in the left one in the rest of this chapter, unless stated otherwise.

9.2.2 Perturbation

Since in this chapter we are not interested in the reconnection onset, we applied an
initial large scale perturbation to trigger this process. We chose a perturbation used in
some other recent works of magnetic reconnection (see, e.g., Liu et al. 2014), given by
the vector potential δAz:

δAz = δP
Ly

2π
sin




2π
(
y + Ly/4

)

Ly


 sin2

(
2πx

Lx

)
, (9.30)
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which will generate and X point (local minimum of Az) in the center of the left CS
[Lx/4,Ly/2] and a O point (local maximum of Az) in the center of the right CS [3Lx/4,Ly/2].
Since the PIC code ACRONYM use the field formulation, we need the explicit perturba-
tion for the magnetic field:

δBx =
∂ δAz

∂y
= δP cos




2π
(
y + Ly/4

)

Ly


 sin2

(
2πx

Lx

)
(9.31)

δBy = −
∂ δAz

∂x
= −δP

Ly

Lx

sin




2π
(
y + Ly/4

)

Ly


 sin

(
4πx)
Lx

)
(9.32)

The shift in −Ly/4 is to have the X and O points at Ly/2 for the left and right CS, respec-
tively (for a domain [0, Ly]). The perturbation can be seen in Fig. 9.2.
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Figure 9.2: Initial perturbation of the double force free CS. Left. Contour plot of the

vector potential Eq. (9.30). Center: Vector field of the perturbation δ~B Eq. (9.31). Right:

Vector field of the total initial magnetic field including the perturbation ~B+ δ~B. δP has be

chosen large enough to see the initial X point at the center of the domain for the left CS

and the O point at the right CS.

9.2.3 Parameters

Following the original work by TenBarge et al. (2014), we use two sets of parameters
called “low” and “high” beta cases, where the main distinction is that the first one has
βi = 0.01, while the second one βi = 1.0. This ion plasma beta and all the other pa-
rameters whose definition includes the magnetic field are calculated with respect to the
total one BT . The only exception will be the Alfvén speed, calculated with respect to the
asymptotic magnetic field B∞y. The latter also implies that the Alfvén time τA = L/VA

will be calculated with respect to this quantity. The total magnetic field BT will be kept
constant for different PIC guide field, implying that the effect of a higher guide field bg

will be reached by reducing the asymptotic magnetic field B∞y. This choice is different
from TenBarge et al. (2014), where the guide field Bg is kept constant, with a consequent
change of the total magnetic field BT and total plasma beta. This approach allow us to
reach the very low guide field regime with the PIC code, and thus to be able to distinguish
some phenomena that would not appear otherwise (with the original choice of keeping
Bg constant). Obviously, this choice does not affect significantly the comparison with the
GK simulations in the large guide field limit, where convergence is expected. A critical
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9 Instabilities of force free CS in large guide fields and comparison with GK

consequence of this choice for the performance of the PIC runs is that the Alfvén time,
measured in units of ω−1

pe , depend on the following parameters (obtained via the relations
given in Appendix A.3.2)

τAωpe =

√
Ti/Te mi/me

vth,e/c
βi

L

ρi

√
1 + b2

g. (9.33)

In the PIC runs, because the time step has to be proportional to ω−1
pe for stability reasons,

the latter expression will also be proportional to the number of time steps used to reach
a given time measured in τA, and thus to the computational effort. This implies that PIC
high guide field runs are more expensive to run than the low beta ones. We can also see
that high β plasmas have the same negative effect on the PIC runs (slower runs)

On the other hand, different from previous chapters, we are going to use the thermal
speed defined with the factor of two v{e,i} =

√
2kBT{e,i}/m{e,i}. With these considerations,

all the definitions of the parameters and relation between them are given in the appendix
Appendix A.3, where special care has been taken to distinguish those ones which are
common between the Harris and force free cases and the ones that are only valid in some
of these configurations.

In the plots and discussions to be shown in this chapter, the lengths will be normalized
to ρi and the times to the Alfvén time τA = L/VA. The reconnection rate will be normalized

to ψ̇N = B∞yVA and current density: JN = en0VA

√
βi = en0vth,i/

√
1 + b2

g. This implies
that the normalized peak central value of the initial out-of-plane current density Jz in
Eq. (9.28) is given by:

JzN :=
Jz(t = 0)

JN

=
en0Ue

JN

=
Ue

vth,i

√
1 + b2

g =
Ue

VA

√
βi

=
1

(L/di)
√
βi

, (9.34)

which is independent on the guide field strength.

For the low beta set of parameters, we use the results of 5 PIC guide field runs, while
4 runs were used in the high beta case. All the basic parameters independent on the guide
fields in each low/beta case, as well as the most important derived parameters to be used
in this chapter, are given in Table 9.1
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Parameter Low beta High beta

βi 0.01 1.0
mi/me 25 25
Ti/Te 1 1
ωpe/Ωce 0.8 4.0√

2kBTe/me/c 0.125 0.25
L/ρi 2 1

Lx/ρi(= Ly/ρi) 40π 20π

VAT/c 0.25 0.05
VDe0/VA 5 1√
2kBTi/mi/c 0.025 0.05

Jz(t = 0)/JN 50 1
ρi/di 0.1 1.0
ρi/de 0.5 5.0
ρi/λDe 5.656 28.284
ρe/λDe 1.131 5.656
L/de 2 5

L/λDe 11.314 28.284

ω−1
pi /ω

−1
pe 5 5

Ω−1
lh
/ω−1

pe 6.4031 20.615
Ω−1

ci
/ω−1

pe 20 100

0.5Lx/L 31.416 31.416
2πL/Lx 0.1 0.1

ωpe [Hz] 5 ∗ 109 5 ∗ 109

λDe/∆x 1.440 0.7202
ρe/∆x 1.629 4.0743
ρi/∆x 8.148 20.372
L/∆x 16.297 20.378
ω−1

pe/∆t 32.594 8.1487
Ω−1

ce /∆t 26.076 32.595
Ω−1

ci
/∆t 651.89 814.87

Nx(= Ny) 1024 1280
ppc 1000 1000

total ppc per specie 2.097 ∗ 109 3.277 ∗ 109

Btotal [G] 355.35 71.07

Table 9.1: Parameters independent on the guide field. The derived parameters and rela-

tions were obtained using the expressions given in Appendix A.3.1 and Appendix A.3.2.

Note the simultaneous modification in ωpe/Ωce and vth,e when changing from the low to

high beta regime, since their product is constant and proportional to βi .

Because the choice of keeping BT constant and varying only the relative guide field
bg in the PIC runs, some parameters will change for different bg. These ones are given in
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9 Instabilities of force free CS in large guide fields and comparison with GK

Table 9.2 and Table 9.3 for low/high beta cases, respectively.

Parameter bg = 5 bg = 10 bg = 20 bg = 30 bg = 50

τA/ω
−1
pe 20.396 40.199 80.099 120.06 200.04

Ω−1
ci
/τA 0.9806 0.4975 0.2497 0.1666 0.0999

ωpe/Ωce,∞ 4.079 8.039 16.02 24.013 40.008

VA/c 0.04903 0.02487 0.01248 0.008329 0.004999
VA/vth,i 1.96116 0.9950 0.49937 0.3331 0.1999
VA/vth,e 0.39223 0.19900 0.09987 0.0666 0.03999
VDe0/c 0.24514 0.12438 0.06242 0.041643 0.02499

VDe0/vth,i 9.8058 4.9751 2.4968 1.6657 0.9998
VDe0/vth,e 1.9611 0.99503 0.49937 0.3331 0.19996

βk/2 0.26 1.01 4.01 9.01 25.01
µk 5.252 20.402 81.002 182.002 505.202

τA/∆t 664.8 1310.3 2610.85 3913.56 6520.3
B∞y [G] 69.690 35.358 17.7454 11.838 7.1056
BG [G] 348.451 353.588 354.908 355.15 355.28

φ = tan−1(bg) [◦] 78.690 84.289 87.1376 88.090 88.854
θ = cos−1[(b2

g − 1)/(1 + b2
g)] [◦] 22.619 11.421 5.7248 3.8183 2.2915

Table 9.2: Parameters dependent on the guide field for the high beta βi = 0.01 case.

The derived parameters and relations were obtained using the expression given in Ap-

pendix A.3.1 and Appendix A.3.2.
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Parameter bg = 1 bg = 3 bg = 5 bg = 10

τA/ω
−1
pe 141.421 316.227 509.90 1004.98

Ω−1
ci
/τA 0.7071 0.3162 0.19611 0.09950

ω pe/Ωce,∞ 5.6568 12.649 20.396 40.199

VA/c 0.03535 0.01581 0.009805 0.0049751
VA/vth,i 0.7071 0.3162 0.19611 0.09950
VA/vth,e 0.1414 0.0632 0.03922 0.01990
VDe0/c 0.03535 0.01581 0.009805 0.004975

VDe0/vth,i 0.70710 0.31622 0.1961 0.0995
VDe0/vth,e 0.14142 0.06324 0.03922 0.01990

βk/2 2. 10. 26. 101.
µk 0.8 4. 10.4 40.4

τA/∆t 1152.40 2576.85 4155.05 8189.37
B∞y [G] 50.2543 22.474 13.938 7.0717
BG [G] 50.2543 67.423 69.690 70.717

φ = tan−1(bg) [◦] 45 71.565 78.690 84.289
θ = cos−1[(b2

g − 1)/(1+ b2
g)] [◦] 90 36.869 22.619 11.421

Table 9.3: Parameters dependent on the guide field for the high beta βi = 1.0 case.

The specific order in which the input parameters of this force free CS are initialized
in the ACRONYM code is described in Appendix A.3.2.

Now, a last clarification about other remaining numerical parameters. Both codes use
double periodic boundary conditions (x and y directions). The initial perturbation strength
in Eq. (9.30) is δP = 0.01. For the PIC runs, we use a grid size ∆x of Nx = Ny = 1024 cells
in the low beta case (with ρe/∆x = 1.69), while for the high beta case is Nx = Ny = 1280
cells (with ρe/∆x = 4.07). The time step is chosen to be ∆tωpe = 0.03/0.12 in the
low/high beta case, respectively, to fulfill the CFL condition with (c∆t)/∆x = 0.5 < 1.
1000 particles per cell are used in both cases for each species. Finally, a TSC shape
function and no current smoothing were used. For the GK runs, the spatial grid is Nx =

Ny = 1024 for both cases, while the parallel/perpendicular velocity grid is chosen to be
Lv = 3vth,i , Lµ = 9kBTi/BT , with 32×20 points in the space (v‖, µ). µ is the (adiabatic
invariant) magnetic moment. In the GK simulations, the initial noise level and spectrum
were chosen to match with the corresponding one in the PIC runs. Then, this noise acts
as an additional perturbation on top of the one described by Eq. (9.30).

A fundamental parameter that is necessary to specify in the GENE GK runs is the
ordering parameter ǫ , connecting the perturbed quantities with the reality. It is defined as
follows:

ǫ =
1

b∞y,normbg,re f

, (9.35)

where b∞y,norm = B∞y/B∞y,re f is the normalized asymptotic magnetic field with respect
to a reference value B∞y,re f expressed in code units. The initialization in the GK runs
gives b∞y,norm = 0.05/2.5 for the low/high beta cases, respectively. bg,re f is a reference
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9 Instabilities of force free CS in large guide fields and comparison with GK

guide field to match with the results provided by the PIC runs. It will be specified in the
discussion of next Sec. 9.3.2.

Finally, some comments about the performance of both codes. Due to the constraint
given by Eq. (9.33), the range of computing time for the ACRONYM PIC runs varies in a
factor of ten between the lowest and highest considered bg. In fact, for the low beta case
the PIC case bg = 5 uses 3.38·104 CPU core-hours, while 3.33·105 CPU core-hours for the
case bg = 50. On the other hand, the single GENE GK code simulation with which those
runs were compared used only 350 CPU core hours, representing a speed-up by a factor
of 102 − 103 when comparing to the low/high guide field regimes. This huge computing
saving by the GK runs, especially in the strong guide field regime, motivates us further
to investigate what properties of magnetic reconnection can be accurately modelled by
comparing to the respective PIC simulations.

9.3 Global evolution: reproduction of previous work

9.3.1 Reconnection rates and fast magnetic reconnection

In this section, we first reproduce the results of the previous comparison work by
TenBarge et al. (2014) in order to identify the key open problems that will be addressed
in this chapter. The results of our runs with the ACRONYM PIC and GK GENE code
simulations can be summarized in the time history of the reconnection rates (dΨ/dt)/Ψ̇N ,
shown in Fig. 9.3 for both low and high beta cases.
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Figure 9.3: Comparison of reconnection rates dψ/dt for the left CS among different PIC

guide field cases and the corresponding GK result. This quantity is calculated as the

difference in the out-of-plane vector potential Az between the X and O points according

to Eq. (B.82). Left a): Low beta βi = 0.01 case. Right b): High beta βi = 1.0 case.

Reproduced with permission from P. A. Muñoz, D. Told, P. Kilian, J. Büchner and F. Jenko,

Physics of Plasmas 22, 082110, (2015). Copyright 2015, AIP Publishing LLC.

The low beta case reaches reconnection peak time around t = 40τA for all the PIC
cases and the GK runs, decreasing later on. This is due to the formation of secondary
magnetic islands, as can be seen in the Fig. 9.4 for a guide field of bg = 10 at different
times. These and all the other figures from the PIC runs shown in this chapter, unless
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stated otherwise, have been averaged over t = 0.5τA to reduce the effects of the numerical
noise.

Figure 9.4: Contour of the out-of-plane current density Jz for the PIC run bg = 10 (low

beta case) at different times. All PIC quantities are averaged over t = 0.5τA

The high beta case shows a similar behavior, although the peak the values are smaller
by a factor of 2, not showing a drop in reconnection rates later on. Both facts are translated
in less open separatrices and secondary magnetic islands affecting less the reconnection
at the main X point (less “deep” magnetic islands), as can be seen in Fig.Fig. 9.5.

Figure 9.5: Contour of the out-of-plane current density Jz for the PIC run bg = 3 (high

beta case) at different times. All PIC quantities are averaged over t = 0.5τA

Although TenBarge et al. (2014) obtained a similar behaviour, there are some minor
differences. They observed formation of secondary magnetic islands for later times than
in our case: t & 75τA. Since these structures are sensitive to the initial noise in our
simulation, we think that a reason for this difference might be the higher level of numerical
noise in ACRONYM compared to the VPIC code used by them, but we cannot prove this
assertion unless more specific details about the VPIC initialization are given. Also, note
that the formation of secondary magnetic islands is completely dependent on the initial
noise. Even changing the random seed used for the particle initialization will change the
location of these structures. Thus, a direct comparison between different PIC guide field
and GK runs cannot be done directly.

Let us discuss the magnetic reconnection regimes of these cases. As explained in
Sec. 4.2.2, the standard theory for explaining under which regimes fast magnetic recon-
nection is expected in based in the presence of dispersive waves. According to the two
fluid model first developed by Rogers et al. (2001) (see also Ricci et al. 2004), there are
two parameters: µk (Eq. (4.10)) and βk/2 (Eq. (4.13)) which determine if the dispersive
whistler or kinetic Alfvén (KAWs) waves can be present in a given magnetic reconnec-
tion regime. If any of them are allowed, magnetic reconnection is fast (dΨ/dt)/Ψ̇N ∼ 0.1.
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9 Instabilities of force free CS in large guide fields and comparison with GK

Our low beta case, according to the Table 9.2 have these parameters between the range
(µk, βk/2) = (5.25 , 0.26) for bg = 5, to (µk, βk/2) = (505 , 25) for bg = 50. This will not
allow whistler waves which requires µk ≪ 1 nor KAWs that require βk/2 ≫ max{µk, 1}
and therefore reconnection should be slow. This is in contradiction to our result that
show fast reconnection rates in this regime, but in agreement with the original work by
TenBarge et al. (2014). As discussed extensively in Sec. 4.2.2.2 the explanation for this
contradiction has been a very active topic of research during the last year, with several pos-
sible explanations. Although there is no a full definitive answer yet, all these evidences
seem to indicate that fast dispersive waves, such as whistler and kinetic Alfvén waves,
seems not to play the essential role to explain fast magnetic reconnection in collisionless
plasmas. At least in our case, in basis to the results to be shown in Sec. 9.6, it seems that
processes like the temperature anisotropy might be the responsible of fast reconnection,
as it has been pointed out recently by Cassak et al. (2015). However, more work is needed
to clarify this issue in our simulations. Since the purpose of this chapter is different, we
are not going to analyze this issue in this work anymore.

On the other hand, according to the Table 9.3, the high beta case have the dispersive pa-
rameters between the range (µk , βk/2) = (0.8 , 2.0) for bg = 1, to (µk, βk/2) = (40.4 , 101)
for bg = 10. Both extreme cases, and therefore all the guide field between them, satis-
fies the condition βk/2 ≫ max{µk, 1} for fast magnetic reconnection mediated via KAWs.
This regime, although is still fast (dψ/dt on the order of 0.1), is predicted to have smaller
reconnection rates than the on mediated via whistler waves, in agreement with our results
(dψ/dt ∼ 0.04).

All the results and plots to be shown from now on are based in the low beta case. The
slightly different conclusions for the high beta case will be analyzed only in the Sec. 9.9.

9.3.2 Parity/symmetry of magnetic reconnection quantities and lin-

ear scaling

Here we use the definitions and theoretical framework explained in Sec. 4.3.1. There,
we justified, by using the two fluid theory developed by Rogers et al. (2003), that in the
strong guide field regime limit bg ≫ 1 both thermal δPth/Pth,0 and magnetic δBz/Bg

pressures fluctuations show display an antisymmetric structure in the separatrices around
the X point, with opposite polarity due to the pressure equilibrium condition. Note that
in the strong guide field limit, the magnetic pressure is dominated by the out-of-plane
component, and that is why we use only that component. The theoretical estimates for
the strength of these quantities in Eq. (4.33) and Eq. (4.36), for location in the separa-
trices away from both X and O points, predict a linear dependence of both of them on
(di/lx)(1/bg) ∼ 1/(

√
βibg). The first factor (di/lx) is constant for each low/high beta set

of parameters. Therefore, the fluctuations δPth ≪ Pth,0 are predicted to be inversely pro-
portional to the guide field bg providing that bg ≫ 1, in such a way that the following
quantity is constant for different PIC guide fields.

ΓδPth =

√
1+ b2

g

bg,re f

δPth =

√
1 + b2

g

10
δPth (9.36)
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where the scaling factor Γ is defined as follows:

Γ =

√
1 + b2

g

bg,re f

, (9.37)

where bg,re f is a reference guide field, chosen to be bg = 10/5 in the low/high beta case,
respectively. The same is valid for δBz/Bg. Then, by choosing the same reference guide
field for the GK ordering parameter Eq. (9.35), we have ǫ = 2/0.04 for the low/high beta
case, respectively. This specification has a consequence that the GK thermal pressure
fluctuations δPth should have the same value as the PIC Eq. (9.36). The same is valid for
δBz. This linear scaling with the guide field is only valid assuming βi constant, which
implies reducing B∞y to have the effect of a stronger guide field. If we had chosen to keep
B∞y constant and increase Bg to have a higher bg effect, the previous consideration would
not be valid (we would be changing βi) and a direct comparison between the different PIC
guide field and GK runs would not be possible.

The results of this linear scaling prediction, not shown by the previous work (TenBarge et al.
2014), are displayed in the Fig. 9.6 and Fig. 9.7 for different PIC guide fields runs and the
corresponding GK result, at a time shortly after the reconnection peak, where there are
presence of secondary magnetic islands.

Figure 9.6: Contour plots of the scaled fluctuations in the (perpendicular) thermal pres-

sure ΓδPth/P th,0 for different guide fields in the PIC runs and the corresponding GK re-

sult, at a time t/τA = 50 shortly after the reconnection peak time. a) PIC bg = 5, b)

PIC bg = 10, c) PIC bg = 20, d) PIC bg = 30, e) PIC bg = 50, f) GK. In the PIC runs,

δPth = Pth(t) − 2n0kBTi . The scaling factor Γ (Eq. (9.37)) for the PIC runs was calcu-

lated using a reference guide field bg,re f = 10. The color scheme is scaled between ± the

mean plus 3.5 standard deviations of the plotted quantity, a representative maximum as

explained in the discussion of Fig. 9.9. All PIC quantities are averaged over t = 0.5τA.

Reproduced with permission from P. A. Muñoz, D. Told, P. Kilian, J. Büchner and F. Jenko,

Physics of Plasmas 22, 082110, (2015). Copyright 2015, AIP Publishing LLC.
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Figure 9.7: Contours of the scaled fluctuations in the out-of-plane magnetic field ΓδBz/BT

for different guide fields in the PIC runs and the corresponding GK result, at the same

time t = 50τA as shown in Fig. 9.6. a) PIC bg = 5, b) PIC bg = 10, c) PIC bg = 20, d) PIC

bg = 30, e) PIC bg = 50, f) GK. In the PIC runs, δBz = Bz(t) − Bz(t = 0), where the initial

Bz(t = 0) ≈ Bg for large enough guide field according to Eq. (9.27). The scaling factor

Γ is the same used in Fig. 9.6. The color scheme is calculated using the same method

described in Fig. 9.6. Reproduced with permission from P. A. Muñoz, D. Told, P. Kilian,

J. Büchner and F. Jenko, Physics of Plasmas 22, 082110, (2015). Copyright 2015, AIP

Publishing LLC.

From Fig. 9.6 and Fig. 9.7 we can infer the convergence of the PIC results towards
the GK ones in the limit of strong guide field, not only in the linear scaling to the guide
field, but also in the converging symmetry. This observation was already confirmed by
TenBarge et al. (2014) in the region close to the separatrices, where that model holds.
However, we can immediately notice that not only the symmetry between both separa-
trices is broken in the low guide field regime, but also the appearance of an additional
magnetic field in the secondary magnetic islands (see Fig. 9.7(a)-(b))not visible in GK or
the strong PIC guide field regimes.

9.4 Core magnetic field and pressure equilibrium condi-

tion

Since this section is devoted to the phenomena taking place at the secondary magnetic
islands, it is convenient to clarify this term. They are structures appearing as a result
of the tearing mode, with a different (smaller) wavelength than the one imposed by the
large scale initial perturbation. They start at electron length scales, growing up to ion
scales. In this sense, our definition does not exactly match with some previous studies
(Chen et al. 2012, Zhou et al. 2012, Huang et al. 2014), which limit secondary islands to
electron length scales. Other works have stated that secondary islands have opposite out-
of-plane current density to those of the primary islands (Huang et al. 2013). Again, the
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structures in our simulations do not match these features. In any case, we expect the
formation of these structures in our setup, since it is known that guide field reconnec-
tion produce a much burstier reconnection forming many secondary magnetic islands, in
comparison with the antiparallel case (Drake et al. 2006).

9.4.1 Numerical reason for core magnetic field and pressure equilib-

rium condition

In this section we are going to explain the numerical origin of the core-magnetic field
seen in the secondary magnetic islands, as well as in the y boundaries, for the PIC low
guide field regime as shown in Fig. 9.7(a)-(b).

The previous observation has to do with deviation from the pressure equilibrium con-
dition, since there is no corresponding drop in the (perpendicular) thermal pressure in the
same previous locations (see Fig. 9.6(a)-(b)). In the GK code, the sum of magnetic field
pressure and perpendicular thermal pressure is kept identically equal to zero (to machine
precision). This is because the GK model keeps the perpendicular force balance to order
ǫ , as a consequence of the perpendicular GK Ampère’s law:

(∇ × δ~B)⊥ = ∇⊥δBz = µ0δ~J⊥ (9.38)

than can be rewritten as (see, e.g., Roach et al. 2005, Schekochihin et al. 2009, Abel et al.
2013):

∇⊥ · δP⊥ +
B∇⊥δB‖

2µ0
= 0. (9.39)

where the quantities denoted as δ are of order ǫ . δP⊥ is the (total) perturbed perpendic-
ular pressure tensor, δB‖ the perturbed parallel magnetic field and δJ⊥ is the perturbed
perpendicular current density. This expression is equivalent to the one obtained in the
framework of the two-fluid theory previously discussed, as can be seen by combining the
thermal (Eq. (4.33)) and magnetic (Eq. (4.36)) pressure fluctuations.

δBz

Bg

= −βi

δPth

Pth,0
. (9.40)

The difference between Eq. (9.39) and Eq. (9.40) is that in the first one, δP⊥ may possible
include off-diagonal terms contributing to finite ion Larmor effects, while in the second
equation, δPth has to be a scalar quantity. On the other hand, different from the GK
model, PIC codes may allow large deviations from the pressure equilibrium conditions
(they solve the full system of Vlasov-Maxwell equations), especially in the low guide
field regime, since the previous expressions are valid only for bg ≫ 1, where results
converge.

The respective 2D (frequency) histograms with the correlation of the left and right
hand side of Eq. (9.40) are shown in Fig. 9.8(middle row) for different guide fields, at the
same point in time that is shown in Fig. 9.6 and Fig. 9.7. An ideal pressure equilibrium in
this limit, given by Eq. (9.40), should follow a straight line with slope −βi (black diagonal
line in the middle row of Fig. 9.8). These plots were generated by selecting the interesting
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region close enough to the center of the CS, in order to eliminate as much as possible
any fluctuation in the almost unperturbed region away from the CS (not involved in the
reconnection process). The chosen region contains all the points with a current density Jz

above 10% of its initial peak value (see Fig. 9.8(top row)). In order to show the locations
of deviations in the pressure equilibrium condition, we also plot in Fig. 9.8(bottom row)
the corresponding fluctuations in the total pressure,

δPtotal

Pth,0
=

Pth + Pmag

Pth,0
− 1 − 1

2βi

, (9.41)

with Pmag = B2/(2µ0).
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(a) Jz/J0 bg = 5 (b) Jz/J0 bg = 10 (c) Jz/J0 bg = 20
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Figure 9.8: Top row. Contour plots of the out-of-plane current density Jz/Jz(t = 0) for

different PIC guide fields and the corresponding GK result, at a time t/τA = 50. a1) PIC

bg = 5, b1) PIC bg = 10, c1) PIC bg = 20, d1) GK. Magnetic field lines are shown in

black contour lines. Note that because Eq. (9.34), Jz(t = 0) = JzN · JN varies with the PIC

guide field (through JN). The region inside the green contour corresponds to values of Jz

higher than 10% of the initial value Jz(t = 0).
Middle row: Respective 2D (frequency) histograms with the correlation between the mag-

netic and thermal fluctuations ΓδBz/BT and ΓδPth/Pth,0 for the same runs and time as

above. a2) PIC bg = 5, b2) PIC bg = 10, c2) PIC bg = 20, d2) GK. The points used to

generate these plots correspond to those located inside of the green contour in the plots

for Jz in the first row. The diagonal black straight line with slope −βi represents the pres-

sure equilibrium condition in the limit of strong guide field Eq. (9.40).
Bottom row: Respective contour plots for the scaled total pressure ΓδPtotal/P th,0. a3) PIC

bg = 5, b3) PIC bg = 10, c3) PIC bg = 20. d3) GK. The latter is identically zero to

machine precision. Reproduced with permission from P. A. Muñoz, D. Told, P. Kilian,

J. Büchner and F. Jenko, Physics of Plasmas 22, 082110, (2015). Copyright 2015, AIP

Publishing LLC.

In Fig. 9.8(a2-a3) we can see clearly large deviations from the diagonal straight line
of pressure equilibrium for PIC guide field runs bg = 5 and bg = 10, with a big spread that
becomes increasingly negligible for a guide field bg = 20. The latter seems to converge
to the GK result (all the points exactly on the straight line). Note a distinctive “bump” in
the region δPth ∼ 0 with δBz & 0 (upper part), which is very noticeably for a PIC guide
field bg = 5. There, the strong magnetic fluctuations are not compensated by a drop in
the thermal pressure. We can see in the corresponding plots of the fluctuations in the total
pressure δPtotal (Fig. 9.8(bottom row)), that these regions are mostly in the secondary mag-
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netic islands and in the y boundaries. This excess of total pressure generates a net force
towards the exterior of the magnetic islands, leading to an expansion in reconnection time
scales (∼ τA). Note that the δPtotal increases going to the lower guide field regime, even
though this quantity has been scaled linearly to the guide field. That is to be expected,
since the maximum level of fluctuations for this time are of the order of the initial equilib-
rium values, and the assumption on which Eq. (9.40) is based (small fluctuations, the same
one used in GK) breaks down. For times after the reconnection peak, when secondary is-
lands are active, we could observe that δPtotal actually scales quadratically with the guide
field. This means that Γ2δPtotal/Pth,0 shows the same fluctuation level for different guide
fields.

In the 2D histograms of Fig. 9.8(top row) it is also possible to discern an asymmetric
distribution along the straight line of the pressure equilibrium condition that is more im-
portant in the PIC low guide field regime: there are more points located in the right bottom
quadrant (δPth > 0 and δBz < 0) than in the left upper quadrant (δPth < 0 and δBz > 0).
The corresponding GK results show a symmetric behaviour (see also Fig. 9.6). This is an
indication of the asymmetry in the separatrices for the PIC low guide field regime: the
maximum values of δPth are larger than the absolute value of the minimum ones in each
pair of separatrices. δBz displays similar behaviour but to a much smaller extent. We will
explain the reasons in Sec. 9.5.1.

Another important observation in the middle row of Fig. 9.8 is the presence of a set
of points in a straight line parallel to the pressure equilibrium line, but shifted upwards.
We checked that they are located in the regions with enhanced current density: both the
pair of separatrices with enhanced number density (especially far away from the X point)
and the “S” shape inside of the secondary magnetic islands. These regions contributes to
further deviations in the pressure equilibrium condition in both δPth and δBz .

Therefore, although the magnetic field fluctuations δBz predicted by the GK simula-
tions can be similar to the PIC ones for low guide fields (bg = 5, 10) close to the sepa-
ratrices, this becomes invalid in regions inside of the secondary magnetic islands or the
periodic y boundaries. That phenomenon can be understood because of the larger devia-
tions from the pressure equilibrium condition generated by an uncompensated additional
magnetic pressure, significant only in the PIC low guide field regime.

9.4.2 Time evolution of deviations in the pressure equilibrium condi-

tion

A convergence study focusing in one single time, like the one shown in the previous
Fig. 9.6 and Fig. 9.7 may be misleading. Furthermore, as we already showed, even though
the reconnection rates may take similar values for a given time, the evolution of the phys-
ical quantities associated with the reconnection process is very different. That is why in
this section we analyze the time evolution of the quantities related to the pressure equilib-
rium between both codes. Thus, we can detect from what time the previously described
core magnetic field, and the associated deviations in the pressure equilibrium condition,
start to appear. This also complements the work of TenBarge et al. (2014), since in that
comparison work the time evolution of the quantities related with reconnection was not
investigated.

Now, in order to make quantitative estimations, we chose to track the maximum of
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δPth and δBz in a region centered in the left CS (same area shown in Fig. 9.6 and Fig. 9.7).
Since the PIC simulations are very prone to numerical noise, we chose the maximum
value of the previous quantities as equal to the mean plus 3.5 standard deviations. We
do not consider the absolute maximum because is very prone to outlier values, especially
in the PIC high guide field regime. In addition, the initial value of the respective fluc-
tuating quantity is subtracted, since it mostly measures the numerical PIC noise, being
enhanced for higher guide fields. Moreover, the scaling given by the estimates Eq. (4.33)
and Eq. (4.36) requires an initial zero offset in order to have a proper comparison with the
corresponding GK results. The results are shown in Fig. 9.9.
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Figure 9.9: Time history of the maximum value of the scaled thermal pressure ΓδPth/Pth,0

(a) and magnetic fluctuations ΓδBz/BT (b) for different PIC guide field cases and the

corresponding GK result. In the PIC runs, the “maximum” is defined as equal to the

mean plus 3.5 standard deviations of the respective quantities, consistent with the color

scheme used in Fig. 9.6 and Fig. 9.7. In addition, the initial value of the respective

fluctuating quantities is subtracted in the PIC results. As explained in the main text, these

methods are for reducing the effects of the numerical PIC noise as much as possible.

Reproduced with permission from P. A. Muñoz, D. Told, P. Kilian, J. Büchner and F. Jenko,

Physics of Plasmas 22, 082110, (2015). Copyright 2015, AIP Publishing LLC.

First of all, we can note in Fig. 9.9 that the reconnection peak time is around t ∼ 40τA,
correlated with the onset time for the formation of secondary magnetic islands. Later,
around t ∼ 50τA, the thermal fluctuations δPth reach their maximum. These times are
the same for all guide fields. The magnetic fluctuations reach maximum values even later.
This suggests that the process generating δBz for these times is different from the Hall
term due to the reconnection process itself (close to the X point, in the separatrices). It is
driven by physical processes deeply in the non-linear phase of magnetic reconnection, not
being straightforward to describe them as an steady process. This is also the justification
for showing these quantities at the time t = 50τA in the previous and most of the following
figures of this chapter.

In Fig. 9.9(a)-(b) we can see that the time evolution of both maximum ΓδP th and ΓδBz

shows a convergence among the PIC runs in the strong guide field limit, i.e.: the respective
curves get closer and closer for all guide fields bg & 20, following the same trend as the
corresponding GK curve and the strongest PIC guide field bg = 50. As it was pointed out
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by TenBarge et al. (2014), this agreement extends to many other particle related quantities
(densities, temperatures, outflow speeds). However, significant discrepancies are visible
for the PIC low guide field regime. These deviations start to be noticeably for earlier
times for lower values of bg. For example, the curves of ΓδBz between the PIC run bg = 5
start to diverge from the GK one already in t & 20τA, while the curve for the PIC run
bg = 30 only after t & 45τA. Note that deviations among ΓδPth curves are smaller than
the corresponding to the ΓδBz curves.

The physical reasons of the differences in the PIC runs for ΓδPth as shown in Fig. 9.9(a)
will be addressed in the Sec. 9.6. They have to do with the different contributions of elec-
trons and ions to the specific components of the pressure tensor, as well as non-thermal
features of the electron distribution function. In the rest of this section we explain and
analyze with much more detail the differences regarding the magnetic fluctuations ΓδBz

shown in Fig. 9.9(b).
In order to complement the information that Fig. 9.9 provide us, we need to correlate

the behavior shown there with the pressure equilibrium condition (i.e.: the location in the
space of thermal δPth and magnetic δBz fluctuations). For that purpose, in Fig. 9.10 we
show the 2D histograms relating the fluctuations of thermal and magnetic pressures, for
three characteristic times in the evolution of the lowest PIC guide field run bg = 5.
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Figure 9.10: 2D (frequency) histograms wit the correlation between the scaled thermal

and magnetic fluctuations ΓδBz/BT and ΓδPth/Pth,0, for three characteristic times in the

evolution of a low enough PIC guide field run bg = 5. a) t = 20τA, b) t = 30τA, c)

t = 40τA. Similarly to Fig. 9.8, the points used to generate these plots correspond to

the regions with the current density Jz above the 10% of its initial value Jz(t = 0). The

diagonal black line represents the pressure equilibrium condition in the limit of strong

guide field Eq. (9.40). Reproduced with permission from P. A. Muñoz, D. Told, P. Kilian,

J. Büchner and F. Jenko, Physics of Plasmas 22, 082110, (2015). Copyright 2015, AIP

Publishing LLC.

We can see in Fig. 9.10 the presence of an asymmetric distribution of points in the right
bottom quadrant (δPth > 0 and δBz < 0), with respect to he pressure equilibrium line. We
saw that this behavior starts from the very beginning (t = 20τA), and therefore is due to a
process always operative in the system. For these earlier times (shown in Fig. 9.10(a)), the
points tracked are mostly located in this region corresponding to the separatrices. Later,
before of the reconnection peak time (t ∼ 30τA, Fig. 9.10(b)), a “bump” δPth ∼ 0 with
δBz & 0 (signature of violation of the pressure equilibrium condition) starts to develop
inside of the secondary magnetic islands or the y boundaries. Therefore, this has to be

252

http://dx.doi.org/10.1063/1.4928381
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caused by a process associated with the evolution reconnection. Finally, in Fig. 9.10(c)
for t ∼ 40τA, the “bump region” becomes larger, indicating that that the locations where
the pressure equilibrium condition is violated shift from the separatrices to the “bump”
The physical origin of this phenomenon, related with the action of the shear flow on the
magnetic islands, will be explained in the following Sec. 9.5.

Thus, in this section we have shown that the evolution for the magnetic and thermal
pressures is similar in the PIC and GK simulations, especially during the linear phase
of magnetic reconnection. However, the formation of secondary magnetic islands breaks
this convergence, because it generates large magnetic fluctuations δBz only in the PIC low
guide field regime, with maxima reached for times much later than the reconnection peak
time.

9.5 Core magnetic field and shear flow

In this section we describe the physical mechanism that leads to the generation of core
magnetic field in the PIC low guide field simulations, as a result of a necessarily slightly
different initialization in comparison with the GK runs, thus complementing the previous
Sec. 9.4. There have been some previous works that have found the same features, such
as Karimabadi et al. (1999) (explained at the end of Sec. 9.5.1) and Zhou et al. (2014).
The latter work reported a core-magnetic field inside of secondary magnetic islands when
these structures coalesce, as result of a Hall effect that twists magnetic field lines, plus
flux transport with the associated pile up of the out-of-plane magnetic field.

9.5.1 Initial shear flow

We found that the development of strong in-plane currents generates leads to the gen-
eration of core magnetic field in the PIC low guide field runs (see, e.g., Fig. 9.7(a)-(b)).
The latter are not the expected ones due to the pure reconnection process, but instead they
are generated because of the initial shear flow parallel to the reconnected magnetic field,
important only in that parameter regime. This can be seen by rewriting the factor outside
of the expression involving transcendental functions in Eq. (9.29) as:

Vey0 =
1

√
βi(L/ρi)

VA =
1

βi(L/ρi)
1

√
1 + b2

g

vth,i (9.42)

where the last equality is valid because the PIC runs will invariably have to change the
following ratio for different guide fields (due to the choice of keeping the total plasma β
constant):

VA

vth,i

=
1

√
1 + b2

g

1
√
βi

. (9.43)

Note that this ratio VA/vth,i increases for lower PIC guide fields: from VA/vth,i = 0.2 →
1.96 going from bg = 50 → 5 in this low beta case. Thus, we can see that Vey0 is
independent on the guide field in units of VA, but (approx.) inversely dependent on it in
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terms of vth,i. We also have to take into account that the value of this shear flow depends, in
addition, on the guide field through the (spatially dependent) denominator in Eq. (9.29).
As a result, the maximum peak values of the shear flow, in the low beta case, have the
dependence on the guide field shown in Fig. 9.11.
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Figure 9.11: a) Maximum initial value of the in-plane electron flow speed Ve,y on depen-

dence on the guide field bg, normalized to the in-plane Alfvén speed VA and to the constant

vth,i . The ratio of both normalization factors, VA/vth,i, is shown in black continuous line.

Note that both axis are in logarithmic scale.

b) Initial profiles of in-plane electron flow speed Ve,y(x)/VA across a CS centered in x = 0
for two values of guide field. The initial in-plane local Alfvén speed VA(x) is shown in

black continuous line. Reproduced with permission from P. A. Muñoz, D. Told, P. Kilian,

J. Büchner and F. Jenko, Physics of Plasmas 22, 082110, (2015). Copyright 2015, AIP

Publishing LLC.

This dependence implies that the PIC initialization will have an additional source of
free energy due to this shear flow, with a total kinetic bulk energy (in absolute units or in
terms of vth,i) strongly dependent on the guide field (approximately, ∝ 1/b4

g), becoming
negligible in the large guide field limit or the GK initialization. In the latter, it is enforced
to be exactly zero, as we already mentioned in Eq. (9.25). Otherwise, a non vanishing
δJe,⊥ would imply, by means of Eq. (9.38), a δBz of second order, ruled out from the
standard GK equations.

On the other hand, the ratio VA/vth,i also plays an essential role in the GK theory,
because of the perpendicular drift approximation as discussed in Sec. 9.1 (specifically in
the discussion of Eq. (9.10)). It basically states that the range of validity of GK assumes
~V⊥ ∼ O(ǫvth,i). Then, in-plane speeds that approach to vth,i will make GK invalid. But
this is precisely the case when VA/Vth,i is of order 1, since it is known that reconnection
outflows will develop speeds on the order of VA for ions (and even larger for electrons),
as discussed in Sec. 4.2.1. Therefore, it is predicted that the GK results will deviate from
the real physical behaviour of a Vlasov plasma modeled via PIC simulations especially
for the cases bg = 5 or bg = 10. These guide fields, as seen in Fig. 9.11, have VA/vth,i . 1
and also maximum peak values of the shear flow within a significant fraction of vth,i .

The asymmetric separatrices seen in Fig. 9.8, especially in the sense that positive
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pressure fluctuations are larger than the negative ones (δPth > 0 over δPth < 0) are also
due to the initial shear flow. The model developed by Cassak (2011a) already featured
a similar behaviour, being attributed to the dynamic pressure of the shear flow, which
can tilt the outflow in its incoming direction (see discussion in Sec. 5.3.4). As a result,
more electrons are piled up preferentially in one pair of the separatrices over the other
one for sufficiently low PIC guide fields, increasing density, temperature and thermal
pressure (see Fig. 9.6). This is a behaviour not predicted by the two fluid model sketched
in Sec. 4.3.1, since it was developed without these initial flows.

It is important to mention that the “S” shape of δBz in the secondary magnetic islands
is not directly related to the asymmetry induced by the shear flow. This has been observed
in previous hybrid simulations such as in Karimabadi et al. (1999), where it was attributed
to an ubiquitous feature of guide field reconnection (such as Harris sheets without initial
shear flow), due to the asymmetric shift of the outflows from the X points in comparison
with anti-parallel reconnection. However, that study was carried out in the regime of
guide fields even smaller than the reconnected magnetic field (bg < 1), and therefore the
conclusion might not be applied directly to our case.

9.5.2 Current/flows in secondary magnetic islands

For the cases of PIC runs with low enough guide field, the (stronger) initial shear flow
induces a net vortical current during the development of the reconnection process. This
takes place in the magnetic islands, in both secondary (close to X point) and primary ones
(close the periodic y boundaries), as can be seen in Fig. 9.12. That current is generated
only after the formation of these islands, since the magnetic field lines are wrapped up
around them, deflecting the initial electron shear flow into that direction. The result is the
generation of a net out-of-plane magnetic field (see Fig. 9.7) in the out-of-plane direction
(−z direction), same as the curl of ~J. This process was already seen in previous 2D MHD
and Hall-MHD simulations (Shi et al. 2005) for shear flows with sub-Alfvénic speeds, in
agreement with our parameter range (see discussion in Sec. 5.3.5).
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Figure 9.12: Vector plot of the in-plane current ~J⊥ = Jxx̂+ Jyŷ for two cases of PIC guide

fields a) bg = 5 and b) bg = 20, at a time t = 50τA. Color coded is the magnitude of this in-

plane current |~J⊥ |/Jz(t = 0). Note that because Eq. (9.34), Jz(t = 0) = JzN · JN varies with

the PIC guide field (through JN). Reproduced with permission from P. A. Muñoz, D. Told,

P. Kilian, J. Büchner and F. Jenko, Physics of Plasmas 22, 082110, (2015). Copyright

2015, AIP Publishing LLC.

Note that the structure of the core magnetic field becomes more symmetric inside of
the secondary magnetic islands in the PIC low guide field regime than the GK or PIC high
guide field regime (see Fig. 9.7). This is in agreement with Hosseinpour and Mohammadi
(2013) (see more details in Sec. 5.3.5), who predicted that the Hall magnetic field due to
tearing mode under influence of a shear flow can exhibit a significant symmetric structure
for low βy < 1 (in our case, for PIC bg = 5, βy ≈ 0.52), while it should be symmetric
(same prediction as in Rogers et al. 2001) in the limit βy ≫ 1 (in our case, for PIC bg = 50,
βy ≈ 50).

The decoupling of motions between electrons and ions (Hall effect) is the physical
two-fluid process generating the intra-island current, as shown in Fig. 9.13 for two PIC
guide field cases and the corresponding GK result. Especifically, in Fig. 9.13(b1), we can
see that for the case of PIC bg = 5 (the lowest guide field considered), the ions always
follow the reconnection outflow from the X point. On the other hand, the electrons are
not affected too much by that outflow, keeping their initial (sheared) bulk velocity flow
pattern (Fig. 9.13(a1)) but deformed due to the presence of the magnetic islands, in such
a way that a vortical flow is produced. This characteristic flow pattern is barely visible for
higher guide fields (bg & 20, as seen in Fig. 9.13(a2)-(b2)) and totally absent for the GK
run (see Fig. 9.13(a3)-(b3)), where it mostly follows the reconnection outflow.

Finally, it is interesting to mention that the current in the magnetic islands is associated
with a dynamo process, i.e.: ~J · ~E < 0. This means a a transfer of energy from the bulk
electron motion to the magnetic field (see Fig. 9.23). This effect does not take place for
the cases of PIC high guide field or GK runs. The only locations where ~J · ~E < 0 are
close to the outflows, due to the bulk motion of the plasma. We are going to discuss more
extensively this issue in Sec. 9.7.3, by comparing with the dissipation ~J · ~E > 0 close to
the X points.
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9.5.3 Electron/ion flow in later times

Figure 9.13: Top row: Vector plot of the in-plane electron bulk velocity for different PIC

guide fields and the corresponding GK result, at a time t = 50τA. Color coded is the

Ve,y/VA component. a1) PIC bg = 5 , a2) PIC bg = 20, a3) GK.

Bottom row: Same as above but for the in-plane ion bulk velocity Vi,y/VA. b1) PIC bg = 5,

b2) PIC bg = 20, b3) GK. Reproduced with permission from P. A. Muñoz, D. Told, P.

Kilian, J. Büchner and F. Jenko, Physics of Plasmas 22, 082110, (2015). Copyright 2015,

AIP Publishing LLC.

In good agreement with the standard two fluid theory of magnetic reconnection by
Shay et al. (2001) (discussed in Sec. 4.2.1), we could observe that the speed of the elec-
tron outflows from the main X point due to reconnection is about the double of the asymp-
totic ion Alfvén speed Ve,y ∼ 2.2VA, with some small variation among different PIC runs
(see Fig. 9.13(a)-(b)). On the other hand, the ion outflow speeds are practically constant
among different PIC guide fields and the GK runs (see Fig. 9.13(d)-(f)), and reaching
sub-Alfvénic values Ve,y ∼ 0.8VA. Thus, the critical PIC guide field for which the shear
flow can generate the currents building up the core magnetic field (bg . 20) can be deter-
mined, in principle, by measuring how comparable are the values of the initial shear flow
(strongly dependent on the guide field according to Fig. 9.11) with the constancy of the
reconnection outflow speeds.

It is important to mention that because the generation of magnetic field is due to a
Hall effect, their effects will be stronger when the CS is much thinner than the ion sound
Larmor radius ρs (Nakamura et al. 2008), which applies very well to our case (L = 2ρi =

0.2di). From this we can also predict that this kind of effects will be strongly reduced in
thicker CS, and thus the results of PIC and GK simulations will be more similar.

In Fig. 9.13 we can also note another important difference between the secondary
magnetic islands for different PIC guide field regimes. For bg = 5, the electron outflow
from the secondary X points close to these islands is strong enough to be noticed over
the dominant outflow from the main X point (see Fig. 9.13(a1)). On the other hand,
for higher guide field such as bg = 20, the electron outflow speed from the secondary
magnetic islands is reduced to such extent that cannot overcome the reconnection outflow
from the main X point and it is simply carried away from this (Fig. 9.13(a2)). As it can
be expected, this behaviour is also seen in the GK simulations (Fig. 9.13(a3)). Therefore,
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although the secondary magnetic islands are formed for all guide field regimes in the PIC
runs and also in GK simulations, displaying a similar morphology, they have essentially
different properties. The dominance of the main X point is much more significant for the
PIC low guide field regime than in the high guide field one or the GK runs, a behaviour
that can only be captured by PIC simulations.

9.5.4 Time evolution of electron/ion flows: influence of initial shear

flow

Now, let us investigate how these currents are build up from the initial one in the PIC
runs with sufficiently low guide field. First, in order to distinguish the relative contribu-
tions of the initial shear flow and the reconnection outflows, it is convenient to analyze
the system for earlier times, during the linear phase of tearing mode growth, when there
are no secondary magnetic islands. This can be seen in Fig. 9.14, where we compare the
full electron outflow and the one obtained by subtracting the initial shear flow.

Figure 9.14: Top row: Vector plots of the in-plane electron bulk velocity for different PIC

guide fields, at a time t = 20τA, early in the linear phase of reconnection. Color coded is

the Ve,y/VA component. a1) PIC bg = 5 , b1) PIC bg = 10, c1) PIC bg = 20.

Bottom row: Same vector plots as above, but with the initial shear flow subtracted: (Ve,y−
Ve,y(t = 0))/VA. This gives the outflow due to reconnection. a2) PIC bg = 5, b2) PIC

bg = 10, c2) PIC bg = 20.

In Fig. 9.14(a1) and Fig. 9.14(a2), the electron flow is dominated by the initial shear
flow for this case of smallest guide field bg = 5: the reconnection outflow is very weak
to produce any appreciable effect. This can be measured through the maximum values:
the total flow speed reaches Vy ∼ 0.65VA, while the reconnection outflow speed reaches
Vy ∼ 0.35VA. On the opposite case, for a stronger guide field of bg = 20 (Fig. 9.14(c1) and
Fig. 9.14(c2)), the shear flow is weak enough that the overall electron flow mostly follows
the reconnection one, being only weakly deflected (total flow speed reaches Vy ∼ 0.79VA,
while the reconnection outflow speed reaches Vy ∼ 0.75VA). For later times, the dynamics
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is dominated by the reconnection outflow in both cases, in such a way that Ve,y ≫ Ve,y(t =
0) (see Fig. 9.13). Note that the reconnection outflows are always symmetric (even), while
the odd parity of the shear flow with respect to the center of the CS breaks this symmetry,
as we already explained in Sec. 9.5.1.

We checked that the electron and ion inflow/outflow speeds have similar values among
different PIC guide field and GK simulations when measured in units of the Alfvén speed
for different times (see, e.g., Fig. 9.13). The agreement, as can be expected, is better
in the linear phase of reconnection. As a result, the in-plane current ~J⊥ (proportional to
~Vi,⊥ − ~Ve,⊥) will also display similar values among different PIC guide fields when the
same normalization is used (see Fig. 9.12). But the generation of the magnetic field Bz

depends on J⊥ measured in absolute units (without normalization to JN). The initial value
of the unnormalized current does change with the guide field due to the relative ratio of
Alfvén to thermal speeds Eq. (9.43). Furthermore, the generation of magnetic field δBz

can be estimated as follows, by using the Ampère’s law, neglecting displacement current
and approximating the curl∇ × ~B by the gradient scale length 1/∆L:

δBz

Bg

≈ ∆L

ρi

(
µ0ρi

Bg

)
J⊥. (9.44)

Defining the constant Λ = µ0ρi/Bg, we infer that δBz/Bg in absolute units (Bg is constant
for different PIC guide fields) is on the order of ΛJ⊥ when the length scale of the magnetic
field is on the order of ρi, not dependent on the guide field. We checked that ρi does not
change too much for all the shown times, equivalent to a weakly varying ion temperature
and thus a proportionality between δBz and J⊥ (force free condition). Now, in the simula-
tions, a good estimate of ∆L is the size across the x direction of the secondary magnetic
islands close to the X point: ∼ 10ρi, or the magnetic island at the y boundaries (∼ 18ρi).
In this way, we can calculate the evolution of the terms in the right hand side of Eq. (9.44)
that only depends on the current ΛJ⊥, with results shown in Fig. 9.15.
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Figure 9.15: Time history of the maximum value of the fluctuations in the in-plane current

for different PIC guide fields cases. a) ΛJ x. b) ΛJy. Note that this quantity does not

have a normalization factor dependent on the guide field as Fig. 9.12 (it is measured in

absolute units). These values have to be compared with the ones for δBz/Bg shown in

Fig. 9.9. Reproduced with permission from P. A. Muñoz, D. Told, P. Kilian, J. Büchner

and F. Jenko, Physics of Plasmas 22, 082110, (2015). Copyright 2015, AIP Publishing

LLC.

Fig. 9.15(b) shows that the maxima of Jy, and so δBz , are important only in the PIC low
guide field regime, when measured without normalization. Or in other words, magnetic
field generation is only effective in the lower PIC guide field regime. More specifically,
in Fig. 9.15(b) we can see that both in-plane components J x and Jy start to grow after
the reconnection peak time and the associated formation of secondary magnetic islands.
Nevertheless, most of the contributions to the total in-plane current come from the Jy

component (compare with Fig. 9.15(a)). By comparing the previous plot of ΛJy with the
time history of the maximum values of δBz (see Fig. 9.9(b)), taking off the factor Γ, we can
confirm a good agreement (in the order of magnitude) of both quantities (e.g., for bg = 5,
the maximum is δBz/Bg ∼ 0.034). Note that these maxima of Jy are reached only at the
borders of the regions where are located the associated maxima of δBz: in the boundaries
of the magnetic islands (the contribution from the separatrices can be neglected since its
curl is practically zero).

Summarizing, all the previous evidence indicates that the core magnetic field δBz is
generated by the combined effect of the initial shear flow and formation of secondary
magnetic islands start to form. It has more relative importance in the PIC low guide field
regime, and it is one of the main features different between PIC and GK simulations of
magnetic reconnection of force free current sheets.

9.5.5 Boundary effects in core magnetic field generation

Not only a core magnetic field is generated in the secondary magnetic islands in the
PIC low guide field regime, but also at the y boundaries. The dominant numerical reason
is due to the colliding outflows from reconnection in the main X point and the periodic
boundary conditions (equivalent to a configuration with multiple X points). Reconnection
in the PIC low guide field regime produces faster electron outflows in absolute units, since
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9.5 Core magnetic field and shear flow

they have approximate similar values in units of VA, but this scales as∝ 1/bg. As discussed
in Sec. 7.2.2, this might be avoided by using other numeric techniques. Note that the main
secondary island in the O point of this CS (due to the initial perturbation), is located in
this same place (y boundaries), generating a magnetic field via the same process described
before for the secondary magnetic islands. Thus, the total magnetic field in these locations
has contributions of both physical and boundary effects.

9.5.6 Influence of shear flow in reconnection

Now, let us focus on the effects of the shear flow and associated magnetic field gener-
ation in reconnection. The general trend is towards a reduction of reconnection rates in
the very low end of analyzed guide fields range, bg = 5, 10, compared to the high guide
field regime or the GK runs (see Fig. 9.3). There are at least 3 different reasons:

• The additional magnetic pressure due to to the core magnetic field in the magnetic
islands inhibits the CS thinning because it makes the reconnection outflows slower,
and thus a reduction in reconnection rates should be observed. And it is precisely
in the regime of PIC low guide field where the relative importance of this additional
out-of-plane magnetic field is greater (see, e.g., Fig. 9.9).

• We already explained in Sec. 5.3.5 that, following the argument by Cassak (2011a),
the outflow speed should also be smaller (and thus reconnection rates) due to the re-
duction in the magnetic tension of the reconnected magnetic field lines. This release
of tension is produced due to the initial shear flow, and was confirmed by a kinetic
dispersion relation and 2D PIC simulations for thin CS (Roytershteyn and Daughton
2008).

• Finally, the formation of core magnetic field in the magnetic islands by the Hall cur-
rents implies a higher magnetic energy in the system compared to the case without
them. Therefore, the amount of magnetic energy converted into particle energy via
magnetic reconnection is reduced when the core magnetic field is present.

Overall, if the total plasma β is kept constant, it is clear that reconnection rates should
be reduced in the PIC low guide field regime. We can have a first order estimate to what ex-
tent the reconnection rates should be reduced in presence of a shear flow by calculating the
factor

(
1− V 2

0 /V2
A

)
according to Eq. (5.77). This expression, derived by Cassak (2011a),

is valid under a Hall-MHD model (without guide field). As we can see in Fig. 9.11, the
previous reduction factor is non-negligible in the lower PIC guide field regime bg = 5, 10
(with factors 0.57 and 0.89 , respectively). For the corresponding PIC runs, the mea-
sured reduction in reconnection rates is on the order of 20% compared to the GK results
(see Fig. 9.3), equivalent to a factor of 0.8. Note that although the estimate should not
be applied directly to our case because of the strong guide field regime, the qualitative
conclusion still holds.
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9.5.7 Other related studies about magnetic field generation by shear

flows

In closing this section, it is important to mention that previous studies have reported
the generation of large scale and long duration magnetic fields as a result of the elec-
tron scale kinetic Kelvin-Helmholtz (K-H) instability (Alves et al. 2012, Grismayer et al.
2013a, Alves et al. 2014). As discussed extensively in Sec. 5.3.3, this instability is closely
related to the vortical flow pattern seen in our low PIC guide field runs inside of the sec-
ondary magnetic islands. However, these studies were for cold (vthe ≪ V0) shear flows in
unmagnetized plasmas, and therefore do not apply directly to our case. Nevertheless, the
physical mechanism behind this, associated with a current imbalance resulting from the
mixing of electrons crossing the deformed shear interface during the non-linear evolution,
seems to be quite general. This can be tested by the theoretical estimate for the generated
magnetic field Eq. (5.74).

9.6 (Thermal) heating mechanisms

In this section we will address the physical origin of the larger thermal pressure per-
turbations δP th in the PIC low guide field regime, comparing to the respective limiting
GK results. Nevertheless, we focus mostly in the PIC runs in the low guide field regime,
since they show very different to the ones obtained via the GK simulations. First of all,
in the time evolution of the maximum values of this quantity show in Fig. 9.9(a) and
all the subsequent analysis, we considered only perpendicular thermal pressure fluctua-
tions δPth,⊥ , due to the pressure equilibrium condition. When considering the full scalar
pressure including parallel perturbation contributions: δPth,total = δP th,⊥ + δPth,‖, the dif-
ferences are even larger. These maxima of these quantities, in the PIC low guide field
regime, are located in the boundary of the secondary magnetic islands, as well as in one
pair of separatrices. The origin of these differences in this regime are related the heating
of electrons and ions in different directions with respect to the magnetic field, as well as
other dissipative processes and non thermal mechanisms.

First we are going to analyze how different are heated the electrons and ions with re-
spect to the magnetic field in the PIC runs on dependence on bg, by looking at the locations
where these processes develops. The purpose is distinguish which heating mechanisms
are generated by the reconnection process itself and which ones are due to other instabili-
ties. The respective contour plots of these quantities for some PIC guide fields are shown
in Fig. 9.16, at the same usual time t = 50τA.
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Figure 9.16: Electrons and ion temperatures are reconnection peak time t = 50τA for

different guide fields, scaled with the factor Γ. Top row 1: δΓTe,‖/T0. Row 2: δΓTe,⊥/T0 .

Row 3: δΓTi,‖/T0. Row 4: δΓTi ,⊥/T0. Increasing guide field from left to right column: a)

bg = 5, b) bg = 10, c) bg = 20.

In Fig. 9.16, it can be seen that Te,‖ and Ti ,⊥ take maximum and minimum values in
the same pair of separatrices, correlated with the polarity of enhanced density ne/n0 > 1
and thermal pressure (see Fig. 9.6). These quantities have more or less same values when
scaled on the guide field, except in the case Te,‖ for bg = 5 showing large deviations. On
the other hand, both Te,⊥ and Ti,‖ have opposite polarity. This means that the perpendicular
ion temperature is heated more than the parallel one Ti,⊥ > Ti,‖ in the same pair of sepa-
ratrices where the parallel electron temperature is enhanced. Moreover their temperature
is increased only in a fraction of the electron one (is reduced in a factor of

√
mi/me). But

because the ion density has more or less the same distribution as the electron density, the
overall contributions of the ions to the thermal pressure Pi,th = nikbTi has the same sign
as those of electrons (i.e.: correlated with the sign of the density fluctuations).

An important numerical issue to take into account is the strong numerical heating
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observed in the PIC high guide field cases (see, e.g., Fig. 9.16(3rd column) for bg = 20).
The maximum of the Te,⊥ and Ti ,‖ are just a little bit above of the surrounding background
temperatures, enhanced at the noise level. Therefore, the quantitative conclusions in this
regime may be misleading. That is the reason because we are not going to analyze in
detail the behavior for guide fields in the range 20 < bg < 50 in the remainder of this
section. More about this issue will be discussed in Sec. 9.10.

We also need to prove that the previous behaviour of temperatures is characteristic
during all the reconnection process and not only during the specific time shown there
(t = 50τA). With this purpose, and similar to the method used for the magnetic and
thermal pressures in Fig. 9.9, we plot the maximum of the parallel and perpendicular
electron/ion temperature in an area close to the left CS. The results are shown in Fig. 9.17.
In general, we can see a fast convergence for all the PIC runs with guide field bg & 20
towards the gyrokinetic result, and larger deviation for bg = 5, 10.
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Figure 9.17: Time evolution of maximum of ‖ and ⊥ temperatures (normalized to the

initial T0). Top: electron ΓδTe,‖ and ΓδTe,⊥. Bottom: ion ΓδTi ,‖, ΓδTi,⊥. Note the different

y range for ΓδTe,‖ in comparison with the other ones.

In Fig. 9.17a-b), we can note that the parallel electron temperature Te,‖ increases from
the very beginning, as a result of the pile-up of them as the separatrices are slowly open
due to reconnection. This is also due to the fact that they can be easily accelerated due
to parallel electric fields E‖ generated during this process, mostly in the out-of-plane di-
rection. On the other hand, the perpendicular component of the electron temperature Te,⊥
only start to suddenly increase after the reconnection peak, as a result of processes related
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with the formation of secondary magnetic islands. Both mechanisms are well reproduced
by both PIC and GK runs. On the other hand, in Fig. 9.17c-d), we can see that ions de-
velop the opposite behaviour to the electrons: their perpendicular component is heated
from the beginning, while their parallel component is heated only after the reconnection
peak

This behaviour can be explained on basis to the CGL approximation discussed in
Sec. 2.6. This plasma approximation is specially suitable for strongly magnetized sys-
tems, like this case of low β plasma and predicts the invariance of two constants relating
the two components of the parallel and perpendicular of the thermal pressure with the
magnetic field. In particular Te,‖ ∝ n2/B2 and Te,⊥ ∝ nB. In basis of this plasma model,
Egedal et al. (2013) showed that the conditions in the magnetic reconnection regions are
favorable for the development of strong electron anisotropies Te,‖ > Te,⊥, especially in low
β plasmas according to a closure relations and scaling law that applies well to our case
(see also Hirabayashi and Hoshino 2013). This process physically originates from elec-
tron trapping, and it can be modeled well enough for both PIC and GK plasma models, at
least during the linear phase of magnetic reconnection. But this relies on the assumption
of negligible heat flux. We checked that this quantity starts to become important after
the formation of secondary magnetic islands, especially in the PIC low guide field regime
(results not shown here), and this might explain the differences between our results and
the GK plasma model that underestimates the parallel electron heating. Note also that
these strong electron anisotropies might explain the fast reconnection rates developed in
this low β plasma (Cassak et al. 2015) where it was traditionally thought that reconnection
should be slow. However, more work is needed to reveal the physical mechanism behind
this process in our case (see also discussion of Fig. 9.3).

9.7 Non-thermal and dissipative mechanisms

9.7.1 Deviations from thermal equilibrium

A characterization of the differences between PIC/GK would not be complete with-
out an analysis of the momenta of the distribution function that gives information about
out-of-equilibrium processes. The previous section about heating processes only gives
information about the diagonal component of the thermal pressure. This analysis is in-
teresting because most of the out-of-equilibrium processes cannot be modeled via fluid
models, in addition to the GK restriction concerning the small fluctuations from the (equi-
librium) Maxwellian distribution function. Moreover, there are many instabilities, like the
ones to be shown in Sec. 9.8, that can generate strong non-thermal features especially in
the electron VDF, due to the non-linear wave-particle interactions at kinetic scales.

These processes can be divided in the ones that affect to the off-diagonal terms of the
pressure tensor (2nd order momenta) and the ones affecting to other high order momenta
of the VDF

The relative importance of the off-diagonal terms of the pressure tensor can be quan-
tified through the non-gyrotropy Dng the distribution function, by using the definition
Eq. (B.93) (proposed by Hesse et al. 2014), as explained in Appendix B.2.6. A compari-
son of this quantity for different guide fields is shown in Fig. 9.18.
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Figure 9.18: Contour plots of the non-gyrotropy DNg of the electron VDF using the defini-

tion Eq. (B.93) for different guide fields at reconnection peak time. Left: bg = 5. Center:

bg = 10, Right: bg = 20. Note that the non gyrotropy is bounded between 0 < DNg < 1.

The off-diagonal terms in the electron pressure tensor, contributing to high values of
Dng as shown in Fig. 9.18, are related with a fluid pseudo-viscosity and the dynamics of
kinetic Alfvén waves, being generically classified as finite electron Larmor radius effects.
As we are going to discuss in Sec. 9.8, they are very related with steep local pressure
gradients, a source of free energy for micro-instabilities. Note that reconnection also
produces off-diagonal terms of the pressure tensor, especially in the component Pyz , whose
gradient can sustain the reconnected electric field. But this only takes place very close
to the X points. Indeed, we can see the highest values of Dng are reached in the pair
of separatrices with stronger density (same as current density), as well as around the
secondary magnetic islands, away from the X point and therefore not directly related with
reconnection.

Now, let us switch to the analysis of processes related with higher order momenta of
the distribution function and, therefore, strong deviations from a Maxwellian distribution
function. This is particularly interesting for the PIC simulations, since the GK approach
by definition cannot model processes deviating too much from the thermal equilibrium.

As we explain in Appendix B.2.1, a non-thermal population can be characterized very
efficiently (in the sense of not having to use the full information of the VDF) via the
kurtosis, the 4th order moment of the VDF, defined by Eq. (B.72). The results are shown
in Fig. 9.19 for the (electron) kurtosis Ky and Kz at reconnection peak time for a guide field
of bg = 5. We can see signatures of a non-thermal electron population in the component vy

(high values of Ky > 0) very localized in one separatrix, but especially in the component
vz along an extended region in both separatrices, as well as in the outflow region. These
regions are both spatially and temporally correlated with the locations and time where
the instabilities to be described in Sec. 9.8 are active, being therefore a consequence of
them. This non-thermal population vanishes for the PIC runs with higher guide field.
Also note that the highest values of kurtosis are much more localized than those of the
non-gyrotropy (see Fig. 9.18(a)).

The highest values of kurtosis Kz > 0 are in the low density pair of separatrices, while
the high density pair has Kz < 0 . The behaviour of Ky is the opposite. Now, let us check
how well these values correlate with the locations where electron are being accelerated.
For this purpose, we identified the most energetic electrons in an area close to both the
separatrices and secondary magnetic islands. The results are shown in Fig. 9.20.
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9.7 Non-thermal and dissipative mechanisms

Figure 9.19: Left a): Electron Kurtosis Ky. Right b): Electron Kurtosis Kz . The kurtosis

in x direction is negligible (practically Maxwellian distribution function).
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Figure 9.20: Left panel: Location of the 1000 most energetic electrons inside of the black

region. Right panel: Electron energy spectra K/mec
2 = γ−1, with K the relativistic kinetic

energy and γ the relativistic factor (log-log scale), for the same region shown above. The

slope indicates the power-law index fitted to the spectrum of non-thermal particles with

energy inside of the region shown in vertical dashed bars. The red curve is a (theoretical)

Maxwellian with the same initial electron thermal speed.

Most of the accelerated particles are located in the enhanced density separatrix, and
fewer in the outer boundary of the secondary magnetic island (almost no energetic par-
ticles are inside of the latter). The energy spectra exhibits a relatively hard tail (power
law index of −2.8). But in summary, positive values of the kurtosis Kz > 0 do not cor-
relate with these acceleration regions. Instead, they exhibit mostly the opposite behavior:
Kz > 0. In order to understand why, we need to resort to the full information contained in
the electron VDF. This is shown in Fig. 9.21 for three small characteristic regions in one
separatrix, at the edge of one secondary magnetic island, and in the outflow region.
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Figure 9.21: Signatures of electron acceleration and beam formation for the PIC run

bg = 5 at reconnection peak time t = 50τA.

Top row: Out-of-plane current density Jz showing in a black square three selected regions.

Middle top row: Phase spaces (x vs vx), (x vs vy) and (x vs vz) of the electron distribution

function for the regions shown above. Black dots indicate the position of the 1000 most

energetic particles inside of the chosen region.

Middle bottom row: Electron velocity distribution functions (vx vs vy), (vx vs vz), (vy vs vz)

and (v‖ vs v⊥) for the same regions shown above.

Bottom row: Electron energy spectra K/mec
2 = γ − 1, with K the relativistic kinetic

energy and γ the relativistic factor (log-log scale), for the same regions shown above. The

slope indicates the power-law index fitted to the spectrum of non-thermal particles with

energy inside of the region shown in vertical dashed bars. The red curve is a (theoretical)

Maxwellian with the same initial electron thermal speed
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9.7 Non-thermal and dissipative mechanisms

In Fig. 9.21, we finally disclose the reason of the anomalous behaviour of the kurtosis.
The VDF shown in the middle bottom row exhibits double peak structures (beams) along
vz in all the regions indicated. In particular it can be seen a highly structured electron
velocity distribution function inside of the magnetic islands, with several beams in the vz

direction. Unfortunately, this streaming free energy cannot be released so easily since no
wave can propagate along z direction. This obviously bias the result of Kz based on single
peak structures. Nevertheless, even for Kz < 0 it is still a good indicator of the locations
where particles are being accelerated.

On the other hand, in Fig. 9.21(bottom row) we can confirm, through the energy spec-
tra, that the accelerated particles are indeed in one separatrix and, to a lesser degree, in
the secondary magnetic island, but not in the outflow region. Although it is also shows
a beam formation in this region, its energy spectra does not deviate too much from a
Maxwellian one. Therefore, we can conclude that the process leading to beam formation
is different from the one accelerating particles. However, more work is needed to disclose
its mechanism.

Before closing this section, three important observations are worth to mention for
possible future work extending the results shown here. First, the phase space plots in
Fig. 9.21(middle top row) show signature of electron trapping (elliptical structures) in the
phase-space x-vz for earlier times such as t = 37τA (plots not shown here). These elliptical
trapping structures saturates afterwards, and for the time shown here t = 50τA, they lead
to regions in the phase space with absence of particles, generating thus the double peak
structures (beams). The second remark is about how misleading can be the macroscopic
moment Jz to describe the structure of the reconnection outflow. Indeed, in Fig. 9.21(3rd
column) demonstrates that there are two beams drifting in opposite directions along z, but
their mean is practically zero, and so Vz and Jz . This microscopic behaviour cannot be
captured with only the analysis of this first order momenta. And finally, the third remark is
that we carried out a similar analysis for higher guide field (bg = 20). All these processes
are diminished: less accelerated particles and practically no double peak structure in the
electron VDF for vz.

9.7.2 Charge separation and in-plane electric fields

Another important difference between the GK and PIC runs with low enough guide
field are the deviations from quasineutrality in the latter ones, something not allowed in
the GK approach. This can be seen by comparing Fig. 9.22a1 for bg = 5 with Fig. 9.22a2)
for bg = 30, showing the charge separation ρc = (ni − ne)/ni . This charge separation is
produced due to the decoupling of ion and electron motions due to their different iner-
tia. The low guide field regime in the PIC runs favors this kind of processes, since the
overall dynamics of the system is faster in absolute terms (higher ratio of VA/vth,i, as dis-
cussed in Sec. 9.5.1). Note that the locations where the charge separation is higher are
correlated with the regions where the relative perpendicular electron-ion drift speed take
higher values, as can be seen by comparing Fig. 9.22a1 with Fig. 9.24a1). These are in
the asymmetric separatrix arm and in the outer boundary of secondary magnetic islands.
Therefore, it can be expected that those regions will experience additionally a host of
kinetic effects typically found below Debye lengths. Because the GK runs used a zero
Debye length, more differences are expected in these regions compared to the PIC runs.
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9 Instabilities of force free CS in large guide fields and comparison with GK

Even more: the linear theory of all previously described micro-instabilities relies heavily
on the quasineutrality assumption. Then, one can infer that in these regions with non-
neutral plasmas the dynamics of the system might be very different from the explained
previously (Davidson 1988), and thus all the previous estimations should be handled with
caution and just as a first order estimation.

It is important to remark that the charge separation in the PIC low guide field regime
is unnaturally high, because it is dependent on the frequency ratio ωpe/Ωce that is kept
much lower in PIC simulations than in real physical environments (like planetary mag-
netospheres), due to computational constraints (Chen et al. 2012). This artificial effect
is additionally enhanced for the low mass ratios used in our runs, since this parameter
brings much closer the electron and ion dynamics: the electrons cannot screen effectively
any charge separation driven by ion motion because they are heavier than they should be
in reality.

Figure 9.22: Top row a1-3): guide field bg = 5. Bottom row b1-3): guide field bg = 30.

Left column a1-b1: charge separation ρc = (ni − ne)/ni. Middle column a2-b2: Non ideal

electric field E′x/BT . Right column a3-b3: Non ideal electric field E′y/BT . The non-ideal

in-plane electric fields have been calculated subtracting the convective electric field due

to electron motion (i.e.: in its own reference frame): E′x,y = Ex,y − (~Ve × ~B)x,y. All the

quantities are calculated at reconnection peak time t = 50τA. Note that all the color

scales have been scaled between the minimum and maximum values in the plotted region.

The charge separation produce local steady in-plane electric fields in the region around
the separatrices and in the outer boundaries of the secondary magnetic islands. Same as in
the previous sections, those electric field are computed in the electron frame of reference
~E′ as defined by Eq. (2.26). The strongest electric fields are in the same direction of the
gradients generated via the shear flow and/or reconnection: across the current sheet in
the x direction Fig. 9.22a2). The Ey component in Fig. 9.22a3) is much weaker since the
gradients in that direction arise as a result of secondary instabilities, not driven directly
by the reconnection process. Note that although in the regime between bg = 5 − 20 the
charge separation and E′x component scale linearly with the guide field, for higher guide
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9.7 Non-thermal and dissipative mechanisms

fields they are of comparable magnitude to the surrounding noise level, which is kept
more or less constant (compare the top row a1-3) for bg = 5 with the bottom row b1-b3)
for bg = 20 in Fig. 9.22. There is even no visible large scale structures for E′y in the case
of bg = 20. This can be seen more clearly in Fig. 9.32 in Sec. 9.10, where we discuss the
dependence of these and other quantities on the numerical PIC noise.

9.7.3 Dissipation measures

Dissipation of electromagnetic to particle energy can happen as consequence of the
reconnection process (always close to the diffusion region in the X point) or due to sec-
ondary instabilities. Therefore, it is important to investigate the differences in the dissi-
pation between the PIC runs for different guide fields and the corresponding GK results.
However, there are many different possible measurements of the dissipation. The first
one is just directly to use ~J · ~E. But there are several potential drawbacks of using this
definition, specially because it has contributions from the convective electric fields due to
electron motion, which are important in some parameter regimes. Therefore, it is more
convenient to use the electric fields calculated in the electron frame of reference accord-
ing to Eq. (2.26), changing the resulting dissipation since it is not a Lorentz invariant. In
addition, we already saw that charge separation effects contribute to additional in-plane
electric field in the PIC low guide field regime, adding an unwanted effect not related
with a “true” dissipation (see Fig. 9.22). A self-consistent definition that takes into ac-
count all these effects (being therefore relativistically covariant) was proposed recently
by Zenitani et al. (2011). It is claimed that allows to identify the location and size of the
dissipation region more precisely. In the non-relativistic regime (for relativistic factors
γ ∼ 1), it is given by:

De = ~J ′ · ~E′ = ~J ·
(
~E + ~Ve × ~B

)
− ρc

~Ve · ~E, (9.45)

where ρc is the net charge separation, a correction due to the work done by moving the
charge against the electric field . The results of this calculation for differences guide fields
are shown in Fig. 9.23(bottom row).

First of all, in Fig. 9.23 we can see the previously mentioned dynamo effect ~J · ~E < 0
inside of the secondary magnetic islands, due to the generation of core-magnetic field re-
sulting from the shear flow, becoming stronger in the low guide field regime (e.g., bg = 5).
Second, note the asymmetry in the dissipation region with ~J · ~E > 0 along the separatrices.
By comparing with the symmetric dissipation regions using the definition De = ~J ′ · ~E′,
we can conclude that it is mostly due to bulk electron motions, a side effect of the shear
flow and not contributing with a true dissipation of energy. This is confirmed by the cor-
responding GK results: they also show a symmetric diffusion region around the X point
(plot not shown here). And third, note that indeed De localizes very well the X points: its
maximum positives values are reached in these regions. This is in contrast to the usual
dissipation ~J · ~E, exhibiting elongated regions with ~J · ~E > 0 along one of the separatri-
ces. But the region close to the X point do not show signatures of enhanced thermal, non
thermal or wave activity: the pressure tensor is not particularly non-gyrotropic here (see
Fig. 9.18) and although there are indications of the presence of particle acceleration (see
Fig. 9.19), other regions (separatrix) seems to be much more effective in producing this
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(a) bg = 5 (b) bg = 10 (c) bg = 20

(d) bg = 5 (e) bg = 10 (f) bg = 20

Figure 9.23: Contour plots of two dissipation measures for different guide fields, at re-

connection peak time, normalized to J0B∞yVA. Top: ~J · ~E. Bottom: Covariant dissipation

in the electron frame of reference De = ~J ′ · ~E′, following Eq. (9.45).

kind of high energy phenomena. There is only a weak correlation with the locations of
deviations from quasineutrality, but nothing more important than that (see Fig. 9.22).

9.8 Evidence for cross-field streaming instabilities

There are a host of micro-instabilities that may be triggered by flows as their source
of free energy. Their threshold depends critically on the ratio of the flow speed V with
respect to the electron/ion thermal speeds V/vth,i . On the other hand, reconnection dynam-
ics is governed by the value of the in-plane Alfvén speed VA. Therefore, the relative value
of the Alfvén to ion thermal speeds play a critical role in determining if a system would
be unstable to some of these instabilities. But the ratio VA/vth,i in Eq. (9.43) do changes
for different PIC guide field runs, while for GK depends that may depend on the choice
of β. Therefore, it is natural to expect that a PIC run with low guide field would be poten-
tially more prone to some of these instabilities. Furthermore, the characteristic frequency
of some of them may be higher than the ones allowed by the GK approach, making a
difference when comparing with the corresponding PIC results. For these reasons, it is
interesting to analyze the evidences for the possible instabilities in this regime case by
case.

9.8.1 Criteria for instabilities ruled out

Note that we are interested in the micro-instabilities driven by a relative electron-ion
drift mostly perpendicular to the magnetic field ~Ve−i ⊥ ~B. This is because the dominant
guide magnetic field is in the out-of-plane ẑ direction, perpendicular to the reconnection
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9.8 Evidence for cross-field streaming instabilities

plane x̂ − ŷ where the distinctive flows should develop, and due to our 2D geometry that
do not allow instabilities propagating along the ẑ direction. The different characteristic
of this family of instabilities were discussed in Sec. 5.4.2. Thus, we ruled out streaming
instabilities that propagates along the magnetic field direction, such as the well-known ion-
acoustic or Buneman instabilities . There are also instabilities that propagates obliquely
to the magnetic field but with a parallel streaming as their source of free energy (see
Sec. 5.4.1), such as the ion cyclotron harmonic wave instability (ICHWI). We also rule
out these ones, since their growth rates are on the order of Ωci , corresponding to typical
time scales of magnetic reconnection, and thus being unlikely to be of importance.

But not all is lost. Other category of instabilities are the so called cross-field streaming,
propagating almost perpendicular to the magnetic field direction (in this case, mostly
along ẑ), being fed by streamings also perpendicular (in this case, in the reconnection
plane). Now, one of the most important cross-field streaming instabilities in principle
allowed in our system is the electron cyclotron drift instability (ECDI) (see Sec. 5.4.2.1
and the pionner works by Forslund et al. 1970, Lampe et al. 1971, Forslund et al. 1972).
This instability operates at frequencies given by the harmonics of Ωce, and with very high
threshold speeds: V0

vt h,e
&
Ωce

ωpe
> 1. This is a value higher than the obtained in our runs for

the low beta case, and that is why we also ruled out the existence of this instability in our
system. Note that with more realistic frequencies ratios (ω pe/Ωce ≫ 1), this condition can
be more easily satisfied.

Thus, finally we have three remaining options of cross-field instabilities, to be dis-
cussed next:

9.8.2 Modified two stream (MTSI)/Kinetic cross-field streaming (KCSI)

instabilities

As discussed in Sec. 5.4.2.2, this non-resonant or reactive (fluid-like) instability has
a weak temperature ratio dependence and a threshold of the order of vth,i , with typical
frequencies in the lower-hybrid range (intermediate between Ωce < ω < Ωci). In this
point it is interesting to mention the work by Fujimoto and Machida (2003), proposing
an interplay between both KCSI and ECDI taking place during magnetic reconnection, as
discussed in Sec. 5.4.2.3. That study was applied in a high beta regime, for applications to
Harris current sheet without guide field. We propose that a similar mechanism is operative
in our simulations, although with only MTSI since ECDI is already ruled out due to its
high threshold speed. This may explain in part of the different behaviour seen in the
low guide field PIC runs in comparison with the high guide field cases or the gyrokinetic
limit. We will focus in the region close to the separatrices (not in the secondary magnetic
islands). In our case, the character of these instabilities will change somewhat from the
analysis by Fujimoto and Machida (2003) in the low beta regime.

Let us make some quantitative estimations to test the possible existence of MTSI in
our scenario. This instability is possibly triggered during the early, linear stage of the
reconnection before its peak (t & 40). First, recall that the instability domain of allowed
drift speeds of MTSI is bounded in both directions. The bottom threshold is obtained by
the requirement of overcoming ion Landau damping, while the upper threshold is given
by the stabilizing effects of electromagnetic terms in the otherwise electrostatic instability,
resulting thus the expression Eq. (5.101) written for our parameters (in the low beta case)
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1 <
V

vth,i

.

√
2

1+ βe

βi

∼ 20 (9.46)

−34 −32 −30 −28
x /ρi

0.0

0.5

1.0

1.5

2.0

2.5

V
p

e
rp

,r
e

l(x
)/

v
th

,i

b1)

−34 −32 −30 −28
x /ρi

0.0

0.5

1.0

1.5

2.0

2.5

V
p

e
rp

,r
e

l(x
)/

v
th

,i

y/ρi=00
y/ρi=−05
y/ρi=−10
y/ρi=−20
y/ρi=−30
y/ρi=−40

b2)

−34 −32 −30 −28
x /ρi

0.0

0.5

1.0

1.5

2.0

2.5

V
p

e
rp

,r
e

l(x
)/

v
th

,i

b3)

Figure 9.24: Relative perpendicular streaming electron-ion drift speed V⊥,rel/vth,i =

|~Ve,⊥ − ~Vi,⊥ |/vth,i across the left CS, for three different values of guide field at reconnec-

tion peak time t = 50τA. Top row a1-3) Contour plots (scaled between zero and the

maximum in each case). Bottom row b1-3): Profiles across x at different distance y. Left

column a1)-b1) bg = 5. Middle column a2-b2 bg = 10. Right column a3-b3 bg = 20. All

the quantities have been normalized to the instantaneous and local value of vth,i(~x, t). The

threshold for MTSI is 1 in these units.

We can see in Fig. 9.24 that only in the low guide field regime bg = 5 and bg =

10 the instability condition is reached in some localized regions in the separatrices. It
never reaches values higher than |~Ve,⊥ − ~Vi,⊥ |/vth,i > 1 for guide field strengths bg &

20. For later times the relative drift speed does not increase further much. Note the
asymmetry in the separatrices: in one pair the relative drift speed is higher than in the
other, and correspondingly the growth rate and non-linear effects of the MTSI instability
are expected to be more important. This is due to the influence of the initial shear flow,
and therefore is natural to see that the locations with higher values of relative electron-
ion streaming become more symmetric and close to the outflows for increasing guide
fields. None of these processes are captured for high guide field cases or the gyrokinetic
simulations.

Second, MTSI has a both maximum growth rates and real frequencies on the order of
the lower hybrid frequency Ωlh (see discussion of Eq. (5.92)). This is in a frequency range
outside of the allowed by the gyrokinetic approach, and it should be observable only with
PIC simulations. Note that this quantity is guide field independent on the PIC runs and in
between the ion and electron cyclotron frequencies, Ω−1

ce /ω
−1
pe = 0.8 < Ω−1

lh
/ω−1

pe ∼ 6.4 <
Ω−1

ci /ω
−1
pe = 20, for the low beta case. Compare this frequency with the Alfvén time, for
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9.8 Evidence for cross-field streaming instabilities

a case with low guide field bg = 5 : τA/ω
−1
pe ∼ 20 and a high guide field case bg = 50

τA/ω
−1
pe ∼ 200. On the other hand, we mentioned that for low beta plasmas, the levels

of electrostatic and magnetic fluctuations will be similar (Wu et al. 1983). And indeed,
we saw some signatures of high frequency fluctuations in both magnetic fields and the
electric fields measured in the electron frame of reference (Eq. (9.45)), although the plots
are not shown here

Third, the linear theory (McBride 1972) predicts an almost perpendicular propagation,
with an angle (between ~k and ~B) at maximum growth rate tan θ = k⊥/k‖ =

√
me/mi . For

our parameters is θ ∼ 78.7. Note that k‖ will shift from being strictly in the z direction
in the infinite guide field limit (not observable due to the 2D constraint) to have a more
significant in-plane component for low guide fields, because the ratio B∞y/Bg ∼ 1/b̂g is
reduced. Therefore, the large but required k‖ component of MTSI (there is no instability
for strictly perpendicular propagation) will become more significant, and so its effects, in
the low guide field regime. Regarding the wavelength of the most unstable modes, the
linear theory predicts a perpendicular wavenumber at maximum growth rate of the order
k⊥,max ∼ Ωlh

2V0
(see Eq. (5.92)), which for our parameters implies a wavelength

λ⊥,max

ρi

∼ 4.023
V0

vth,i

(9.47)

We have estimated this wavelength in the contours plots of the electrostatic fluctuations
in FigFig. 9.22. Note that this quantity imply shorter wavelengths for higher guide fields
or earlier times, because the ratio V0/vth,i is reduced.

Fifth, and finally, kinetic and electromagnetic effects are known to reduce substantially
the consequences of this instability in the high beta range of parameters (Wu et al. 1983,
Winske et al. 1985). This is because electrons become more resonant producing enhanced
Landau damping. Numerical solutions of the linearized dispersion relation show that the
growth rates are significantly reduced as well as the ion/electron heating. In addition,
the heating becomes more isotropic for ions, while more anisotropic for electrons (more
field aligned). And the relative heating ratio between electrons and ions changes from
one to higher values (more energy goes to electrons than ions). Another difference in the
high beta range of parameters is that range of unstable wavenumbers is increased and the
propagation angle at maximum growth rate is even more oblique. This implies that the
in-plane component of the unstable waves decreases in comparison with the low beta case,
and therefore the observable wavelengths should be reduced.

Now, some words about the influence of these instabilities in reconnection. We ob-
served that in the low guide field regime where this instability operates, the reconnection
rate decrease (see Fig. 9.3). In addition to all the reasons given in Sec. 9.5.6 if these micro-
instabilities operates, its effect will also tend to reduce reconnection rate as well. This is
because in our setup this kind of instabilities are of secondary importance in comparison
with magnetic reconnection, and the electrostatic fluctuations can absorb part of the mag-
netic energy released via reconnection, decreasing its rate (see some other examples from
previous works in Sec. 5.4.2.3)

Summarizing this section, there are strong indications that a cross-field streaming
driven micro-instability operates for PIC runs with low enough guide field. Its main
effect seems to be the enhanced electrostatic fluctuations taking place in one pair of the
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9 Instabilities of force free CS in large guide fields and comparison with GK

separatrices, heating the electrons in these regions and contributing to the asymmetry
between thermal and magnetic pressures there.

9.8.3 Gradients driven instabilities

9.8.3.1 Lower hybrid drift instability (LHDI)

As discussed extensively in Sec. 5.4.2.4, LHDI is a instability driven by pressure gra-
dients: either in density or temperature. And similarly to MTSI, it also has growth rates
and typical frequencies are also on the order ofΩlh. The mechanism is indeed very similar:
the diamagnetic drifts generated by these gradients produce cross-field currents that be-
haves analogously to the ones required for the triggering of MTSI, as can be seen from the
Eq. (5.104) or Eq. (5.105). It states that cross-drift speeds in units of vth,i are proportional
to gradients in length scales of ρi. Thus, if present, their effects are added up (destabiliza-
tion becomes easier). Since the threshold is given by Eq. (5.107), we infer that gradients
steeper than ρi or diamagnetic drift speeds higher than vth,i will drive unstable LHDI. But
that expression was derived assuming unmagnetized ions ω ≫ Ωci and neglecting finite
ion Larmor radius effects k⊥ρi ≪ 1. But for gradients on the order of (ironically) ρi or dia-
magnetic drift speeds on the order of vth,i , especially the second assumption breaks down.
A more accurate threshold condition was derived by Davidson et al. (1977) taking into ac-
count these finite ion Larmor effects and given in Eq. (5.112). Note that these thresholds
are not absolute, in the sense that LHDI can still operative with gradient lengths below
ρi, but with reduced growth rates (Davidson and Gladd 1975). In this sense, LHDI is a
quite ubiquitous instability, not being shut-down completely so easily. Another impor-
tant remark provided by full numerical solutions is that the typical wavelengths of LHDI
for our parameter regime Ti ∼ Te (where many analytical approximations breaks down)
is k⊥ρe ∼ 1 over a wide range of values of diamagnetic drifts speeds around VD,⊥ ∼ vth,i

(Davidson and Gladd 1975). These are wavelengths shorter than those of MTSI, implying
that electron finite Larmor radius effects are essential to describe properly this instability.

Now, let us compare the respective LHDI thresholds in the PIC runs for the gradi-
ent strengths. The maximum values reached by these perpendicular electron pressure
gradient across the CS at different distances y from the center are shown in Fig. 9.25
at a reconnection peak time. The threshold values Eq. (5.107) or Eq. (5.112) are only
marginally reached in some localized regions for the cases with lowest guide field bg = 5
and bg = 10, especially across the separatrices and in the outer boundary of the secondary
magnetic islands. Then, in these places enhanced wave activity due to this instability is
expected.
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Figure 9.25: Profiles across the left CS (at different distances y) of the gradient length

scale of the perpendicular electron pressure (ρi/Pe,⊥)dPe,⊥/dx in units of ρi , for different

guide fields. b1): bg = 5, b2): bg = 10, b3) bg = 20, b4) bg = 50. All of them are for a

time t = 50τA

9.8.3.2 Comparison of ExB and diamagnetic drifts (MTSI vs LHDI)

As we already mentioned, those steps gradients produce cross-field currents that be-
haves similarly to those of MTSI. A natural question is to determine their relative con-
tribution to the total net current, or which one is dominant: either the diamagnetic drift
driven by gradients that feeds LHDI, or the VE xB drift source of free energy of MTSI
(since VExB is approximately the electron frame of reference, implying that the ions will
also have a relative drift of −VExB with respect to them). By combining both expressions
and assuming some other approximations, it is possible to establish that a system will
become unstable to MTSI and LHDI when both previously mentioned drifts are present
whenever the condition Eq. (5.106) holds. in other words, each drift individually should
be higher than vth,i assuming Ti = Te , or otherwise, one of them should compensate the
another weaker one by having proportionally much higher values than vth,i . A comparison
of these drifts can be seen in Fig. 9.26.

Figure 9.26: Contour plots of characteristic drifts along y direction (with color tables

scaled between ± the maximum value in each case, in order to improve visualization).

Top row: drift VExB,y. Bottom row: diamagnetic drift VD,y. Columns more to the right

indicate higher guide fields. a1-2) bg = 5. b1-2) bg = 10. c1-2) bg = 20. d1-2) bg = 50.

The normalization is with respect to the initial value of vth,i.

The first point to note in Fig. 9.26 is that the steep gradients regions (proportional
to the diamagnetic speed by Eq. (5.104)) prone to LHDI are much more localized than
those where MTSI is expected (compare also with Fig. 9.24). These locations also change
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9 Instabilities of force free CS in large guide fields and comparison with GK

from being in one of the separatrices (and secondary magnetic islands) to the outflows by
increasing guide field, due to the weakening asymmetric effect of the initial shear flow.

Second, the relative ratio of the diamagnetic to E × B drift is roughly 0.5 (taking into
account the peak maximum values), being more or less constant among different guide
field strengths. Note that both drifts scale inversely with the guide field in units of vth,i,
or equivalently, they have the same values in units of the Alfvén speed VA for different
guide fields. The diamagnetic drift reach supersonic speeds only for guide fields bg . 5,
while the ExB drift for guide fields bg . 10. Therefore, LHDI is expected to play a
less important but it is still significant role in comparison with MTSI for the low guide
field regime, because it always adds-up free energy available for instability, enhancing
growth rates. Another consequence of the relative ordering of these drift speeds is that the
GK perpendicular drift approximation should break down precisely for these guide field
values where VExB or VD reach supersonic speeds (see Sec. 9.5.1).

Finally, in both Fig. 9.26 and Fig. 9.25 we can see that the gradient effects are com-
pletely negligible in the large guide field limit, since these are reduced below the level of
numerical noise. On the other hand, the ~E × ~B drift is still significant even at bg = 50,
since after all these are the motions that drive reconnection process. Therefore, this is
even another reason where convergence with the GK runs is expected in this regime.

An important point is that the small wavelengths of LHDI instabilities make necessary
the inclusion of finite electron Larmor radius effects. Whenever there are steep gradients
at length scales smaller than ρi , the inclusion of these effects become essential. We already
showed that a signature of the importance of these effects is given by the non-gyrotropy of
the electron VDF DN g. And indeed, the locations where this quantity takes higher values,
as shown in Fig. 9.18, are correlated with the regions where the diamagnetic drift peaks
(see Fig. 9.26(bottom)).

9.8.3.3 Electron-ion hybrid (EIH)/Kinetic Kelvin-Helmholtz instabilities

Not only gradients in pressure can trigger instabilities. The reconnection process can
generate, in the PIC low guide field regime, very steep gradients in the flow as well. In
these cases the free energy source comes from these strong sheared flows producing the
instabilities discussed in Sec. 5.3.2.1, in particular the so called electron-ion hybrid (EIH)
instability. This has also frequencies in the lower hybrid-range Ωlh when the gradients in
velocity (with frequency units) are steeper than that value, according to Eq. (5.72). As in
the discussion of MTSI and LHDI, instabilities with frequencies in this intermediate range
betweenΩce < ω < Ωci can drive particles out of their ~E×~B drifts, thus breaking one of the
GK assumptions and making differences with the PIC runs in the low guide field regime.
Because we already saw the effects of instabilities in this frequency range in the previous
section, it is worth and interesting to check the conditions for the triggering of EIH in
our case. Furthermore, the source of free energy of these instabilities have effects that
always add up (never compensates): relative streaming/ExB drift drives MTSI, pressure
gradients/diamagnetic drifts drives LHDI, and velocity shear drives EIH. Other related
source of free energy, the gradient in magnetic field strength, is ruled out because it is
negligible for the low beta case.

Therefore, since the flow that can drive this instability has to be in the y direction, we
can estimate the conditions for its existence by showing the gradients in the flow speed
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dVe,y

dx
measured in units of Ωlh, as shown in Fig.Fig. 9.27.
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Figure 9.27: Top row a1-3)/bottom row b1-3): Contour plots/profiles across X of the

normalized shear flow strength (1/Ωlh)dVe,y/dx for different guide fields. a1-b1: bg = 5,

a2-b2: bg = 10, a3-b3 bg = 20. All the plots are for a time t = 50τA. The threshold of

EIH is 1 in these units.

Two important consequences can be extracted from Fig.Fig. 9.27. First of all, the
shear flow gradients are steeper than the threshold condition Eq. (5.72) in some localized
regions around the asymmetric separatrix arm and the outer boundary of the secondary
islands, similarly to the discussion of the previous instabilities. Then, enhanced wave
activity and ion heating is expected in the same locations due to EIH. Second, the peak
value has an offset with respect to the one from the relative electron-ion drift speed (see
Fig. 9.24) or (see Fig. 9.25) pressure gradients. The shear flow gradient peaks at the edges
of the thin channels with enhanced relative streaming speed, and therefore it might extend
the instability region by the main MTSI instability on the order of ρi.

9.8.3.4 Thermal effects due to secondary instabilities

Both linear and quasilinear theories of the previous three described instabilities related
with cross-streaming and gradients make relevant predictions related with the ion/electron
heating. We verified that the parallel electron and perpendicular ion heating take place
exactly for the locations and times where the relative-streaming and pressure/velocity
gradients crosses their respective thresholds. All those processes goes down for increasing
guide field, since the source of free energy of the instabilities is reduced, converging to
the GK results.

Quasilinear estimations at saturation time of MTSI (in the low beta regime) predicts
perpendicular ion heating comparable to a parallel electron heating (same behaviour seen
in our runs), with a magnitude given by Eq. (5.98) proportional to the cross-streaming
speed magnitude V0. This means that the additional heating due to this instability scale
inversely with the guide field, because of the dependence of V0, which is a good estimate
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for the behaviour seen in Fig. 9.17a-c. On the other hand, we could not observe that the
streaming free energy is equipartitioned between the thermal energies of ions and elec-
trons, due to possibly other assumptions not taking into account there. The heating mech-
anism due to MTSI can be understood as follows (McBride 1972, Fujimoto and Machida
2003). As we mentioned, this instability has almost perpendicular propagation, but never-
theless requires a finite k‖ in order to exist. It is in this direction parallel to the magnetic
field where the oblique MTSI waves produce potential troughs where the electrons can
be trapped, due to their free streaming along this direction. For higher guide fields and
GK runs, k‖ is completely negligible because the 2D geometry of the runs (it is almost
completely in the ẑ direction). But in the lower guide field regime the parallel direction
has a small but significant in-plane component, since the ratio with the in-plane magnetic
field is reduced. Therefore, only for reduced guide fields potential troughs can be formed
along the projection of k‖ on the reconnection plane, and thus the efficiency of parallel
electron heating is enhanced.

On the other hand, since LHDI has a completely analogous mechanism (see Sec. 9.8.3),
which a contribution to the source of free energy coming from the diamagnetic drift, a sim-
ilar prediction to MTSI related to the heating is expected for this instability.

Finally, EIH instability also predicts a perpendicular ion heating (Romero and Ganguli
1993, Ganguli et al. 1994), basically due to resonant interaction of the lower hybrid waves
generated by them with the ion VDF. Therefore, its contribution to the overall additional
ion heating adds up with the ones due to the previous instabilities.

Some of the theoretical disagreements with the results of our simulations can be un-
derstood since it is necessary to keep in mind that different from the original studies of
instabilities in homogeneous plasmas, a saturated or stable state is not reached due to
the highly dynamic conditions of the evolving current sheet: the source of free energy is
continuously fed by the development of magnetic reconnection.

9.9 Finite plasma beta effects

In this section we address the effects of the plasma beta in all the previous results,
using the “high beta” case runs with βi = 1.0. In general, the basic phenomena to be
described are similar to the previously discussed low beta case (βi = 0.01). But when
comparing the different PIC guide fields in the range bg = 1 → 10 with GK runs, we
notice that the agreement is better, as seen in the reconnection rates of Fig. 9.3(b), as well
as in the time evolution of the scaled magnetic fluctuations ΓδBz, shown in Fig. 9.28(b).

9.9.1 Differences in the pressure equilibrium condition

There are at least two related reasons for the better agreement in the high beta case.
The first one is because the absolute magnitude of the fluctuating quantities δP th and

δBz are proportional to ∝ 1/
√
β (see Eq. (4.33) and Eq. (4.36)), and thus smaller by around

one order of magnitude compared to the low beta case. In addition, the GK ordering
parameter ǫ will also be reduced (see discussion of Eq. (9.35)), improving the validity
of the model in this parameter regime. The physical consequences in that the largest
deviations from the pressure equilibrium condition will be reduced by the same amount,
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Figure 9.28: Time history of the maximum value of the scaled thermal ΓδPth/Pth,0 (a) and

magnetic fluctuations ΓδBz/BT (b) for different PIC guide fields and the corresponding

GK result, in the high beta case β = 1.0. To be compared with Fig. 9.9. The scaling factor

Γ (Eq. (9.37)) for the PIC runs was calculated using a reference guide field bg,re f = 5.

Reproduced with permission from P. A. Muñoz, D. Told, P. Kilian, J. Büchner and F. Jenko,

Physics of Plasmas 22, 082110, (2015). Copyright 2015, AIP Publishing LLC.

making more accurate the predictions of the GK approach compared to a Vlasov plasma
(and the respective GK/PIC simulations). This can be seen in the plots comparing the
thermal δPth , magnetic δBz and total pressure δPtotal fluctuations in Fig. 9.29 for different
PIC guide fields and the corresponding GK result. Specifically, from looking at the values
of Fig. 9.29(4th column) we can infer that the maximum net force due to the total pressure
imbalance in the PIC low guide field regime will be much smaller than in the low beta
case. The time evolution of the thermal pressure fluctuations ΓδPth in Fig. 9.28(a) displays
a different behaviour between the results given by both codes.
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Figure 9.29: High beta case. Contour plots of several scaled fluctuations for different

PIC guide fields and the corresponding GK result, at a time t = 50τA.

First row: ΓδPth/P0 a1) bg = 1, b1) bg = 3, c1) bg = 5, d1) GK. (to be compared with

Fig. 9.6).

Second row ΓδBz/BT a2) bg = 1, b2) bg = 3, c2) bg = 5, d2) GK. (to be compared with

Fig. 9.7).

Third row: Respective 2D (frequency) histograms with the correlation between the mag-

netic and thermal fluctuations ΓδBz/BT and ΓδPth/Pth,0. a3) bg = 1, b3) bg = 3, c3)

bg = 5, d3) GK. The points used to generate these plots correspond to the regions with

the current density Jz above the 10% of its initial value Jz(t = 0). The diagonal black

straight line with slope −βi represents the pressure equilibrium condition in the limit of

strong guide field Eq. (9.40).
Fourth row: Respective contour plots for the scaled total pressure ΓδPtotal/Pth,0. a4)

bg = 1, b4) bg = 3, c4) bg = 5, d4) GK. The latter is identically zero to machine pre-

cision. (to be compared with Fig. 9.8).

However, compared to the low beta case, we can immediately notice a big difference
inside of the secondary magnetic islands in the PIC low guide field regime (Fig. 9.29(first
columnn)). Besides of the expected core-magnetic field, there is also a thermal pressure
contribution negligible in the PIC high guide field regime or the GK simulations. This
makes the “bump” in the histograms δPth-δBz (Fig. 9.29(3rd columnn)) shifts from being
in the y axis (as in the low beta case) to the first quadrant.
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9.9.2 Flow pattern structure in magnetic islands and separatrices

The second reason for the better agreement in this high beta case between both simu-
lations models for the PIC guide field runs with bg & 3, compared to the low beta ones, is
also due to another fact related with the magnitude of the in-plane currents. The range of
variation of the Alfvén to ion thermal speed (Eq. (9.43)), is decreased by a small amount
in comparison to the low beta case: VA/vth,i = 0.1 → 0.7 going from bg = 10 → 1. This
means that the Alfvén velocities are always subsonic (even in the extreme case of bg = 0,
where a comparison between PIC and GK simulations would not make sense). As a re-
sult, the maximum values of the initial shear flow will also be subsonic. For the lowest
PIC guide field considered, bg = 1, the value is max(Vy0) ∼ 0.3VA ∼ 0.2vth,i . Moreover,
due to the fact that the maximum electron/ion outflows speeds in units of VA are propor-
tional to the reconnection rates, they will be reduced at least by a factor of two according
to Fig. 9.3(b). Therefore, these speeds will become negligible when measured in units
of vth,i, compared to the low beta case. For example, the measured maximum outflows
speeds are on the order of 0.75VA for electrons (see Fig. 9.30(top row)) and 0.3VA for ions
(see Fig. 9.30(bottom row)). This reduction is approximately by a factor of 3 compared
with the corresponding values in the low beta case.

Figure 9.30: High beta case. Top row: Vector plot of the in-plane electron bulk velocity

for different PIC guide fields and the corresponding GK result, at a time t = 50τA. Color

coded is the Ve,y/VA component. a1) PIC bg = 1 , a2) PIC bg = 3, a3) PIC bg = 5, a4)

GK.

Bottom row: Same as above but for the ion in-plane bulk velocity Vi,y/VA. b1) PIC bg = 1,

b2) PIC bg = 3, b2) PIC bg = 5, b4) GK.

The previous observation has two physical consequences. For the GK code, the max-
imum deviations from the drift approximation where this approach holds, proportional
to the maximum speeds in units of vth,i, will be smaller than in the low beta case (see
discussion in Sec. 9.5.1). Consequently, a comparison with the PIC runs will be more
reliable. For the PIC code, smaller reconnection rates implies less open separatrices and
smaller secondary magnetic islands. In the small guide field regime (bg ≈ 1) there is
still a strong effect of the shear flow around these structures, producing currents (see, e.g.,
Fig. 9.30(a1)-(a1)) which become negligible for bg & 3 (see, e.g., Fig. 9.30(b3)-(b3) for
bg = 5). In fact, the Hall term and the corresponding decoupling of electrons and ions
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is facilitated in high plasma beta environments. That is why we observed in-plane cur-
rent densities twice as high as the values seen in the low beta case (Fig. 9.12), as can be
calculated from the electron/ion flows in Fig. 9.30. But the generation of core magnetic
field, according to the estimate Eq. (9.44), is proportional to the length scale ∆L, which
is roughly five times smaller in this case compared to the low beta case (secondary mag-
netic islands close to the X point have size around ∼ 2ρi across the x direction, while
the magnetic island at y boundaries has size around ∼ 4ρi). Furthermore, the magnetic
field generation due to the colliding outflows at the y boundaries is decreased, since the
maximum outflows speeds are smaller than in the low beta case. All these predicted sig-
nificant deviations for the lowest PIC guide field case, bg = 1, can be seen in in the time
evolution of ΓδBz in Fig. 9.28(b). Note that according to the previous discussion, they
are much smaller in absolute terms compared with the low beta case: convergence with
the GK results (overlap of curves) is already reached for values bg & 3 (see, e.g., the
second column of Fig. 9.29 for bg = 5). It is important to mention that this reduction of
core magnetic field strength in high β plasmas was already found in hybrid simulations
by Karimabadi et al. (1999) (although for very low guide fields bg < 1).

There is another critical difference in the in-plane flow pattern in this high beta case
outside of the secondary magnetic islands. Both PIC high guide field simulations and the
GK runs show electrons returning in the outer boundary of the separatrices with respect
to the direction of the main reconnection outflow (see Fig. 9.29(c1)-(d1)). Thus, the Ve,y

component has an octupolar structure in these regions. This sheared velocity field gener-
ates enhanced density currents and associated magnetic field in these regions (although
with the classical quadrupolar structure, not like the octupolar one seen in the work by
Graf von der Pahlen and Tsiklauri 2013). The first effect can be seen in Fig. 9.31(c). In-
deed, the maximum values of the magnetic field as seen in the time history of Fig. 9.28(a)
are reached in these separatrices instead of the secondary magnetic islands. In the low
guide field regime, however, the initial shear flow is so dominant than the returning elec-
tron pattern is destroyed. Instead, in this regime, the magnetic field is generated only due
to the ion-electron decoupling.

Figure 9.31: Vector plot of the in-plane current ~J⊥ = Jxx̂+ Jyŷ for two cases of PIC guide

fields a) bg = 1, b) bg = 3, b) bg = 5, at a time t = 50τA. Color coded is the magnitude

of this in-plane current |~J⊥ |/Jz(t = 0). Note that because Eq. (9.34), Jz(t = 0) = JzN ∗ JN

varies with the PIC guide field (through JN).
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9.9.3 Summary: critical parameters for reliable PIC/GK compari-

son

Therefore, by analyzing a different set of runs in a high β plasma regime, we could
distinguish between the different effects of violations of the gyrokinetic ordering in the
GK runs and the initial shear flow always present in the PIC force free runs. The first
effect is encoded in the parameter ǫ (Eq. (9.35)), which can be as high as 4 in the low beta
case for the lowest guide field bg = 5. Then, strong deviations from the PIC simulation
results are be expected in that regime. On the other hand, ǫ = 0.2 for the lowest guide
field bg = 1 in the high beta case, and a better agreement is observed. However, we
still could find generation of core magnetic field and other phenomena associated with
the initial shear flow, although with reduced strength. This also breaks the comparison
between PIC to GK, but it does not only rely on the relative value of VA/vth,i and other
parameter associated to the initial shear flow, but also in the fact that reconnection rates
are smaller (less open separatrices and smaller magnetic islands). Thus, we can conclude
that a reliable comparison between PIC-GK simulations of magnetic reconnection can be
obtained with parameters that provides smaller fluctuations levels (high β plasmas), lower
ratios VA/vth,i and also relatively small reconnection rates dΨ/dt (proportional to Ve,out/VA,
with Ve,out the maximum electron outflow speeds). The balance of this three parameters
guarantee a good convergence. However, PIC codes shows an enhanced numerical heating
in high β plasmas, making a comparison with GK not so reliable in this regime.

9.10 Role of numerical noise

It is important to mention at this point that the PIC runs in the high guide field regime
are much more affected by numerical noise than in the low guide field regime. This
is because, in our setup, B∞y decreases for increasing bg. Then, for large guide fields
the signal-to-noise ratio can be very low, as can be seen in the extreme case bg = 50 in
Fig. 9.6(e) and Fig. 9.7(e) (even with the extended temporal average). Therefore, although
in principle there is no limitation due to numerical constrains on the electron gyromotion
for even higher guide fields (in our setup, ρe andΩce are constant for different guide fields),
the PIC results in this regime will not be reliable due to this unfortunate fact.

The numerical noise affects more some quantities over other ones, with different phys-
ical effects. One of the most notorious is the in-plane electric field in the electron frame
of reference, and therefore the charge separation, an non-ideal effect absent in the GK
approach (see Sec. 9.7.2). In order to prove this, in Fig. 9.32 we display some “typical”
maximum values of the charge separation and in-plane electric fields on dependence on
the guide field. We also plotted 3 times the standard deviation of these fields away from
the CS in order to have an estimation on the noise level.
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Figure 9.32: Typical maximum values vs guide field bg of the different fields associated

with charge separation, at reconnection peak time t = 50τA. a) ρc b) E′x/BT (in the

electron frame of reference) , c) E′y/BT (in the electron frame of reference). Red curve

“max abs” display the absolute maximum around the plotted region. Purple curve max

center” is the maximum along the center. Blue curve “max center +ρi/2” is the maximum

of a line shifted in ρi/2 with respect to the center. and 3 times the standard deviation σ of

a line along y away from the CS.

In Fig. 9.32 we can see that the noise level for ρc and E′x is reached approximately
for bg & 30. Since Ey is weaker initially, it reaches noise level for weaker guide fields
bg & 10, 20. Therefore, we can establish that quasineutrality is reached for guide fields
bg & 30, and therefore a comparison with gyrokinetic should be more reliable in this
regime.

The numerical noise is manifested through numerical heating, therefore affecting di-
rectly the measured temperatures. Since those are a second order momenta of the distri-
bution function, they are also more affected due to fluctuations resulting from the reduced
macroparticle number. Similar as for the electric field, we show the influence of the guide
field on Fig. 9.33. We can see that any attempt to extract meaningful information from Ti ,‖
or δTe,⊥ is not reliably at all for guide fields bg > 20, since the noise level is more or less
at the same level as the global maxim of these quantities. This requirement is less restric-
tive for the other components of the temperature Te,‖ or δTi,⊥ , they can still be measured
reliable even for higher guide fields: their fluctuating values are higher an so the signal to
noise ratio
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Figure 9.33: Typical maximum values vs guide field bg of the components of the tem-

peratures, at reconnection peak time t = 50τA. a) ΓδTe,‖, b) ΓδTe,⊥, c) ΓδTi ,‖, d) ΓδTi,⊥.

Red curve “max abs” display the absolute maximum around the plotted region. Purple

curve max center” is the maximum along the center. Blue curve “max center +ρi/2” is

the maximum of a line shifted in ρi/2 with respect to the center. and 3 times the standard

deviation σ of a line along y away from the CS.

On the other hand, there is in general a higher level of numerical noise, and associated
numerical heating, in the high beta case compared to the low beta one for the PIC runs. It
becomes increasingly important for higher guide fields, reducing even faster the signal-to-
noise ratio. This is, in part, responsible for the monotonically increasing thermal pressure
fluctuations in Fig. 9.28(a) for later times, especially in the case bg = 10. This observa-
tion was already pointed out in the original work by TenBarge et al. (2014), being a well
known consequence of the enhanced numerical collisions in weakly magnetized environ-
ments simulated by PIC codes, or equivalently, in high beta plasmas (Matsuda and Okuda
1975).

9.11 Conclusions

By means of PIC and gyrokinetic simulations, we have extended a previous study of
magnetic reconnection in the limit of strong guide field (TenBarge et al. 2014) using an
independent set of PIC and gyrokinetic codes. We established the limits of applicability
of gyrokinetic simulations compared to PIC ones in the low guide field regime, and the
physical reasons behind these differences. This is of critical importance for application to
the solar coronal plasmas where the guide field is large but not too much. It is important
to mention that most of the following conclusions are based in set of runs that keep the
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ion plasma beta constant in βi = 0.01 (a value also suitable for the Solar corona).
First, we identified the limits regarding the linear scaling on the guide field of both

thermal (δPth) and magnetic (δBz) fluctuations in the PIC runs. The linear scaling is based
on a standard two-fluid theory (Rogers et al. 2001) strictly satisfied by the GK runs and
asymptotically by the PIC plasma model in the limit bg → ∞. We confirmed that the linear
scaling and therefore convergence between PIC and GK models works well for guide field
as low as bg = 5 or bg = 10, but different from the previous work by TenBarge et al.
(2014), we found that is only valid in a very limited region close to the X point. Large
deviations between both plasma models take place in the secondary magnetic islands,
formed around the reconnection peak time. This implies that the agreement between PIC
and GK simulations of magnetic reconnection is better during the linear phase but not
reliable afterwards. This fact also limits the validity of the GK approach when comparing
to PIC simulations to much larger guide fields bg & 30 in locations close to or inside of
the secondary magnetic islands.

The main reason of that discrepancy is the generation of a core-magnetic field (out-of-
plane component) inside of the magnetic islands in the PIC low guide field regime bg . 30.
This not compensated by a corresponding drop in the thermal pressure, being therefore a
deviation from the pressure equilibrium condition allowed only in the PIC plasma model
but not in GK (that keeps that condition to machine precision). The physical mechanism
that generates this core-magnetic field is due to the in-plane shear flow present in the PIC
force free CS initialization, although negligible in the high guide field regime. Corre-
spondingly, this shear flow is absent in the GK force free CS initialization. The effects of
that shear flow, stronger in the PIC low guide field regime are: 1) asymmetric separatrices,
2) reduction in reconnection rates 3) different flow pattern inside of the secondary mag-
netic islands and 4) generation of vortical in-plane Hall currents due to the wrapping of
magnetic field lines around the secondary magnetic islands. The latter effect produces the
core-magnetic field, evidenced also due to a transfer of energy between particles to the
fields (dynamo effect ~J · ~E < 0). We could also notice the generation of an out-of-plane
magnetic field in the periodic y boundaries, due to the colliding outflows coming from the
main reconnection X point, non negligible even for stronger guide fields.

In the second part of this chapter, from Sec. 9.6 onward, we analyzed mostly how
microscopic processes and instabilities develop in the large guide field limit in the fully-
kinetic model via PIC codes. Most of these processes are beyond the scope of the gyroki-
netic approach because they involve high frequency waves and strong deviations from
Maxwellian distributions function. And it is precisely in this kind of mechanisms where
the conversion of energy that affects large scale phenomena related with magnetic recon-
nection, such as those observed in the Solar corona, matters the most.

When analyzing the thermal behaviour of the simulations, we found a very strong
parallel electron heating Te,‖ acting from the very beginning, and to a lesser degree, per-
pendicular ion heating Ti,⊥. This behaviour is reproduced qualitatively well by the GK
code, but the PIC results in the low guide field regime reveal a more active heating in the
pair of separatrices with enhanced density than the GK results, even after they are scaled
on the guide field. Other components are affected only after the reconnection peak time,
where secondary magnetic islands start to appear. We could relate qualitatively this behav-
ior with the double adiabatic or CGL equations, indicating a conservation of the magnetic
moment µ to a first approximation in PIC codes. On the other hand, this quantity is strictly
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conserved in the GK approach.
The strong differences in the thermal behavior for the PIC codes in the low guide

field regime gave us a hint to investigate the non thermal features. First, we identified all
the regions where the tensor pressure is non-gyrotropic on dependence on the guide field,
finding that for low bg, there is an extended region around both separatrices and outflow
region where these quasi-viscosity is important, and not only to sustain the reconnected
electric field as in the standard two-fluid theory of Hall reconnection. Then, by means
of an analysis of the kurtosis of the distribution function (4th order momenta), we could
identify very precisely that the points with the largest deviations between PIC and GK
results are where there are more presence of accelerated particles along the out-of-plane
direction, as evidenced for the hard tails in their energy spectra. We could validate the pre-
vious results given by the kurtosis via a full analysis of the particle distribution function.
This also allowed us to find strong beam formation in the low guide field regime along the
z direction, not only close to the diffusion region and separatrices as it is known from pre-
vious works, but also in the secondary magnetic islands and the outflow region. However,
the free energy in these beams cannot be (directly) released due to 2D dimensionality
constraints.

Then, we compared two different measures of dissipation. We found than for posi-
tive values (~J · ~E > 0, implying transfer of energy from fields to particles) they do not
necessarily correlate with the expected locations where there should be more energetic
phenomena: beam formation or accelerated particles. Instead, locations where these mea-
sures predict transfer of energy from the particles to the fields ( ~J · ~E > 0) is where we can
see the largest deviations from the thermal equilibrium.

An additional evidence for the differences between PIC and GK results in the low
guide field regime is due to the charge separation. The GK runs shown here are strictly
quasineutral, while the PIC codes allow arbitrary deviations even slightly below the Debye
length, if sufficiently resolved (as in our case). In the PIC low guide field regime, and due
to the small mass ratio and frequency ratio ωpe/Ωce, there are strong deviations from
quasineutrality leading to in-plane electric fields in the electron frame of reference (i.e.:
non ideal electric fields). Although there is some correlation with some of the other
already mentioned phenomena, more work is needed in order to distinguish its physical
consequences from the numerical ones and thus to establish a causal relation.

We also proved that an important source of differences between the predicted behavior
of magnetic reconnection is the ratio of electron outflow to ion thermal speed, proportional
to VA/vth,i. This ratio becomes increasingly higher in the PIC low guide field regime due
to generation of supersonic outflows (VA/vth,i ∼ 1 for bg . 10), but this is not allowed in
the GK approach. Instead, it is constrained to values VA/vth,i . 1: otherwise it will break
the GK assumption of perpendicular drift approximation: it allows particles move out of
their orbits as given by the cross-field drifts. Since it is known that relative electron-ion
streaming is a important source of free energy for microinstabilities, it is natural to ex-
pect that when the aforementioned ratio takes higher values in the PIC runs, the CS can
become unstable for this plasma model but not in the GK simulations. Indeed, we found
evidence (mostly via an analysis of thresholds) of several cross-field instabilities allowed
to grow in our reduced 2D geometry due to the presence of guide field. The first one is the
modified two streaming (MTSI, also known as kinetic cross-field streaming KCSI) insta-
bility, driven by the pure electron-ion relative streaming or, equivalently, the ~E × ~B drift.
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Second, the lower hybrid drift instability (LHDI), driven by pressure gradients or cross-
fields diamagnetic drifts. And third, an electron-ion hybrid (EIH) instability, a version of
the kinetic Kelvin-Helmholtz instability driven by gradients in the shear flow. All these
instabilities are operating in the same spatial locations (enhanced density separatrix arm),
have typical frequencies and wavelengths beyond the allowed ones by GK (Ωlh < ω < Ωce

and ρe < λ < ρi), in such a way that their effects are always added.
Finally, two important remarks about the consequences of the aforementioned cross-

field streaming instabilities. First, note that a non-linear saturation of these instabilities
leading to turbulence would require times longer than the allowed in our simulations due
to periodic boundary conditions and small simulation box. And second, note that the same
setup in a full 3D geometry would allow additional decay channels for these instabilities,
producing more turbulence and many other interesting effects worth to be investigated for
applications to realistic scenarios, such as Solar coronal plasmas.

On the other hand, we also analyzed briefly the effects of a high plasma beta βi = 1.0.
Although not directly applied for the Solar corona, it is interesting to know the effects
that this parameter has on the aforementioned phenomena. The general characteristics of
most of the analyzed phenomena remain similar, but the convergence between GK and
PIC plasma models is less restrictive. Even in the regions close to the secondary magnetic
islands, where additional effects take place only in the PIC runs (core-magnetic field gen-
eration), the agreement in thermal and magnetic fluctuations only require guide fields as
low as bg & 3. There are several related reasons for that, allowing us to determine the
optimum parameter range for a reliable comparison of PIC and GK simulations of mag-
netic reconnection. First, the fluctuation level of both δPth and δBz scales as 1/

√
βi and

thus the small ǫ approximation of GK is better satisfied for higher β plasmas and a better
agreement with PIC is expected. The drawback in the latter is that the PIC runs suffer
of enhanced numerical heating in this parameter range. Second, a better comparison is
obtained for parameters with VA/vth,i ≪ 1 (related with the ǫ in the GK code). In the PIC
runs this is for 1) making smaller the shear flow strength that generates the core-magnetic
field and 2) to quench cross-field micro-instabilities such as MTSI, as well as the gradi-
ent driven LHDI and shear flow driven EIH, generating heating and non-thermal features
only captured by the PIC approach. And third, the agreement between both plasma model
work better in high β plasmas since the reconnection rates are reduced. In the GK model
this implies less energetic outflows that might potentially break the perpendicular drift ap-
proximation. And in the PIC plasma model, this leads to less open separatrices and thus
more elongated magnetic islands where the generation of core-magnetic field is less effi-
cient, allowing a more reliable comparison with the GK approach. Thus, it is necessary
a careful choice of these parameters in order to guarantee an accurate physical descrip-
tion of magnetic reconnection in the GK approach when compared to the kinetic plasma
description as modeled with PIC codes.

Finally, and even with all these limitations of the GK model that we found, it it impor-
tant to remark their computational advantages. GK simulations of magnetic reconnection
perform remarkably well and much faster in the high guide field regime in comparison
with the PIC ones. For the codes and the low beta range of parameters showed in this
study, the GK GENE code required 103 less CPU-core hours than the corresponding run
with the PIC ACRONYM code for a guide field bg = 50. And due to the all previous
considerations, for these cases there are very few differences in the phenomenology of
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magnetic reconnection in both plasma models, and therefore the GK approach can accu-
rately reproduce all the physics involved in this process (in both X points and secondary
magnetic islands). Moreover, for such high guide fields the PIC runs also have necessar-
ily very small noise to signal ratio, making the extraction of useful physical information
somehow unreliable.
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10.1 Conclusions

The goal of this investigation was to analyze instabilities of collisionless current

sheets (CS) leading to and also formed by magnetic reconnection, as it can be expected
in the Solar corona. Since the Solar coronal plasma is largely collisionless, it must be
analyzed kinetically. We used fully kinetic Particle-in-Cell (PIC) codes to simulate the
nonlinear dynamics of the coronal plasma phenomena. In addition to collisionless CS
properties and magnetic reconnection in other plasmas, for Solar conditions it is impor-
tant to take into account the presence of finite magnetic guide fields in the current direction.
While the cases of small and infinitely large guide field are more or less well understood,
the cases of moderately large guide fields, typical of the collisionless plasma conditions
of the Solar corona, are not well understood yet. In order to validate our simulation ap-
proach, we analyzed the limiting cases of zero (antiparallel configuration) and infinitely
large guide fields (gyrokinetic approximation).

In order to reach our goals, we first gradually introduced the concepts and methods
to put our work in the context of existing theories in the introductory chapters 1-6. In
Chapter 1, we discussed the importance of current sheets, their instabilities and magnetic
reconnection in the solar corona. In addition, we gave an overview of our aims and intro-
duced the structure of this thesis work. In Chapter 2, we briefly reviewed the necessary
plasma physics background. In Chapter 3, we described the most important kinetic CS
equilibria forming the basis of all the following discussions. Then, in Chapter 4, we re-
viewed steady state models of fully developed magnetic reconnection. In Chapter 5, we
briefly described and analyzed the most important instabilities of collisionless CS that
we found in our work. The last introductory Chapter 6 is devoted to the main numerical
simulation method used in this thesis: fully kinetic PiC codes, with an emphasis on the
methods used by the ACRONYM code.

In Chapter 7, describing the first part of our results, we analyzed spontaneous insta-
bilities of Harris CS in an antiparallel configuration with no guide field taken into account,
with an emphasis on numerically-induced effects. The purpose was testing the numerical
requirements of the code to correctly simulate collisionless plasmas (with higher, more
realistic mass ratios). We showed that simulations with these more realistic parameters
are often prone to pitfalls of the underlying numerical algorithms.

Numerically-induced instabilities detected in Chapter 7 are due to an anisotropic heat-
ing and an often hardly conserved total plasma energy. This may lead, e.g., to a bifurcation
of the CS (reduction in the out-of-plane current density Jz), inhibiting the tearing instabil-
ity. We found that this artificial process, generated at micro-scales by the enhanced PIC
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shot noise mimic of collisional physical phenomena, can be avoided by choosing a higher
order interpolation scheme (shape function) in the code. In particular, the advantage of a
second order scheme (TSC) over the commonly used linear scheme (CIC) turned out to
be essential and computationally much more efficient than just increasing the number of
macroparticles per cell as usually done. This is especially important for simulations with
larger (more realistic) mass ratios and for PIC runs over long times, probably being a key
factor in the design of the upcoming next-generation large scale PIC simulations.

In Chapter 7, we also found that for high enough anisotropically distributed particles
the Harris-type CS bifurcates. This is due to the numerical scattering close to the center of
the CS. Bifurcation weakens with reduced scattering generated, e.g, by numerical noise.
It is not negligible for macroparticle numbers commonly used in numerical simulations.
We found good agreement between the levels of electron temperature anisotropy required
for the appearance of bifurcation and the predictions for tearing stabilization, comparing
them with the predictions of the anisotropic tearing instability.

In Chapter 7 we also investigated the relation between bifurcation and other tempera-
ture driven instabilities in cases with initially imposed anisotropy. The region close to the
unmagnetized center of a non guide field Harris CS can be unstable, e.g., to the Weibel
and mirror instabilities. We found evidence of a Weibel instability in the generation of fil-
amented structures in the generated out-of-plane magnetic field, the correct growth rates
and threshold conditions. The magnetic fields generated by the Weibel instability pro-
vided the seed that can activate the (magnetized) mirror instability, releasing very quickly
the initially imposed anisotropy in the form of waves, turbulence and anisotropic electron
heating, leading finally to a bifurcation of the Harris CS.

In Chapter 8 and Chapter 9, we reported our results about the investigation of the
influence of a magnetic guide field in the current direction on the CS stability and mag-
netic reconnection. This is important for understanding the Solar corona, since magnetic
fields generated the photosphere permeates the corona, causing the formation of current
sheets in complex topologies prone to instabilities and energy conversion by magnetic
reconnection.

In particular, in the second part of our results in Chapter 8, we investigated the
spontaneous tearing instability of and reconnection through Harris CS with moderately

large guide fields (bg . 7). We found numerically-induced bifurcation due to scattering
if the electron Larmor radius is not well resolved by the grid cell size. This imposes an
additional constraint on the simulations parameters above the usual stability conditions
of PIC codes. This has not been analyzed before and it will become critical when in the
future more realistic parameters will become used. Only when this effect is taken into
account, we found a decrease of the tearing mode growth rates and also a delay of the
onset of reconnection with increasing guide field strengths.

In Chapter 8 we further analyzed the mechanisms supporting the reconnected electric
field via the two-fluid Ohm’s law. For that sake we first derived a proper treatment of spa-
tial and temporal derivatives and averages. We implemented them in both running code
and in the post-processing diagnostics. As a result, we confirmed previous theoretical
predictions regarding the relative importance of the non-gyrotropic pressure and electron
inertia contributions to the violations of the frozen-in condition. However, we addition-
ally found indications of the presence of additional unbalanced terms in the mean-field-
Ohm’s law. We conjectured that they are due to the action of electromagnetic fluctuations
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(turbulence), which becomes increasingly important for higher guide fields (or smaller β
plasmas). They are more influential in the outer boundary of magnetic islands, away from
the diffusion region of reconnection. They are strongly correlated with the deceleration of
the electron bulk drift speed (∂Ve,z/∂t < 0), usually associated with anomalous resistivity.
Moreover, in these same locations we found signatures of 1) cross-field streaming instabil-
ities due to counterstreaming electron flows and 2) pressure gradient driven instabilities,
which heat the electrons in the out-of-plane (guide field) direction, generate non-thermal
tails of the electron distribution function also in the out-of-plane direction and turbulent
wave activity in these regions beyond their saturation time.

In the third part of our results Chapter 9, we reported the results of our investigations
of collisionless CS in the large guide field limit (5 . bg . 50). We compared our PIC
simulation results with those obtained by a gyrokinetic (GK) code (GENE). We investi-
gated the properties of the fully-developed stage of magnetic reconnection, bypassing the
slow linear growth of the tearing mode instability by applying an initial perturbation. The
large guide field limit is important for the analysis of the low β plasmas in the solar corona.
Also, for better applicability to the Solar corona, we considered as initial equilibrium a
force free CS. We established the limits of applicability of the gyrokinetic approach, de-
rived for the strong guide field limit bg → ∞, in describing the realistic regime of finite
(low) guide fields, well described by PIC codes. The study benchmarks that GK code
simulations can help to save computational resources by using them instead of the more
expensive PIC ones in the parameter regime that we identified.

We found that both plasma theories: fully kinetic and GK, develop magnetic recon-
nection with similar features inside of secondary magnetic islands, only if strong enough
guide fields are imposed in the PIC code (bg > 30 for βi = 0.01). In the non-ideal region
close to the X point, the convergence between both models work better in the sense that
lower PIC guide fields (bg > 5 for βi = 0.01) are required, in agreement with previous
studies. PIC code low guide field simulations reveal a larger magnetic pressure inside
of secondary magnetic islands. This is not compensated by a corresponding decrease in
thermal pressure taking into account the ideal pressure equilibrium condition. GK simu-
lations keep this condition to machine precision by construction, while fully-kinetic PIC
code simulations allow arbitrary deviations. This turned out to be the source of differ-
ences between the results of the two plasma models: GK and the more accurate PIC. The
physical mechanism generating additional core-magnetic field in the secondary magnetic
islands is a shear flow instability. It was discovered in the PIC code simulation for the low
guide field regime. It is negligible in the high bg limit and absent by construction in the
GK initialization. Due to a mechanism similar to the Kelvin-Helmholtz instability, this
shear flow instability decouples electrons from ions via a Hall effect, generating in-plane
currents and wrapping up the magnetic field in vortical patterns around the secondary
magnetic islands. All this is related with a dynamo effect (~J · ~E < 0), decreasing the
efficiency of magnetic reconnection.

In Chapter 9 we also detected another caveat of the GK plasma description. The ratio
of the electron outflow speed to the ion thermal speed, proportional to VA/vth,i, is higher for
the PIC code low guide field regime, reaching values close to 1 for bg . 10. This violates
the GK ordering, by allowing particles moving out of their orbits given by their cross-field
drifts. This behaviour was disclosed by our PIC code kinetic investigations. In addition,
the initial shear flow also produces asymmetric separatrices and other related effects when
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the ratio VA/vth,i is higher. Moreover, PIC simulation in the low guide field regime allowed
us to find evidence of a cross-field streaming instability due to the high relative drift
speed between electron and ions when VA/vth,i > 1. This instability is associated with
shear flows and pressure gradients. It produces electron heating, non thermal features
such as beam formation and electron acceleration especially in the asymmetric pair of the
separatrices and at the edge of the magnetic islands. And due to the (short) wavelengths
and (high) frequencies involved, this instability is ordered out in the GK approach and
can only be captured with a fully-kinetic PIC plasma model.

Finally, in Chapter 9 we determined the plasma β dependence of GK simulations
toward the more correct PIC results. Higher β require lower guide fields to obtain reduced
reconnection rates. In this limit, it is more convenient to use gyrokinetic instead of PIC
codes simulations and still having reliable results.

10.2 Outlook

There are many interesting possible extensions of the work developed in this thesis.
The logical next step is extending the CS PIC simulations to full 3D geometries. Al-
though the computations are necessarily more expensive, luckily many of the undesired
numerical effects, such as numerical collisions, noise and heating, in addition to braking
of accelerated particles, are reduced in 3D geometries. Preliminary results, not repro-
duced here, already showed exciting new physical phenomena taking place in these con-
figurations, due to the possibility of current aligned microinstabilities such as Buneman
instability. They are especially important in guide field configurations and for thinner CS,
and we already detected microturbulence and strongly non-thermal features in the parti-
cle distribution function. In larger 3D simulations is expected that the tearing magnetic
island become flux ropes, coupling with other instabilities and generating very thin elec-
tron scale current layers where turbulence is the dominant dissipation mechanism (see
Treumann and Baumjohann (2013b) and references therein). In order to observe such
processes, we have to extend the simulation box domain and/or changing the boundary
conditions from periodic to open ones in the downstream direction, in order to allow a
regime of fully developed magnetic reconnection for longer times. This will also allow us
to observe efficient mechanisms of particle acceleration in these configurations.

The methods developed for the time-spatial averaging in Chapter 8 will also allow
us to calculate properly the instability and transport properties of CS and reconnection
in fully 3D geometry of collisionless plasmas with finite guide fields, typically found
in the Solar corona. In addition, extensions of the aforementioned statistical averaging
methods, possibly implemented in running time during a PIC simulation, can help us to
identify more precisely and effectively the different instabilities in magnetic reconnection
via the analysis of the wave activity. All these methods will improve the calculation
of transport properties, which influence not only the microscale processes, but also the
macroscopic dynamics of the solar corona and other collisionless plasmas. Thus, we will
be bridging the gap between the microphysics of the diffusion region and the large scales
effects characteristics of the release of energy in magnetic reconnection.
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A Terminology, definitions and

relations

A.1 Plasma parameters and abbreviations

A.1.1 Abbreviations

1. CS: current sheet

2. PIC: Particle-in-cell (code)

3. GK: gyrokinetic

4. ppc: macroparticles per cell

A.1.2 List of symbols and definitions

We will be using MKS units everywhere (although the ACRONYM PIC code still
uses CGS units).

Unless stated otherwise, we use the Einstein convention (implicit sum over repeated
indices) in all the equations involving tensors, e.g.: V jPi j =

∑
j V jPi j.

• ‖, field aligned directions are with respect to the magnetic field ~B (unless in the
context of temperature anisotropies in unmagnetized scenarios: Sec. 7.3.2).

• ⊥, transverse, cross-field aligned directions are with respect to the magnetic field
~B (unless in the context of temperature anisotropies in unmagnetized scenarios:
Sec. 7.3.2).

• ()α: specie α = e, i of the plasma. Omitted when the meaning is clear.

• εi jk. Levi-Civita symbol (for representing vector cross product ×)

• C =
√

C2
x + C2

y + C2
z for any vector quantity ~C = Cx x̂ + Cyŷ + Cz ẑ, unless stated

otherwise.

• ~B: Magnetic field

• ~E: Electric field
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• ~A: Vector potential

• ψ: Reconnected flux

• dψ/dt ∝ Ez: Reconnection rate

• L: CS Halfwidth

• ∆NS =
√

2ρe L: Electron singular layer thickness

• Lx/y/z: Simulation box size in x/y/z direction

• Nx/y/z . Grid points in x/y/z direction

• ωpe =
√

nee2/(ǫ0me): (electron) plasma frequency

• ωpi =
√

nie2/(ǫ0mi): ion plasma frequency

• λDe = vth,e/ωpe =
√
ǫ0kBTe/(n0e2): Debye length

• Λ = nλ3
De

: Plasma parameter.

• Mp = Nphysical/Nnumerical: Macrofactor.

• vth,{e,i} =
√

kBT{e,i}/m{e,i} : Electron/ion thermal speed

• cs =
√
γP/ρ =

√
γkBT/mi : sound speed

• c : speed of light

• T{e,i} : Electron/ion temperature

• d{e,i} = c/ω{pe,pi} : Electron/ion skin depth or inertial length

• Ωc{e,i} = eB/me,i : Electron/ion Larmor frequency or gyrofrequency

• ρ{e,i} = vth,{e,i}/Ωc{e,i} = m{e,i}vth,{e,i}/(q{e,i}B) : Electron/ion Larmor radius

• Ωlh = ωpi/
√

1 + ω2
pe/Ω

2
ce Lower hybrid frequency

• VA(e) = B/
√
µ0ni(e)mi(e): (electron) Alfvén speed

• τA = L/VA: Alfvén time

• νc = vth/λc : collision frequency, where λc is the collisional mean free path.

• η = meνc/(ne2) : resistivity

• RM = (µ0/η)LBV Magnetic Reynolds number (ratio between convective to diffusive
term in the induction equation Eq. (2.45)). LB is the length scale of variation of ~B
and V a characteristic fluid velocity.

• RM = (µ0/η)LBVA : Lundquist number (same as RM with V = VA)
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• K = λ/L : Knudsen number. L is a characteristic length scale.

• µ = mv2
⊥/2B Magnetic moment

• γ : Growth rates

• f (~x,~v) distribution function

• (~x, ~v): spatial/velocity coordinates (6D phase space)

• n{e,i}: Electron/ion number density

• m{e,i}: Electron/ion mass

• q{e,i} = ∓: Electron/ion charge

• ρc,{e,i} = q{e,i}n{e,i}: Electron/ion charge density

• ~V{e,i}: Electron/ion bulk flow velocity

• ~J{e,i}: Electron/ion current density

• Pi j: Pressure tensor

• p = P j j/3, given Pi j = pδi j: Scalar pressure

• Qi jk: Heat tensor

• qi = Qi j j Heat flux vector

• Ki: 1D (excess) Kurtosis along i direction

• β{e,i} = 2µ0n{e,i}kBT{e,i}/B2: electron/ion plasma beta

• B∞y: asymptotic reconnected magnetic field

• BG: magnetic guide field strength (along ẑ direction)

• bg = BG/B∞y: relative guide field

• Ntotal: Total number of macroparticles

A.2 Geometry

Unless stated otherwise, the geometry of our setup for both single and double CS
simulations is shown in Fig. A.1.
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+

-

Figure A.1: Schematics of the geometry of the simulation setup for single Harris CS. The

magnetic field ~B is in the y direction on dependence on the x coordinate. Correspondingly,

the density n and current density ~J vary along the x direction. The 2D simulations are

carried out in the x − y plane (the reconnection plane). The CS is sustained by counter-

streaming electrons and ions that produce a current density ~J in the out-of-plane direction
z. The magnetic guide field is also in the out-of-plane direction z. For force cases the

setup is practically identical, although the ions are not drifting Ui = 0, there is no density

gradient∇n = 0 and the out of plane guide field is dependent on x: Bg = BG(x).

Guide field reconnection is also called component reconnection. When there is no
guide field, it is also called antiparallel reconnection.

A.3 Relation between quantities and parameter setup

For the tuning and setup of the parameters in the initial equilibria in our simulations,
it is very convenient express them in terms of a few characteristic dimensionless ratios.
They are not independent, however. Several relations exist among them, some of them
general and other ones specific of the initial equilibria. They show that these parameters
cannot be chosen independently. We are going to list the most used ones in the following
very handy list:

A.3.1 General relations between plasma parameters

di

λDe

=

√
mi

me

c

vth,e

,
de

λDe

=
c

vth,e

=
ω−1

pe

λDe/c
,

ρe

λde

=
ωpe

Ωce

, di =
VA

Ωci

, de =
VAe

Ωce

(A.1)

vth,i

VA

=
ρi

di

,
Ω−1

ci

ω−1
pe

=
ωpe

Ωce

mi

me

VA

c
=

√
me

mi

Ωce

ωpe

=
Ωci

ωpi

VAe

c
=
Ωce

ωpe

(A.2)

√
βi =

√
2

vth,i

VA

=
√

2
ρi

di

=
ρe

de

√
2Ti

Te

=
ωpe

Ωce

vth,e

c

√
2Ti

Te

(A.3)
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General relations for any CS equilibria (from Ampère’s law):

|Ue − Ui| =
B∞y

µ0en0L
=

c
L
di

(ωpe/Ωce )
√

mi/me

⇔ |Ue − Ui|
vth,i

=
ρi

L

(c/vth,e)2

(ωpe/Ωce)2

Te

Ti

(A.4)

A.3.2 Independent input parameters for a Force Free CS

In this subsection we are going to show explicitly the order in which the independent
input parameters of a force free CS (see Sec. 3.2.2.3) are used for the simulation setup
in the ACRONYM code, in addition to give some other useful relations valid for this
initialization.

All the previous and the following relations where it is involved implicitly the mag-
netic field, e.g.: Ωce and VA, are calculated with respect to the in-plane component B∞y.
This is different from the choice in Chapter 9, where Ωce (but not VA), is calculated with

respect to the total magnetic field
√

B2
∞y + B2

g. Then, in order to apply that convention to
the following and previous list of relations, it is necessary to add a conversion factor in

this way: Ωce = Ωce,Btotal/
√

1 + b2
g.

1. Mass ratio mi/me

2. Temperature ratio. Ti/Te

3. Electron thermal speed to light speed vth,e/c. It defines Te. With 1) and 2), it defines
Ti .

4. Physical scale of the system is fixed by specifying ωpe or ne .

5. Frequency ratio ωpe/Ωce. The asymptotic magnetic field strength B∞y is then calcu-
lated from this ratio and the physical value of ωpe from step 4)

B∞y =
Ωce

ωpe

meωpe

e
=
Ωce

ωpe

√
ǫ0

n0me

(A.5)

6. Ratio halfwidth to ion skin depth L/di (or L/ρi). The initial drift speed Ud/c (or
Ud/vth,i) is then calculated via Eq. (A.4). Note that in this case UD = Ue and Ui = 0
(stationary ions). Note also that requires the computation of B∞y from step 5).

7. Relative guide field bg = BG/B∞. It requires the computation of B∞y from step 5).

Additional relations:

τAωpe =
Lωpe

VA

=
ωpe

Ωce

mi

me

L

di

=

√
Ti/Te mi/me

vth,e/c
βi

L

ρi

,
Ω−1

ci

τA

=
c/ωpi

L
(A.6)
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A.3.3 Independent input parameters for a Harris CS

In this subsection we are going to show explicitly the order in which the independent
input parameters of a Harris CS (see Sec. 3.2.1) are used for the simulation setup in the
ACRONYM code, in addition to give some other useful relations valid for this initializa-
tion.

Here, all the quantities involving density ne are calculated with the peak central value,
while the quantities involving the magnetic field are calculated with respect to the asymp-
totic value B∞y

The pressure equilibrium condition Eq. (3.19) imposes a constrain between the elec-
tron thermal speed (related with thermal pressure) and the frequency ratio (related with
magnetic pressure);

ωpe

Ωce

=
c

vth,e

√
1

2
(
1 + Ti

Te

) (A.7)

Then, there is one less free parameter in comparison with the force free case in Ap-
pendix A.3.2 (3 and 5 gets combined), although we also have to specify additionally the
background population: We also have the kinetic condition for absence of initial electric
fields Eq. (3.22), relating electron Ue and ion Ui drifts.

1. Mass ratio mi/me

2. Temperature ratio. Ti/Te

3. Physical scale of the system is fixed by specifying ωpe or ne .

4. Electron thermal speed to light speed vth,e/c. It defines Te. With 1) and 2), it defines
Ti . From Eq. (A.7), it defines the frequency ratio ω pe/Ωce. And from step 3), we
can get the asymptotic magnetic field strength

B∞y = ωpe

me

e

vth,e

c

√
2
(
1 +

Ti

Te

)
(A.8)

5. Ratio halfwidth to ion skin depth L/di (or L/ρi). The initial drift speed U{i,e}/c (or
U{i,e}/vth,i) is then calculated via Eq. (A.4), expressing the frequency ratio in terms
of the thermal speed via step 4). Finally, the electron drift speed can be calculated
by eliminating Ui in via Eq. (3.22).

|Ui − Ue| =
B∞y

µ0en0L
=

vth,e

c

√
me

mi

√
2
(
1 +

Ti

Te

)
di

L
(A.9)

Ue = −
vth,e

c

√
me

mi

√
2(

1 + Ti

Te

) di

L
(A.10)

6. Relative guide field bg = BG/B∞. It requires the computation of B∞y from step 5).

7. Ratio background population to peak density: nb/ne
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Additional relations/constrains for Harris cases

VA

c
=

vth,e

c

√
2

me

mi

(
1 +

Ti

Te

)
=
Ωce

ωpe

√
me

mi

, βi =
Ti/Te

1 + Ti

Te

, βe =
1

1 + Ti

Te

, β = 1

(A.11)

ρi

di

=

√
Ti

Te√
2
(
1+ Ti

Te

) =
vth,i

VA

,
ρe

λDe

=
c

vth,e

1
√

2
(
1 + Ti

Te

) ,
Ω−1

ci

ω−1
pe

=
c

vth,e

mi/me√
2
(
1 + Ti

Te

)

(A.12)

Note that β(i,e) and VA are not calculated with the thermal and magnetic pressure measured
at the same place 1. One numerical parameter useful to estimate computational cost is the
number of macroparticles per cell in the whole simulation box for a single Harris CS:

Ntotal = ppc · Nx Ny

2L

Lx

tanh
(

Lx

2L

)
(A.13)

1 the density is measured at the center, while the magnetic field at the infinity. If we want to calculate
this quantities at either the center or asymptotically away, they are either infinity or zero
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B Numerical tools

B.1 Digital filters

Digital filters are discrete mathematical operators whose aim is smoothing out a signal
in the real space. Let {Ak} = {A0,A1, . . . , An−1} a (1D) set of n − 1 data points (the input
signal). The smooth data series (output signal) is the linear combination defined by

{〈Ak〉} =
M∑

j=−M

g jAk+ j, for k = 0, 1, 2, . . . n − 1 (B.1)

where
{
g j

}
are the N = 2M + 1 filter coefficients (or weights, or impulse response1 ) with

M = (N − 1)/2 an integer. N is also known as the filter width. This indicates that the
filters coefficients are usually chosen to be odd. Note that the number of data points has
to be larger than the filter width: n > 2N + 1. Each one of the n data points requires
a sliding window of N neighbor points and N associated filter coefficients (known ones,
calculated only once), implying that only a subset set of n − 2M of the total data set of
n points can be filtered: M points at the beginning and at the end cannot be computed
with Eq. (B.1) (although this kind of end effects are usually solved by extrapolating the
original data set). In addition, any set of coefficients {gi} is a smoothing filter if satisfies
the following conditions(Marchand 1983):

• Symmetric: g−k = gk . This is required to have a real valued frequency response (see
below). When applied for smoothing current or density in the spatial grid of a PIC
codes, this also guarantees momentum conservation (Birdsall and Langdon 1991).

• Normalized:
∑m

i=−m gi = 1. This implies that the mean of the original and filtered
data set are the same.

• Bounded:
∑m

i=−m |gi| < ∞

• Bounded frequency response function: |G(ω j)| =
∑M

l=−M |gl cos(lθ)| < 1, with 0 <

θ < 2π (see Eq. (B.20)).

The last two conditions guarantee that the (discrete) Fourier transform of the filter coef-
ficients are always real numbers (Marchand 1983). This fact is of central importance for
the design of these filters, as we will see.

1 Since N is finite, this kind of filters belong to the category of Finite Impulse Re-
sponse (FIR). For the basics of all the concepts to be introduced in this section about the
field of Digital Signal Processing (DSP), see the textbook Orfanidis (2010) freely available at
http://www.ece.rutgers.edu/~orfanidi/intro2sp/ , in particular the Chapter 3.
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For comparison purposes, it also important to give the continuous version of the filter
Eq. (B.1) (Sagaut 2006):

〈A(t)〉 =
∫ ∞

−∞
A(ξ) G(t − ξ) d3ξ (B.2)

where G(t − ξ) is known as the kernel of the filter.

B.1.1 Frequency response

For our discussions, it is convenient to give the explicit expression of the discrete
Fourier transform (recall the continuous definition in Eq. (1.1)) of the smoothed (filtered)
signal:

〈̃A j〉 =
1
n

n−1∑

k=0

〈Ak〉 exp
(
−i

2π j

n
k

)
(B.3)

⇔ ˜〈A(ω j)〉 =
1
n

N−1∑

k=0

〈Ak〉 exp
(
−iω j tk

)
(B.4)

where j = 0, 1, . . . , n − 1 are the indices of the n Fourier coefficients associated with
the original input signal, ∆ is the (uniform) time interval between each data point, ωj =

2π j/(n∆) is the discrete angular frequency (in physical units!), tk = k∆ is the discrete time
in which each data point Ai was measured 2 . The sampling frequency (in physical units)
is fs = 1/∆ and the Nyquist (or folding) frequency is fN = fs/2 = 1/2∆ according to
the sampling theorem: the sampling rate should be at least twice the maximum frequency
allowed in the system (Orfanidis 2010).

Now, let us find a relation between the filter coefficients in Fourier space and the
output signal by replacing the general form of the filter Eq. (B.1) in the definition of the
discrete Fourier transform of the filter Eq. (B.4)

2 or the discrete position xk = k∆ in which each data point is located in a spatial grid. Note that in all
this section we are going to talk in term of a time series signal. The discussion is analogous for a spatially
defined signal (on a grid), changing the frequency ωj by the wave number kj.

306



B.1 Digital filters

˜〈A(ω j)〉 =
1
n

n−1∑

k=0

〈Ak〉e−iω j tk (B.5)

=
1
n

n−1∑

k=0


M∑

l=−M

glAk−l

 e−iω j tk (B.6)

=
1
n

n−1∑

k=0

(g−M Ak−M + g−M+1Ak−M+1 + · · · + g−1Ak−1 + g0Ak + g1Ak+1 (B.7)

+ · · · + gM−1Ak+M−1 + gM Ak+M) e−iω j tk (B.8)

=
1
n


n−1−M∑

k=−M

gMAke
−iω j tk+M +

n−1−M+1∑

k=−M+1

gM−1Ake
−iω j tk+M−1 + . . . (B.9)

+

n−1−1∑

k=−1

g1Ake
−iω j tk+1 +

n−1∑

k=0

g0Ake
−iω j tk +

n−1+1∑

k=1

g1Ak e−iω j tk−1 + . . . (B.10)

+

n−1−M−1∑

k=M−1

gM−1Ak e−iω j tk−M+1 +

n−1+M∑

k=M

gM Ake
−iω j tk−M

 (B.11)

=
1
n

n−1∑

k=0

Ak e−iω j tk
(
gM(e−iMω j ∆ + e+iMω j ∆) + gM−1(e−i(M−1)ω j ∆ + e+i(M+1)ω j ∆)

(B.12)

+ · · · + g2(e
−i2ω j ∆ + e

+i2ω j ∆ ) + g1(e−iω j ∆ + e
+iω j ∆) + 1

)
(B.13)

=
2
n

n−1∑

k=0

Ak e−iω j tk

(
g0

2
+ g1 cos(ω j∆) + g2 cos(2ω j ∆) (B.14)

+ · · · + gM−1 cos((M − 1)ω j ∆) + gM cos(Mω j ∆)
)

(B.15)

=
1
n

n−1∑

k=0

Ak e
−iω j tk

g0 + 2
M∑

l=0

gl cos(lω j ∆)

 (B.16)

where we have used the symmetry properties of the filter coefficients and the definition
of tk. Note that the argument of the transcendental function in the right hand side is
(as expected) dimensionless: ω j ∆ = 2π j/n. The terms in the last sum are all reals,
consequence of the symmetry of the filter coefficients. The last relation can be rearranged
by using the definition of the discrete Fourier transform of the input (not filtered) signal

˜〈A(ω j)〉 = Ã(ω j)

g0 + 2
M∑

l=1

gl cos(lω j ∆)

 (B.17)

= G̃(ω j)Ã(ω j) (B.18)

Where we have introduced G̃(ω j) known as frequency response (or transfer function for
the continuous case) of the filter. Thus, Eq. (B.18) states that that the action of a filter in
the Fourier space is nothing else that the multiplication of the frequency response and the
input signal (it does not apply only to filters, it is actually a much more general result).
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And obviously, the frequency response is nothing else than the discrete Fourier transform
of the filter coefficients gk:

G̃(ω j) =
1
n

n−1∑

k=0

gk exp
(
−iωjtk

)
(B.19)

In our case, the explicit form of the frequency response can be expressed as:

G̃(ω j) := g0 + 2
M∑

l=1

gl cos(lω j ∆) =
M∑

l=−M

gl cos(lωj ∆) (B.20)

Note that (obviously) all the N = 2M + 1 coefficients of the frequency response gl are
also normalized to 1. Intuitively, the frequency response gives a measure of the range of
frequencies modified by the filter. If G̃(ω j) does not modify low frequency and heavily
smooth out high frequencies, the filter is called a “low-pass” filter. In the opposite case
(if it allows high frequencies but blocks low frequencies), it is called a “high-pass” filter.
The range of frequencies where the filter is (supposed) to block frequencies is called

“stopband”, while the range of allowed frequencies is called “passband”. The range
between both is called the “transition band”. Because of the properties of the Fourier
transform (at least for FIR filters), the length of the this range of frequencies is inversely
proportional to the filter width. In between of the transition band , the frequency in which
a low-pass filter attenuates to a half the original signal is called the “cutoff”:

˜〈A(ωcutoff)〉 =
˜A(ωcutoff)

2
⇒ ˜G(ωcutoff) =

1
2

(B.21)

Frequencies higher than ωcutoff will be (gradually) attenuated. In the digital signal pro-
cessing (DSP) community, it is more common to express the effect of a filter in decibels,
which for this case will be:

10 log10


˜〈A(ωcutoff)〉
˜A(ωcutoff)

 = 10 log10

(
1
2

)
≈ −3 dB (B.22)

In any case, the frequency cutoff is associated with a typical timescale in the real space,
which can be written normalized to the timestep ∆ as follows:

tcutoff

∆
=

2π
ωcutoff∆

=
n∆

jcutoff
(B.23)

where jcutoff is the index associated with the (discrete) frequency cutoff. Signals with tem-
poral fluctuations shorter than tcutoff will be attenuated. In this sense, this quantity deter-
mines a resolved time scale. Similarly, for spatial signals, fluctuations with length scales
shorter than the length cutoff λcutoff = 2π/(kcutoff∆) will be smoothed out (and lengths
larger than λcutoff will be resolved by the filter).

B.1.2 Examples of commonly used filters

Now, we are going to give the exact representation (discrete and in many cases con-
tinuous for gain insight in the physical meaning) of the most commonly used filters (in
1D).
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B.1.2.1 Moving average

Also called boxcar or top-hat filter, it is the simplest filter, assigning to each point in
the interval the mean value of the {An} on the given interval:

{〈Ak〉} =
1

2M + 1

M∑

i=−M

Ak−i =
1
N

N∑

i=1

Ak−i (B.24)

where all the coefficients are equal to

gi =
1

2M + 1
=

1
N
, for i = −M, . . . ,−1, 0, 1, . . . , M (B.25)

This filter works relatively well if the data set want to be smoothed is more or less
constant or changes linearly inside of the interval of width N. But any other feature such
as local maxima or minima will be reduced, something impractical if one wants to extract
physical information of such features. In these cases, one has to resort to another kind of
filters (see, e.g., Appendix B.1.2.5). The reduction of noise by a moving average can be
measured by the reduction in the standard deviation σ of the original data set to σ/

√
M.

The frequency response can be calculated from Eq. (B.20) by setting all the coeffi-
cients gl = 1 and using the known expression for the sum of a geometric series

G̃(ωj) :=
1

2M + 1


sin

(
2M+1

2 ω j∆
)

sin
(
ω j∆

2

)
 =

1
N


sin

(
Nω j∆

2

)

sin
(
ω j∆

2

)
 (B.26)

An explicit example is the 5 points moving average with M = 2, whose filter formula,
respective frequency response and the allowed discrete frequencies are:

〈Ak〉MA =
1
5

[Ak−2 + Ak−1 + Ak + Ak+1 + Ak+2] (B.27)

G̃MA(ω j) =
1
5

[
1 + 2 cos(ωj∆) + 2cos(2ω j∆)

]
=

1
5



sin

( 5ω j∆

2

)

sin
(
ω j∆

2

)


 (B.28)

ω j∆ =
2π j

n
=

{
0,

2π
n
,

4π
n
,

6π
n
, . . . ,

2π(n − 1)
n

}
(B.29)

We can see the frequency responses for varies filter lengths N in Fig. B.1. They show
a very undesirable property characteristic of this filters: for frequencies higher than 1/N,
G̃(ω j) oscillates instead of being close to zero (the ideal behaviour). It is only zero at the
multiples of 1/N. And there is even regions where G̃(ω j) < 0, implying a “phase reversal”
of the original signal. Then, a large part of high frequencies will be allowed, although
damped and even reversed: the original signal will be distorted, even in absence of noise.
This is obviously a non wanted behaviour for a filter with the purpose of “smoothing” data
(and not distorting it): a trade-off because of its simplicity.

309



B Numerical tools

B.1.2.2 Binomial

The binomial filter is one of the most used ones in PIC simulations for the current
smoothing (see, e.g, Birdsall and Langdon 1991, Appendix C). Its name comes from the
fact that the weights in Eq. (B.1) are chosen according to the binomial coefficients (Pascal
triangle):

gk =
1

∑N
l=0 Al

(
N

k

)
=

1
∑N

l=0 Al

N!
k!(N − k)!

(B.30)

Note that by definition the binomial coefficients are always symmetric, a necessary condi-
tion for being filter coefficients. The denominator is for the fulfillment of the normaliza-
tion condition.

Let us now specialize for the smallest case allowed: N = 3 and M = 1, with binomial
coefficients {1, 2, 1} (numerator of the previous expression). Since we need to satisfy the
normalization condition, we have to divide by their sum resulting in the filter coefficients
g0 = 2/4 and g−1 = g1 = 1/4. Thus, plugging this into the general definition for gi

in Eq. (B.1), we obtain the so called 3-point binomial filter, a very common choice in
PIC codes (Vay et al. 2011). Its explicit formula and corresponding frequency response
(calculated from Eq. (B.20)) are:

〈AM1−bin,k〉 =
1
4

[Ak−1 + 2Ak + Ak+1] (B.31)

G̃M1−bin(ω j) =
1
2

[
1 + cos(ω j∆)

]
= cos2

(
ω j∆

2

)
(B.32)

The nice thing about the binomial filter is that more extended filters can obtained by a
repeated convolution of the basic 3-point filter Eq. (B.31) for M = 1 (this is more efficient
that calculate all the binomial coefficients for large values of M). Thus, the frequency
response for a filter of length M = (N − 1)/2 will be given by:

G̃M−bin(ωj) =
(
G̃M1−bin(ω j)

)M
(B.33)

= cos2M

(
ω j∆

2

)
= cosN−1

(
ω j∆

2

)
(B.34)

Note that this frequency response is always positive, implying no change in phase of the
original signal. Furthermore, it is possible to show that, under some general assumptions,
a binomial filter is “maximally” flat in the passband and with the highest slope in the
transition band among all the digital filters of order M. This implies that it will modify
very little the (low) frequencies wanted to be kept, while it will cutoff the undesired (high)
frequencies efficiently, in opposition to the simpler moving average. See the proof of this
and other additional properties of the binomial filter in Marchand (1983).

Following the definition in Eq. (B.21), it is possible to find a closed analytical form
for the cutoff frequency by solving

1
2
= cos2M

(
ωcutoff∆

2

)
(B.35)

⇒ ωcutoff∆ = 2 acos(2−1/(2M)) (B.36)
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from where we can get the resolved time scale using Eq. (B.23):
tcutoff

∆
=

π

acos(2−1/(2M))
(B.37)

Some examples of frequencies responses of this filter are given in Fig. B.1 on dependence
on the width or number of passes of the 3 point filter M.

B.1.2.3 Gaussian filter

This filter is obtained with weights in Eq. (B.1) following the continuous Gaussian or
normal probability distribution function.

G(t − ξ) =
1
√

2πσ
exp

(
−|t − ξ|

2

2σ2

)
(B.38)

G̃( f ) = exp

−
f 2

2σ2
f

 (B.39)

where we have also indicated their respective frequency response (Fourier transform) and
σ,σ f are the standard deviations in real and Fourier space, respectively. The discrete ver-
sion of the Gaussian filter (weights gk) can be obtained by sampling the continuous ver-
sion Eq. (B.38) at multiples of the inverse of the standard deviation: {0,±1/σ,±2/σ, . . . }.
Since the original is an infinite signal, these discrete values are truncated when G(t− ξ) is
below a small given threshold. Finally, all these values are normalized to 1. The discrete
frequency response is obtained by simply using the definition Eq. (B.20). However, for
a large enough filter width N, it can be shown than the coefficients of the binomial filter
converge to the Gaussian one (Marchand 1983), because of the central limit theorem. This
is often more efficient than calculate the sampled Gaussian distribution, but only if σ is
small enough. Otherwise, the second method is more convenient.

Moving average
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Figure B.1: Frequency responses |G(ω∆)| of several filters, with the cutoff time tcut/∆

indicated. Left: Moving average for different (half)widths M (note the ripples in the high

frequency range). Center: Binomial for different halfwidth or passes of the basic 3 point

filter M. Right: Gaussian for different σ. The last two filters do not show ripples in the

high frequency range, attenuating efficiently any noise there. Note that the approximation

for the Gaussian cut-off Eq. (B.42) works better for large values of σ.

According to the basic properties of Fourier transforms, the standard deviations of the
filters in real and frequency domain are related by

σσ f =
1

2π
(B.40)
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From this expression it is possible to prove than the cutoff frequency of the discrete Gaus-
sian filter is:

ωcutoff∆ = 2π
√

2 log(2)(σ f∆) =

√
2 log(2)
σ/∆

(B.41)

(the factor
√

2 log(2) comes the full width at half maximum of the continuous Gaussian
distribution function) The associated time cutoff or resolved time scale is:

tcutoff

∆
=

2πσ/∆
√

2 log(2)
≈ 6

σ

∆
(B.42)

This is precisely the reason why this filter is very handy: its time cutoff can be specified in
terms of its standard deviation. Note, however, that the previous formula is precise only
if the filter width is large enough (σ/∆ ≫ 1). Some examples of frequency response of
this filter are given in Fig. B.1.

B.1.2.4 Sharp-cutoff

Although it is not used in this thesis, it is useful to know the specific form of the filter
that has the “opposite” form of the moving average and the ideal behavior: it eliminates
completely all the frequencies higher that the cutoffωcutoff, while it does not modify at all
the lowpass band of frequencies (Sagaut 2006):

G(x − ξ) =
sin(kcutoff(x − ξ))

kcutoff(x − ξ)
, with kc =

π

∆
(B.43)

G̃(k) =


1/∆ if |k| < kcutoff,

0 otherwise.
(B.44)

This theoretical filter, known as sharp-cutoff or sinc cannot be done in practice, since it is
not causal

B.1.2.5 Savitzky-Golay filters

Savitzky-Golay (lowpass) filters (Savitzky and Golay 1964) smooth data based on a
(local) polynomial approximation, using a least-squares approach. They were first pro-
posed for improving the detection of peaks in (noisy) signals from chemical spectra 3,
becoming in one of the standard techniques in that field since then. The main advantage
of the Savitzky-Golay (S-G) filters is that they keep the shape of the peaks of a signal
(usually appearing in spectroscopic analysis with a Gaussian form), while at the same
time smoothing out the overall data. Or in other words, under the assumption that the
original data can be locally well approximated by a polynomial, this filter can smooth
the signal without significant loss of resolution (Press et al. 2007). This is in contrast to

3 The paper by Savitzky-Golay also is one of the ten most cited (∼ 10k) in all the history of the jour-
nal Analytical Chemistry, even though “only” describes a numerical method. It is less known but it still
important in the digital signal processing (DSP) field, and not too known outside of these fields (Schafer
2011).
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other more conventional filters that, together with smoothing out the data, also make any
peak flatter and difficult to distinguish. This effect can be seen in Fig. B.2(left), where it
is shown the action of a moving average and S-G filters with the same window length on
synthetic noisy data (Press et al. 2007). The moving average broadens and decrease the
amplitude of the “spectral” peaks to the right of the data sets. On the other hand, the S-G
filter preserves both height and width of the peaks (the shape). But we already see the
trade-off of that nice feature: the large scales features (the broad peak to the left of the
data set) becomes noisier with the S-G filter.

Figure B.2: Effect of the S-G filter on synthetic data with added Gaussian noise. Left:

Superimposed the smoothed data obtained with a moving average (top) with N=33, S-G

filter with M=16 (and N=33) and polynomial order 2 (center) and same as previous but

with polynomial order 4 (bottom). Adapted from Fig. 14.9.1 of Press et al. (2007). Right.

Comparison of S-G filters with M=32 and different polynomial orders. Top: 2, Center: 4,

Bottom: 6. Adapted from Fig. 14.9.2 of Press et al. (2007).

The smoothed data via S-G filters is obtained by sampling a given polynomial of order
P

p(n) =
P∑

k=0

akn
k (B.45)

that fits locally to the N = 2M + 1 points4 of a data set {An}, equivalent to a fixed linear
combination of them (Schafer 2011) with filter coefficients uniquely specified for a given
polynomial of order P and filter width 2M + 1. This implies that it is not necessary to
calculate them again for each interval where smoothed data is wanted. The fitting via
least-squares approximation is obtained by minimizing the error function

ǫN =

M∑

n=−M

(p(n) − An)
2 (B.46)

4 Under some conditions, it is possible to extend this filter for an even number of data points (Luo et al.
2005a).
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which is equivalent to derive them with respect to each one of the polynomial coefficients
ak: ∂ǫN/∂ai. This procedure give P + 1 equations with P + 1 unknowns with unique
solution if and only if P & 2M (Schafer 2011). Then, the coefficients of this system of
equations can be obtained via standard inversion matrix methods.5 With this method (or
any similar), the specific S-G coefficients for polynomials order P = 2 (or 3) and P = 4
(or 5) as function of the filter width are6 :

gSG−P2,k = 3
(3M2 + 3M − 1 − 5k2)

(2M + 3)(2M + 1)(2M − 1)
(B.47)

gSG−P4,k = 15
(15M4 + 30M3 − 35M2 − 50M + 12− 35(2M2 + 2M − 3)k2 + 63k4)

4(2M + 5)(2M + 3)(2M + 1)(2M − 1)(2M − 3)
(B.48)

Thus, e.g., for the case with (P = 2, M = 2) the explicit filter formula and the respective
frequency response (via Eq. (B.20)) are:

〈ASG−P2M2,k〉 =
1

35
[−3Ak−2 + 12Ak−1 + 17Ak + 12Ak+1 − 3Ak+2] (B.49)

˜GSG−P2M2,k(ω j) =
1

35

[
17 + 24 cos(ω j∆) − 6 cos(2ω j∆)

]
. (B.50)

Note that, different from binomial of Gaussian filters and similar to the moving average,
the frequency response can be negative, implying a phase change for high frequencies.
This is one of the not so good features of these filters. See Fig. B.3 for a comparison of
S-G filters for different M and P, and Fig. B.4 for a comparison of S-G against others
filters. Now, let us list some other properties (Schafer 2011):

5 See details, e.g., in the textbook Orfanidis (2010, Sec. 8.3.5). There is also an alternative approach
for obtaining these coefficients relying in the use of the (orthogonal) Gram polynomials (see Gorry 1990,
including pseudo-code!). This approach is used in many efficient implementations of this algorithm, due to
its recursive character.

6 For a comprehensive compilation of formulas for various cases and combinations of M and P,
see, e.g, Madden (1978), which corrected several typos in the original formulas given in the paper by
Savitzky and Golay (1964).
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S−G filter
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Figure B.3: Frequency responses |G(ω∆)| of Savitzky-Golay filters with the cutoff-time

indicated. Left: dependence on the filter width M for a fixed polynomial order P. Right:

dependence on the polynomial order P for a fixed filter width M. Note that the same

cutoff can be obtained with a different combinations of these parameters, although with a

different behavior in the transition band and in the ripples for high frequencies.

• The “peak conservation” property of the S-G filters can be derived more formally
from Parseval’s theorem, stating that the first P momenta of the original signal Ak

are preserved by the filter 〈Ak〉SG:

∞∑

k=−∞
kr〈Ak〉SG =

∞∑

k=−∞
krAk, for r = 1, 2, . . . , P (B.51)

It can also be proven that, for a fixed N, a S-G filter is the momentum conserving
filter with maximum noise reduction (Bromba and Ziegler 1981). In the context
of spectroscopy, this property is physically equivalent to preserve the area under a
spectral line (momenta order 0), its mean position in time (momenta order 1), its
line width (momenta order 2) and so on (Press et al. 2007)7.

• The last property has a corollary in the frequency domain: the S-G filters have very
flat passband, but on the other hand, the stopband does not attenuate signals so well
compared to binomial or Gaussian filters. The peak gain in this range of frequencies
increases for higher polynomial orders P (given a fixed filter width M).

• The moving average (see Appendix B.1.2.1) is a particular case of S-G filter for
zero order polynomials P = 0 and filter length of 3 (or M = 1). Therefore, this
filter will not preserve the spectroscopic line width, since it is the momenta of order
2. In fact, this was one of the reasons because Savitzky and Golay developed the
filter named after them: they wanted to improve the tendency of moving averages
to flatten and widen peaks in the spectra

• In Eq. (B.1), the coefficient g0 = 〈A0〉 (smoothed value at the center of the interval).

7 This fact is of fundamental importance in our studies of magnetic reconnection for increasing guide
fields, where the length scales of the important features (e.g. border of magnetic islands) are reduced due
to the smaller electron Larmor radius (see Chapter 8).
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• In Eq. (B.1), the coefficient gk corresponds to the smoothed value of the k-th deriva-

tive of the data set {Ak } evaluated at the center of the interval, divided over k! (see
Madden 1978).

• S-G filters with polynomial of order P and P+ 1 are identical if P is an even integer
(i.e.: 2 and 3, 4 and 5).

• For a fixed filter width M, the S-G passband increases approximately proportional
to the polynomial order P.

• The cut-off frequency ωcutoff is inversely proportional to the filter width M.

• An empirical formula for the cutoff frequency is ωcutoff = (P + 1)/(3.2M − 4.6) for
large filter widths M & 25 and P < M. Note that different combinations of P and
M can give the same cutoff frequency.

• Since the noise amplification factor scales as the sum of the squares of the coef-
ficient

∑M
j=−M g2

j (Luo et al. 2005b, Orfanidis 2010), the S-G filter will attenuate
better the noise for larger M and/or P. Or in other words, the signal to noise ratio
will increase for higher values of these parameters. For quantitative estimations
about the amount of noise reduction and improvement of signal to noise ratio, see
Bromba and Ziegler (1981).

Comparison
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Figure B.4: Comparison of the frequency responses |G(ω∆)| of several filters (binomial

with width M, Gaussian with σ, moving average with width M and Savitzky-Golay for

width M and polynomial order P) for the same cutoff time tcutoff. Left: Comparison for a

short tcutoff ≈ 8.5 (note the linear scale for the x-axis). Right: Comparison for a longer

tcutoff ≈ 32 (note the logarithmic scale for the x-axis). Although binomial and Gaussian

filters (practically indistinguishable for the values shown here) attenuate efficiently noise

in the high frequency range when compared to S-G filters, they have shorter pass bands

and less steeper transition bands than the latter ones. These are useful properties if

one wants to get rid of given frequencies while reducing to the minimum the distortion

introduced by the filter to large scales. Note that the moving average have the “bad”

properties of both S-G and binomial/Gaussian filter: short passband (distortion to large

scales) and ripples in the stop band (lack of efficient reduction of noise to small scales)
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B.1.3 Numerical derivatives

Similar to Eq. (B.1), numerical derivatives can be calculated by choosing suitable co-
efficients g

q

j
and then forming a linear combination with the data points, usually centered

in the same way as smoothing filters:

(
dq {〈A〉}

dxq

)

k

=

M∑

j=−M

g
(q)
j Ak+j , for k = −M, −M + 1, . . . , −1, 0, 1, . . . , M − 1, M

(B.52)

where q indicates the order of the derivative (other symbols are identical to the ones in
Eq. (B.1)). The angular brackets have been maintained in the left hand side to indicate
that a numerical derivative can also (but not necessarily) smooth the result.

B.1.3.1 Extended finite differences

The standard way of calculating numerical derivatives is via finite differences (called
central differences if they are in the form Eq. (B.52), providing better accuracy than asym-
metric calculations). As explained in every textbook of numerical analysis, they are ob-
tained by approximating locally the value of the function by a polynomial of order P,
equivalent to a Taylor approximation. Higher order polynomial approximations will re-
quire more points, called in this context the “stencil” (instead of filter width as for the
designed for smoothing purposes). The explicit formula for the first order derivative 8 is
given by Ahnert and Abel (2007):

(
dA

dt

)

k,FD

=

M∑

j=1

α j

Ak+j − Ak− j

2 j∆
(B.53)

with g
(1)
j = α j/(2 j∆) and

α j = 2 · (−1) j+1

(
k

k− j

)
(

k+ j
k

) (B.54)

Note the antisymmetric character of all these expressions (g(1)
−k
= −g

(1)
k

) in opposition to
the first property of the smoothing filters (and g0 = 0). The first three lower order ones
for the first derivative (with accuracy 2, 4 and 6, respectively), are given by:

(
dA

dt

)

k,FD−1M

=
−Ak−1 + Ak+1

2∆
(B.55)

(
dA

dt

)

k,FD−2M

=
Ak−2 − 8Ak−1 + 8Ak+1 − Ak+2

12∆
(B.56)

(
dA

dt

)

k,FD−3M

=
−Ak−3 + 9Ak−2 − 45Ak−1 + 45Ak+1 − 9Ak+2 + Ak+3

60∆
(B.57)

8 The weights or coefficients of finite differences for arbitrary stencil lengths and derivative order can be
computed easily via the algorithm published by Fornberg (1988).
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In Eq. (B.53), the error between the approximation and the exact derivative scales the-
oretically as (O)(∆M ): larger stencils (using more points for the derivatives) will decrease
the error, as well as the choice of smaller timestep ∆. However, this is only valid if the data

is noise-free. In realistic cases the original data set contains intrinsic errors. These errors
may originate from both noise in the measurements and discretization effects. Then, the
subtraction of two similar numbers in the numerator of Eq. (B.53), a necessary operation
due to the use of differences in all these algorithms, will lead potentially to a loss of digits
of significance (due to the limitations of floating point arithmetic). Thus, the result of the
approximation for the derivative can be much less accurate than the original data set, even
to the extreme of being completely meaningless (Ahnert and Abel 2007).

The frequency response of the finite differences for first order derivatives will change
in comparison with the one for smoothing filters due to the aforementioned antisymmetry
property: instead of adding the complex exponentials in Eq. (B.9), it will appear a minus
sign in such a way that the exponentials term will be subtracted and then:

˜GFD(ω j) := −2i

M∑

l=1

g
(1)
l

sin(lω j∆) (B.58)

For example, for the aforementioned first central differences formulae:

˜GFD−1M(ω j) = −
i

∆
sin(ω j ∆) (B.59)

˜GFD−2M(ω j) = −
i

6∆

[
8 sin(ω j∆) − sin(2ω j ∆)

]
(B.60)

˜GFD−3M(ω j) = −
i

30∆

[
45 sin(ωj ∆) − 9 sin(2ω j ∆) + sin(3ω j ∆)

]
(B.61)

An ideal derivative would have a frequency response G̃ideal(ω j) = iω j (the time derivative
with respect to δ of the complex exponential). As we can see in Fig. B.5 , the central
differences approximates that behaviour in the low frequencies. For larger filter width,
they get closer and closer to the asymptotic line. But this is inconvenient from the practical
point of view: they do allow high frequencies without a significant damping, something
unwanted if one wants to differentiate noisy (experimental) data, since most of the noise is
precisely in that range. It is even worse: since the gain of the ˜GFD(ω j) can be significant
for large ω j, the numerical differentiation can indeed amplify the noise. Therefore, a
practical filter should not follow the linear frequency response of the ideal derivative: it
should instead be a lowpass blocking high frequencies.

B.1.3.2 Smooth derivatives with S-G filters

The Savitzky-Golay filters can also be applied for calculating numerical derivatives,
often in a much smoother way than finite differences9 . It can be proven that the S-G
derivative filter is equivalent to convolving a S-G smoothing filter and the derivative of
the input signal (Luo et al. 2005b). An intuitive way of seeing this is because they are
based on a least square approximation: these filters do not use the exact values of the

9 In this context, they are sometimes called Lanczos differentiators. See Usui and Amidror (1982) for
further details and extended comparisons among different numerical methods for derivatives.
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time series to be differentiated as in the case of finite differences (since they are based on
interpolation), instead: they use modified (smoothed) values of the input data.

It it interesting to mention that the S-G filters were historically first developed due to
that reason, since the derivatives of the spectroscopic data carry important physical infor-
mation. The method developed by Savitzky and Golay (1964) is essentially the same for
both smoothing an any higher derivative order. The simplicity of this general purpose algo-
rithm contributed to its popularity in the years after its original publication (Riordon et al.
2000).

Some properties of the S-G first order derivative filters are (Luo et al. 2005b):

• The filters with polynomials of order P and P+ 1 are identical if P is an odd integer
(i.e.: 1 and 2, 3 and 4).

• The polynomial order and filter width should satisfy P < M−1 to get the smoothing
effect on the derivative. Otherwise, the expressions are reduced to the simpler finite
differences (the least-square approximation degenerates into an interpolation)

• The frequency response is flatter and closer to the ideal derivative iω j for higher
order polynomial P, although it also widen the lowpass band.

• The first P momenta of the derivative of the signal (dA/dt)k are preserved by the
filter (dA/dt)k,SG

• A corollary of the latter property is that these derivative filters minimize the noise
amplification factor under that restriction.

• In general, for any derivative order:
∑M

j=−M g
(q)
j

jq = q! (Madden 1978).

• In general, for any derivative order:
∑M

j=−M g
( j)
j = 0 for q , 0 (Madden 1978).

For example, the coefficients for the first order derivative approximated by a polyno-
mial order P = 1 (or 2) and arbitrary width M are given by 10:

gSG1der−P1,k =
1
∆

3k

(2M + 3)(2M + 1)(2M − 1)
(B.62)

Specializing for the smallest width of M = 3 (M = 2 = P would be identical to the
finite difference algorithm), we can obtain the explicit formulas for the filter and their
corresponding frequency response (calculated via Eq. (B.58)):

(
dA

dt

)

k,SG1der−P1M3

=
−3Ak−3 − 2Ak−2 − Ak−1 + Ak+1 + 2Ak+2 + 3Ak+3

28∆
(B.63)

˜Gk,SG1der−P1M3(ω j) = −
i

6∆

[
sin(ω j ∆) + 2 sin(2ω j∆) + 3 sin(3ω j ∆)

]
(B.64)

It is interesting to compare the previous expression with the equivalent finite difference
algorithm for M = 3 in Eq. (B.57) and Eq. (B.61). In opposition to the frequency response
of finite differences, the ones for S-G derivatives attenuates much better the signal at

10 See some other explicit formulas in Madden (1978).
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higher frequencies, although still with the characteristic ripples. Note that the gain or
amplitude in that region decreases for higher values of N.

Finite Differences
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Figure B.5: Frequency responses |G(ω∆)| of finite differences (left) and first order deriva-

tives via Savitzky-Golay filters (right) for given width M and polynomial order P. The

dashed line indicates the frequency response of an ideal differentiator (iω j). Note that

finite differences do no attenuate noise in the high frequency range, instead: they amplify

any signal with frequencies up to the Nyquist frequency. This noise amplification gets

worse for wider widths (or stencils). In contrast, S-G filters attenuate partially the high

frequency noise, being more efficient in that for longer widths (exactly the opposite to

finite differences).

B.1.3.3 Combining smoothing formulas and derivatives

One can combine for smoothing formulas and derivatives in any desired order. Their
frequency response can be obtained by a simply convolution in the Fourier space. In this
way, in principle it is possible to design a combination of operations with an optimum
behavior in both high and low frequency ranges. See an example in Fig. B.6. We can see
that an efficient reduction of noise for high frequencies can be obtained by combining a
Gaussian filter with σ = 1.6 and finite differences with M = 1 (red line). However, this
reduction is very gradual over a long range of frequencies, a not convenient behaviour
inherited from the wide transition band of the Gaussian filter. Wider Gaussian filters
(σ = 3.0) and longer stencils for the finite differences (M = 2) keep the same behaviour
(purple line), although with additional noise reduction and distorted derivatives in large
scales. Single pass first order derivatives with S-G filters (green, brown and dark blue
lines) reduce, but do not attenuate completely the high frequency noise. But in compari-
son with a combination of Gaussian filter and finite difference, the specific frequency in
which the curve change from the ideal differentiator (in low frequencies) to block noise
(in high frequencies) is much more localized (steeper slope). This is a very nice property
since it allows to define more precisely the separation between small and large scales.
This transition gets steeper for wider filter widths or polynomial order (compare with the
brown and dark blue lines). But the best of both worlds can be obtained by combining a
single pass derivative with SG filter (with M = 10 and P = 2) and Gaussian smoothing
afterwards (with σ = 3.0), as shown in light blue line. The noise is completely smoothed
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out in the high frequency range (inherited from the Gaussian filter), while the frequency
determining the change from differentiator to block noise is more localized than the Gaus-
sian one (inherited from the SG filter), in the sense of a steeper slope (although it is not
so localized as for the pure S-G filter).

1st derivative comparison
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ωj∆/(2π)=t−1∆
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Figure B.6: Comparison of frequency responses for different combination of derivatives

via convolution in the frequency domain. The dashed line indicates the frequency response

of an ideal differentiator (iω j). The single pass 1st order derivatives with Savitzky-Golay

filters are indicated with their corresponding width M and polynomial order P in green,

brown and dark blue lines. For the rest of combinations, see explanation in the main text.

B.2 Some calculation methods

B.2.1 Higher order momenta of the distribution function

Although not used so often, higher order momenta of the distribution function (i.e.,
higher than two) can reveal important physical information in the system. But instead
of using directly the VDF and associated momenta with physical dimensions, it is more
convenient to work with dimensionless units and the terminology used in statistics.

In order to define the higher order momenta, we need to start with the definitions of the
lower ones. The moments or order zero and one are identical to the described in Eq. (2.3)
and Eq. (2.4), repeated here for the sake of clarity and to emphasize the terminology to be
used:

V = 〈v〉 = 1
n

∞∫

−∞

v f dv, n =

∞∫

−∞

f dv (B.65)

where we have assumed 1D VDF f = f (v). The moment of order 1 is usually called the
expectation value of f . The moment of order 2 of this VDF is called the variance σ2,
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proportional to the trace of the pressure tensor Eq. (2.5):

σ2 = 〈(v − 〈v〉)2〉 = 〈v2〉 − 〈v〉2 :=
1
n

∞∫

−∞

(v − V)4 f dv (B.66)

With this we can define the normalized excess kurtosis K, proportional to the fourth mo-
ment of the VDF: 11

K =
〈(v −V )4〉

(σ2)2
− 3 =

1
(σ2)2

1
n

∞∫

−∞

(v − V)4
f dv − 3 (B.67)

the −3 in the definition Eq. (B.67) makes the kurtosis of a Maxwellian (Gaussian) dis-
tribution equal to 0. Kurtosis measures the flatness of a distribution function, the relative
importance of its tails. K > 0 indicates a more sharp “peaked” distribution (“leptokur-
tic”) with “fatter” tails, while K < 0 the opposite: a flatter distribution (“platykurtic”)
with a wider peak and “thinner” tails. Kurtosis has been used as a proxy of intermittent
(“bursty”) signals in fully developed turbulence (see, e.g., Servidio et al. 2011, Wan et al.
2012, Leonardis 2013, Karimabadi et al. 2014), since these signals are characterized by
“fatter” tails of probability density function for the electromagnetic fields ~E or ~B. In a
similar way, positive values of K in a electron VDF might be signature of locations of
particle acceleration (since it would indicate more particles at the tails).

Now, in order to extend these definitions to a full 3D geometry, we need to define the
covariance σ2

i j as a a 3x3 matrix, with 6 independent components:

σ2
i j = 〈(vi − 〈v j〉)2〉 = 〈viv j〉 − 〈vi〉〈v j〉 :=

1
n

∞∫

−∞

(vi − Vi)(v j − V j) f dv3 (B.68)

The pressure tensor Pi j (∼ thermal energy density) can be written in terms of the covari-
ance as:

Pi j = nkBTi j = mnσ2
i j = m

∞∫

−∞

(vi −V j)(v j − V j) f d3v (B.69)

where kBTi j = mσ2
i j

is the temperature tensor (∼ average thermal energy in i and j direc-
tion per physical particle). Thus, the kurtosis becomes a 4x4 tensor with 15 independent
components:

Ki jkl =
〈(vi − Vi)(v j − V j)(vk − Vk )(vl − Vl)〉

σ2
i j
σ2

kl

− 3 (B.70)

=
1

σ2
i j
σ2

kl

1
n

∞∫

−∞

(vi −Vi)(v j −V j)(vk −Vk)(vl − Vl) f dv3 − 3 (B.71)

11 Although it is not used in this thesis, it is interesting to mention that the third order statistical moment
of a VDF is called skewness, measuring the asymmetry of the distribution function. Physically, it is propor-
tional to the heat tensor Qi jk , whose trace is the heat flux qi =

∑
j Qi jj that it is related with the transport of

energy.
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One way of simplifying the information contained in the kurtosis tensor is looking at
its “diagonal” components (in the 4D space):

Ki =
〈(vi −V i)4〉

(σ2
ii
)2

− 3 =
1

(σ2
ii
)2

1
n

∞∫

−∞

(vi − Vi)4 f dv3 − 3 (B.72)

where i = x, y, z. These quantities Ki can be interpreted as the equivalent 1D kurtosis
(Eq. (B.67)) of a 1D reduced electron distribution function.

In order to calculate all these quantities with (discrete) particles in the running time
diagnostics, it is convenient to use one-pass algorithms, in order to avoid to loop twice
or more over all the particles in each cell (the computationally more expensive part of
the calculation). Therefore, the previous momenta of the distribution function have to be
rearranged in the following way:

V i =
1
N

N∑

l=1

vl
i (B.73)

σ2
i j =

1
N

N∑

l=1

(vl
i −Vi)(vl

j − V j) =
1
N

N∑

l=1

vl
iv

l
j − ViV j (B.74)

Qiii =
1
N

N∑

l=1

(vl
i −Vi)

3
=

1
N

N∑

l=1

(vl
i)

3 − 3Viσ
2
ii − V

3
i (B.75)

Ki =
1

(σ2
ii
)2

1
N

N∑

l=1

(vl
i − Vi)4 − 3 (B.76)

=
1

(σ2
ii)2

1
N

N∑

l=1

[
vl

i − 4(vl
i)

3Vi + 6(vl
i)

2V2
i − 4(vl

i)V
3
i + V4

i

]
− 3 (B.77)

=
1

(σ2
ii)

2


1
N

N∑

l=1

(vl
i)

4 − 4ViQiii − 6V
2
i σ

2
ii − V

4
i

 − 3 (B.78)

with the index l running over each one of the total N macroparticles inside and around
the grid cell ∆x contributing to the weighting of the momenta (depending on the shape
function, slightly above ∆x. See Sec. 6.2 for further details). Note that all the previous
expressions are calculated in terms of central order momenta defined by

∑N
l=1(vl

i)
n, with

n = 0, 1, 2, 3, 4. In addition, the previous computed lower order momenta have been used
in each case by means of recurrence relations. These running time diagnostics for the 4th
order momenta kurtosis (as well as for the 3rd order momenta: heat flux) are implemented
in the ACRONYM code.

B.2.2 Reconnection rate

It is not too practical to calculate reconnection rates by using directly the definition
Eq. (4.2), since Ez is highly sensitive to noise in 2D simulations. This can be avoided by
averaging over time scales T such as ω−1

pe ≪ T ≪ Ωci , but there is still the uncertainty
about the specific temporal length of the average that might change the final result. For
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that reason, we calculate reconnection rates with the definition based in the magnetic flux
Eq. (4.1). By introducing the vector potential ~B = ∇ × ~A in our 2D configuration (no
variations in the z direction):

Bx =
∂Az

∂y
By = −

∂Az

∂x
(B.79)

we can notice that the reconnected flux density is always path-independent in a 2D config-
uration provided that the normal to the surface d~S is on-the-plane x-y (see, e.g., (Somov
2013))

dψ′ = ~B · d~S = Bydx − Bxdy =
∂Az

∂x
dx +

∂Az

∂y
dy = dAz (B.80)

or, equivalently,

ψ′ =
1
∆z

∮
~A · d~l = 1

∆z

(
−

∫ O−

O+

Azdz −
∫ X−

O−
Aydy +

∫ X+

X−
Azdz +

∫ O+

X+

Aydy

)
= Az(X) − Az(O)

(B.81)
dψ

dt
=

d

dt
(Az(X) − Az(O)) (B.82)

In other words, the reconnection rate is the rate of variation of the difference in the vector
potential between the X and O point. Since the PIC code ACRONYM works with fields
and not potentials, it is convenient to obtain Az by means of

Az(x, y) =
∫

Bx(x, y) dy + const(x), Az(x, y) = −
∫

By(x, y) dx + const(y) (B.83)

note that this can be applied everywhere, not only in the center of the CS.

B.2.3 Tearing mode growth rates

We compute growth rates from the vector potential following the standard definition
(see, e.g., Katanuma and Kamimura 1980, Matsui 2008). The idea is, first, to obtain to
Fourier transform Az(x, y, t) along the periodic direction y for each position x:

∣∣∣Ãz(x, ky)
∣∣∣ =

∣∣∣∣∣∣
1
Ly

∫ Ly

0
Az(x, y) exp(−ikyy) dy

∣∣∣∣∣∣ =
∣∣∣Ãz(x,m)

∣∣∣ , with ky = 2πm/Ly

(B.84)
with m the mode number, and represent how many entire wavelengths fit in the entire
simulation box size in y direction. It is convenient to average over some range ∆x in the
x direction to diminish noise effects. We chose to average over the electron singular layer
∆x = ∆N s =

√
2ρe L (see Karimabadi 2005, Matsui and Daughton 2008). In this way, we

have the m Fourier modes for each CS. For example, if the center of a current sheet is
located at x0, we have:

|Ãz(x0,m)| = 1
2∆x

∫ x0+∆x

x0−∆x

∣∣∣Ãz(x,m)
∣∣∣ =

∣∣∣∣∣∣
1

2∆xLy

∫ x0+∆x

x0−∆x

∫ Ly

0
Az(x, y) exp

(
− i2πmy

Ly

)
dy

∣∣∣∣∣∣
(B.85)
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It also convenient to calculate the total power up to mode number n:

P(n) =
m=n∑

m=1

|Ãz(x0,m)| (B.86)

B.2.4 Discrete coarse-grained entropy

The information entropy as defined by Eq. (6.46) is calculated by means of a histogram
estimator (Moddemeijer 1989):

S ≈ −
Nx,Ny,Nz∑

i, j,k

ρi, j,k lnρi, j,k + 3 ln(∆v), (B.87)

where ρi, j,k = fi, j,k∆v3 are the bin-related probabilities of the macroparticles to occupy the
cell (i, j, k) in the velocity space with a bin size ∆v3. In Eq. (B.87) fi, j,k is simply the
discrete approximation of the continuous distribution function f (~v, t) in each cell. Note
that the entropy Eq. (B.87) is defined up to a constant offset depending on the relative
units of ∆v (in our case, in units of the speed of light c). Since we are using natural
logarithms, the units of S are nats (1.44 bits). See Moddemeijer (1989) for details about
the calculation of accuracy, introduced bias and variance in the relation Eq. (B.87).

B.2.5 Rotation of pressure tensor

In order to calculate consistently the temperatures anisotropies and other related quan-
tities, it is necessary to define precisely the parallel (‖) and perpendicular (⊥) directions
to the magnetic field for the pressure tensor. Let Pi j be the full tensor pressure in the
”simulation” reference frame ( x̂, ŷ, ẑ) and b̂ = ~B/B the unitary vector in the direction of
the local magnetic field. In the simulation frame the diagonal elements of the pressure
tensor can be written, without loss of generality, as Pi j = diag(P⊥,P⊥, P‖), in such a way
that P⊥ = (Pxx + Pyy)/2 and P‖ = Pzz . We can choose another reference frame ( x̂′, ŷ′, ẑ′)
where one of its axis (ẑ′) is parallel to b̂ and thus to construct the rotation matrix R (with
elements given by the cosines of the angles between the old and new reference frames).
Note that only three out nine components of the matrix R are defined by b̂, but we do
not need the remaining ones for our purposes (this is a consequence of the two additional
degrees of freedom by fixing only one out three of the rotation axis). Then, the pressure
tensor in the new reference frame can be calculated as

P′i j = RikPklR
T
l j (B.88)

with components given by:

P′xx = P′yy =
1
2



∑

i

P ii −
∑

i

∑

j

bib jPi j


 = P′⊥ (B.89)

P′zz =
∑

i

∑

j

bib jPi j = P′‖ (B.90)
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where i = x, y, z and RT is the transpose matrix of R. Although there are six arbitrary terms
in Ri j , they are not needed for the diagonal components of P′

i j
, since the trace is invariant

under orthogonal transformations: trace(Pi j) = Pxx + Pyy + Pzz = trace(P′
i j

). Therefore,
all the results concerning temperatures anisotropies will be calculated according to the
previous definition of P′‖ and P′⊥, since the parallel direction will always be in the direction
of the local magnetic field (and we will drop off all the prime superscripts from now
onwards).

B.2.6 Non-Gyrotropy of the pressure tensor

In general, distributions functions in collisionless plasmas tend to be gyrotropic, i.e.,
symmetric around the magnetic field direction. This implies that the tensor pressure Gi j

of these gyrotropic distributions can always be decomposed in two parts:

Gi j = G⊥Ii j + (G⊥ −G‖)b̂ib̂ j (B.91)

where G‖ = Gi j b̂i b̂ j is the pressure parallel to the magnetic field lines and G⊥ = (trace(Gi j)−
G‖)/2. Note that this definition coincides with the components of a general tensor pres-
sure in a reference frame locally aligned with the magnetic field, given by Eq. (B.89),
providing that P i j is diagonal in the simulation reference frame.

A velocity distribution function with an arbitrary pressure tensor Pi j can always be
decomposed as Pi j = Gi j + Ni j, where Gi j is the gyrotropic part given by Eq. (B.91) and
Ni j is the nongyrotropic part. According to Hesse et al. (2014), Gi j represents physically
a pressure tensor of a gyrotropic distribution function with the same thermal energy as the
full distribution Pi j. The relative importance of Ni j with respect to Gi j can be calculated
by means of the Frobenius norm of those tensors, defined as

‖A‖ =

√√
3∑

i=1

λi =
√

trace(AT A) =

√√√ 3∑

i=1

3∑

j=1

Ai j (B.92)

where λi are the eigenvalues of Ai j . Due to the last equality, we can avoid the calculation
of the eigenvalue problem. Then, the degree of non-gyrotropy of P i j (deviations from the
expression Eq. (B.91)) can be estimated by means of the definition given in Hesse et al.
(2014):

Dng =
‖N‖
‖G‖ =

√∑3
i=1

∑3
j=1 Ni j

trace(Gi j)
(B.93)

where Dng is the degree of anisotropy for a velocity distribution function with an arbitrary
pressure tensor. The norm of G has that form since it is a diagonal matrix by construction.

Finally, it is important to mention other alternative ways of computing the non-gyrotropy
of the VDF. Many of them are based in calculating first the eigenvalues of the pressure
tensor in order to find their main and secondary axis and thus its proper frame of refer-
ence. But usually these matrix methods turn out to be computationally more expensive,
especially if they are done during the running time of a PIC code. For further details, see
Servidio et al. (2014).
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of current sheet instabilities for the Solar corona

In the Solar corona, magnetic energy is conjectured to be re-

leased through current sheets to be transformed to particle,

plasma energy and heating by magnetic reconnection. Since

the coronal plasma is collisionless, these are essentially kinetic

plasma processes. Their nonlinear physics and properties can

be described best by Particle-in-Cell (PiC) numerical simulations.

Since the coronal plasma is magnetically dominated, and in con-

trast to previous kinetic simulations of current sheets, the pres-

ence of large guide magnetic fields has to be taken into account.

We aim at finding and describing the resulting dominating kinetic

instabilities, turbulent processes and anomalous (collisionless)

transport effects.

In order to validate our methods, first we analyze the limit case

of zero guide field (antiparallel configuration). We find several in-

stabilities driven by temperature anisotropy inhibiting the tearing

mode. They might be numerically induced when more realistic

parameters (high mass ratios) are used in PiC simulations. This

numerical temperature anisotropy can be efficiently reduced by

using higher order shape functions. For current sheets in the

presence of small guide fields, we show evidence of non colli-

sional resistivity in the generalized Ohm’s law. And in the limit

of infinite guide fields, we compare our kinetic simulation results

with gyrokinetic theory. Although there is agreement in some

quantities such as reconnection rates between both plasma mod-

els, we find a magnetic field generation only in PiC simulations

with finite guide fields, due to an initial shear flow in the force free

current sheet initialization. In addition, we also find signatures of

cross-streaming instabilities producing anisotropic electron heat-

ing and acceleration.
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