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Summary

Compact astrophysical objects like planets, moons and stars can be thought of as rotat-
ing spherical shells with a fluid filled in between. Magnetic field generation in these
objects is thought to take place through a dynamo process driven by convection, though
alternative mechanisms such as precession (Malkus 1968, Tilgner 2005) and differential
rotation (Spruit 1999, 2002) have also been proposed. Convective dynamo models for
planets (e.g. Glatzmaier and Roberts 1995, Gastine et al. 2014) and stars (Charbonneau
and Steiner 2012) have become increasingly complex and make it difficult to attribute a
certain observation to a physical process. A major component of the internal dynamics of
these astrophysical objects is differential rotation. To avoid the complexities of “realistic”
interior models, we numerically study a simplified system consisting of two concentric
differentially rotating spherical boundaries with a fluid filled in between. This is the spher-
ical analogue of the more famous cylindrical Taylor-Couette setup and is known as the
spherical Couette setup. This allows us to focus on a single effect on the fluid dynamics
of the interiors of astrophysical objects. In addition, simulations of this setup allows us
to complement hydrodynamic (HD) and magnetohydrodynamic (MHD) experiments that
use the same setup but have limited diagnostics. This setup is extremely interesting from
the point of view of theoretical fluid mechanics and MHD as well, hosting a rich variety
of fluid instabilities and HD and MHD phenomena such as free shear layers, rotational
turbulence, waves in rotating fluids, magnetic shear layers, magneto-Coriolis modes and
so on. Lastly, this setup also allows us to study the interaction of differential rotation
with magnetic fields, varying each of them independently - something not possible in
self-consistent dynamo simulations of planetary and stellar interiors.

In this study we explore several aspects of this system using numerical simulations.
A large part of the work consists of direct comparisons of results from simulations and
experiments, in particular those of Triana (2011) and Hoff et al. (2016b). We start by
exploring the case with the outer boundary stationary and rotating the inner boundary.
The thickness of the fluid radial jet that emerges in the system is scaled with the inner
boundary rotation rate and the power law obtained agrees well with past studies. The
same holds true for the torque on the inner sphere.

We now run simulations with the outer boundary rapidly rotating, and with both senses
of differential rotation. For a positive differential rotation (inner sphere rotating prograde
and faster than outer), we attempt at reproducing the torque bistability observed in exper-
iments of Zimmerman (2010) and are able to reproduce some of the observed features,
but not the bistability itself.

For negative differential rotation (inner sphere rotating slower or in opposite direction
as compared to outer), we perform a more extensive study in parameter regimes at two
different outer boundary rotation rates in order to explain the onset of fast wave-like modes
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Summary

in the system called inertial modes that are equatorially antisymmetric. We find three
distinct hydrodynamic regimes as observed by Hoff et al. (2016b). The inertial modes
and other flow features observed in the simulations match well with the experiments.
Using numerical experiments we find clues that these modes might be instabilities of the
axisymmetric background flow.

We increase the differential rotation magnitude further and observe a temporal broad-
band spectrum, as also observed by Hoff et al. (2016b). This was considered to be a
transition to turbulence in the experiments. With our numerical insights, we are able to
point out that it is indeed a transition from rotation dominated inertial wave turbulence to
a homogeneous and isotropic turbulent regime, finding a criterion for the transition in the
process.

Finally, we impose a weak axial magnetic field on the setup, use it as a diagnostic and
find excellent agreements with the experimental inertial mode diagnostics of Kelley et al.
(2007). We also find that as the field strength is increased, it increases the growth rate of
the inertial modes, as well as affecting their frequencies and structures.

Our numerical studies show that the spherical Couette system offers a host of intrigu-
ing phenomena which can provide insights into experiments and help better understand
effects of differential rotation in stellar and planetary interiors.
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1 Introduction

“The most beautiful thing we can
experience is the mysterious. It is the
source of all true art and science.”

Albert Einstein

1.1 Rotating spherical shells

The structure of planets, moons, or stars is in the form of layered spherical shells. This
renders rotating spherical shells as important models for the dynamics in their interiors.
Breakthroughs in seismology (Wiechert 1897, Oldham 1906, Gutenberg 1912, Jeffreys
1926, Lehmann 1936) helped us to decipher the internal structure of the Earth, as shown
in figure 1.1a. It consists of the crust, the mantle, and the outer and the inner core, out of
which only the outer core is fluid. Planetary exploration has provided us insights into the
structures of other planets in our solar system as well. Terrestrial planets such as Mercury,
Venus and Mars are known to have a structure with a fluid outer core similar to that of the
Earth (see Spohn 2007). The gas giants Jupiter and Saturn are thought to have a layer of
liquid metallic hydrogen surrounded by a heavy element core at the bottom and a layer
of hydrogen gas on top (Stevenson 2008). Even the Earth’s and the Galilean moons like
Ganymede and Titan possess a layered spherical shell structure (see e.g. Spohn 2007).

The structure of stars is also in the form of spherical shells. Theories of stellar struc-
ture and evolution (e.g. Kelvin 1862, Lane 1870, Emden 1907, Eddington 1920, Biermann
1932, Cowling 1934, Chandrasekhar 1939, Bethe 1939) have shaped the present day ideas
of structures of stars of different masses and how they evolve. Depending on their mass,
stars in their main sequence can be fully convective or have stably stratified radiative
zones either below or above a zone of convection. Certain stars such as red giants or
massive stars also have a spherical shell structure with a large stably stratified radiative
zone. For details one can refer to the classic book by Kippenhahn and Weigert (1990).
Recent advancements in helioseismology (e.g. Schou et al. 1998) and asteroseismology
(Aerts et al. 2010) along with missions like SOHO (Domingo et al. 1995) and KEPLER
(Borucki et al. 2003) have allowed us to have much better constraints on the interiors of
stars and their magnetic fields. In fact, we now know a lot about the structure of the Sun
along with detailed measurements of its differential rotation (Schou et al. 1998).

13



1 Introduction

(a) Structure of the Earth.

(b) Different layers in a red giant and the Sun

(c) Structures of different types of stars in main sequence.

Figure 1.1: Ubiquity of spherical shell structures from Earth (and other planetary bodies)
to stars of different masses.a

aFigure attributes: (a) and figure of Sun in (b) is by wikipedia user Kelvinsong (c) is by
www.sun.org - http://www.sun.org/encyclopedia/stars - all three under CC BY-SA 3.0 http:
//creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons. Figure of red giant by Paul
G. Beck, Leuven University, Belgium.

14

http://www.sun.org/encyclopedia/stars
http://creativecommons.org/licenses/by-sa/3.0
http://creativecommons.org/licenses/by-sa/3.0


1.2 Dynamo theory and interior modelling

Figure 1.2: A typical convective dynamo model for the Earth, also applicable to other
planets. Shown in orange are helical convective flows that twist magnetic field lines,
shown in blue. Figure courtesy of Sabrina Sanchez.

1.2 Dynamo theory and interior modelling
Intimately tied to the structure of these compact astrophysical objects was the question
of the origin of their magnetic fields. The origin of the magnetic field of the Earth was a
mystery since the times of Gilbert (1600) and Halley (1683) who gave preliminary ideas
in the form of permanent magnetism. The discovery of a fluid iron core provided one
of the key hints towards the solution of this open question. This question became more
intriguing when Hale (1908) discovered the magnetic nature of sunspots marking the
discovery of the first extra-terrestrial magnetism. The mystery started to get resolved only
when Larmor (1919) put forward his theory of a hydromagnetic dynamo to explain the
magnetic fields of rotating bodies like the Earth and the Sun. This theory postulated that
electric currents are generated in a conducting fluid when the fluid moves in the presence
of an existing magnetic field. These induction currents, in turn, generate a magnetic field
which amplifies the existing field.

In geophysics, undeterred by anti-dynamo theorems (e.g. Cowling 1933, 1957), this
idea was taken up by pioneers like Walter Elsasser and E.C. Bullard who tried to mate-
rialise a quantitative theory of the geodynamo leading to seminal works such as Elsasser
(1939, 1946, 1950), Bullard (1949), Bullard et al. (1950) and Bullard and Gellman (1954).
These gave us much of the geodynamo theory in the form we use today. However, exam-
ples of self-sustaining dynamos even in a kinematic sense (with a prescribed flow field)
were not found till the works of Backus (1958) and Herzenberg (1958).

Around a similar time, Parker (1955) and Steenbeck et al. (1966) came up with mean
field models of dynamos which consisted of two mechanisms - generation of toroidal
(non-radial) magnetic field from poloidal (non-azimuthal) field using shear generated due
to azimuthal flows (called ‘ω-effect’ after Roberts 1972b) and the interactions of small-
scale velocity and magnetic fields giving rise to large-scale magnetic fields, called the

15



1 Introduction

α-effect. This could give a whole assortment of dynamo mechanisms. Since conversion
from toroidal to poloidal field was only possible through the α mechanism, one could
have either an α or an ω-effect or both working alongside an α-effect to give rise to αω,
α2 or α2ω dynamos.

Planetary dynamos

A typical model for the geodynamo is shown in figure 1.2. Convection inside the fluid
outer core is influenced by rotation, resulting in helical fluid motion along columns. This
in turn leads to the twisting of magnetic field lines, resulting in the aforementioned α-
effect. Additional motions such as precession and tidal excitation can also give rise to
helical flows. Possible processes generating an ω-effect through azimuthal flows could
be thermal winds and differential rotation of the inner core. Simulations of the geody-
namo using this model began with Glatzmaier and Roberts (1995) and Kageyama and
Sato (1995) with further complexities added on later due to inclusion of compressibility
and thermo-chemical convection (Braginsky and Roberts 1995, Glatzmaier and Roberts
1996), variations in heat flux in the mantle (Glatzmaier et al. 1999), stable stratification
at the top of the core (Braginsky 1984, 1993, Buffett and Seagle 2010, Buffett 2014) and
differential inner core growth (Monnereau et al. 2010, Aubert et al. 2013). However,
there are tight power budget restrictions on convection inside the Earth (Nimmo 2007),
especially in the light of new estimates for the thermal conductivity of liquid iron inside
the Earth (Pozzo et al. 2012, Buffett 2012). Alternative dynamo mechanisms beside con-
vection have also been investigated, though to a limited extent. For example, Malkus
(1968) proposed that precession driven flows could produce dynamo action, which was
later verified numerically by Tilgner (2005) for large precession amplitudes. Differen-
tial rotation has been suggested as a possible dynamo mechanism for Saturn (Cao et al.
2012). Having achieved success on the geodynamo front, convective dynamos have also
been applied for understanding magnetic fields in other planetary bodies like Mercury
(Christensen 2006, Manglik et al. 2010), Mars (Milbury et al. 2012, Dietrich and Wicht
2013), Jupiter (Stevenson 2008, Gastine et al. 2014) and Ganymede (Christensen 2015).

Stellar dynamos

Stellar dynamo models often rely on turbulent convection in spherical shells, taking into
account fluid compressibility (see e.g. Charbonneau and Steiner 2012). However, Spruit
(1999, 2002) showed that dynamos in stars can be driven just by using differential rotation
in a stably stratified radiative zone. This is crucial for applications to massive stars and
red giants. The analytical predictions of these works were verified through numerical box
simulations by Braithwaite (2006). To explain the strong dipolar magnetic field of chem-
ically peculiar A stars (called Ap stars), Jouve et al. (2015) also performed simulations
with differentially rotating fluid-filled spherical shells to obtain instabilities which could
provide a possible answer. Differential rotation has also been invoked in an attempt to
explain the strong magnetic fields of magnetars (Spruit 1999, 2008). For a review on how
differential rotation can drive a dynamo in non-convecting regions of stars, one can have
a look at Braithwaite and Spruit (2015).
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1.3 Hydrodynamic and MHD experiments

Differential rotation and angular momentum transport

One dimensional stellar evolution models usually parametrise angular momentum trans-
port using diffusion and the interaction of differential rotation and magnetic fields (e.g.
Maeder and Meynet 2000, Meynet and Maeder 2003, Maeder and Meynet 2004, 2005,
Maeder 2008, Maeder, A. et al. 2013). These models require further development to ex-
plain stellar observations, especially for giants and clump stars (Cantiello et al. 2014). A
recent focus has turned towards gravito-inertial waves or internal gravity waves (IGW),
which are waves restored by gravity and the Coriolis force, to explain angular momentum
transport in stars (e.g. Talon and Charbonnel 2008, Rogers et al. 2013, Fuller et al. 2014).

Angular momentum transport is also important in studies of accretion discs which are
the first step towards formation of stellar and planetary systems. They can form through
gravitational collapse of a cloud of gas and dust or through the accretion of matter in
binaries from one companion to the other. Gravitational collapse of such a cloud impose
Keplerian orbits onto its particles which are stable to the Rayleigh criterion (Rayleigh
1917). But the hydrodynamical models of the rate of angular momentum transport in
such discs are not compatible with observations of fast accretion rates. This problem
was solved by the introduction of the concept of the magnetorotational instability (MRI)
by Balbus and Hawley (1998) who showed how a weak magnetic field can destabilise a
Rayleigh stable flow and cause enhanced angular momentum transport.

Need to study differentially rotating fluid

From the discussions above, one can infer that a study of differentially rotating fluids
in spherical shells and their interaction with magnetic fields has wide applications. The
models used to study dynamics of planetary and stellar interiors are complex and hence
make it difficult to attribute observations in numerical models to exact physical processes.
In addition, the study of other physical processes involving differential rotation and mag-
netic fields (e.g. MRI) are crucial to understanding angular momentum transport in astro-
physical objects. Such a study is further motivated by several hydrodynamic and MHD
experiments which we briefly review below.

1.3 Hydrodynamic and MHD experiments
Need for experiments

Parameter regimes covered by numerical simulations are far away from those of astro-
physical objects, especially in terms of diffusivities. Important parameters that depend
on diffusivities are the Ekman number E which is a measure of relative importance of
viscous to Coriolis forces and the magnetic Prandtl number Pm which is a measure of the
fluid conductivity. As an example, in the Earth E ≈ 10−15 and Pm ≈ 10−6. Typical numer-
ical geodynamo simulations are usually run at around E ≈ 10−5 and Pm ≈ 0.1. Recent
developments in computational power and better numerical codes have pushed the bound
to E = 10−7 and (Schaeffer et al. 2017) and even E = 10−8 using artificial ‘hyperviscosity’
(Aubert et al. 2017). But such simulations are extremely computationally expensive and
they are still several orders of magnitude away from realistic parameters. This means that
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1 Introduction

the small scales of fluid motion are not resolved correctly in simulations. In the absence of
a proper theory of turbulence, one has to resort to experiments which can run in regimes
where simulations fail.

Hydrodynamic experiments of rotating fluids

A large number of hydrodynamic laboratory experiments have been performed to under-
stand the dynamics of rotating fluids as well as to explore mechanisms other than convec-
tion that could give rise to dynamos. These include experiments in precessing spheroids
by Malkus (1968), Vanyo (1984) and Vanyo et al. (1995), who observed cylindrical dif-
ferential rotation and columnar vortices, and by Triana et al. (2012) in a spherical shell
who clearly identified the ‘spin-over’ mode which consists of a solid body rotation of
the fluid about an axis different to that of the container and is a solution to the equation
of motion in the presence of precession derived by Poincaré (1910). Other experiments
studied elliptical instabilities (e.g. Aldridge et al. 1997, Lacaze et al. 2004, Le Bars et al.
2010) and zonal flows driven by tidal forcing (e.g. Morize et al. 2010) and libration (e.g.
Sauret et al. 2010).

There have been a number of experiments in rotating spherical shells as well. These
will be reviewed in section 1.4.

Dynamo flows and past experiments

Since the dawn of dynamo theory, several flows have been proposed that could generate
and maintain a magnetic field against ohmic decay. Examples of such flows are given by
Ponomarenko (1973), Roberts (1972a) in 1D and 2D Cartesian geometry, Roberts (1971)
and Dudley and James (1989) in 2D spherical geometry, by Lortz (1968) in 3D cylindri-
cal, the Arnold-Beltrami-Childress (ABC) flow in 3D Cartesian, and Kumar and Roberts
(1975) in 3D spherical geometry. A more detailed list of such flows and a detailed intro-
duction to dynamo theory in general can be found in Roberts (2007) and Jones (2008).

Three types of flows have been used to design successful experiments capable of main-
taining dynamo action and sustaining a magnetic field. One was at Riga, Latvia (Gailitis
et al. 2000) using the Ponomarenko flow, another at Karlsruhe, Germany (Stieglitz and
Müller 2001) using the G. O. Roberts flow. A third experiment, at Cadarache in France,
was based on the ‘von Kármán’ flow - the flow between two rotating discs (Zandbergen
and Dijkstra 1987). The experiment, called the ‘von Kármán sodium’ or VKS experiment
(Bourgoin et al. 2002) was also successful in generating and maintaining a magnetic field,
but only with ferromagnetic propellers. Schematics of all three experiments are shown in
figure 1.3.

Spherical shell MHD experiments

The experiments mentioned above, though all breakthroughs in themselves, were not very
physical when it came to applications to real astrophysical objects. They were, at best,
idealised forced representations of convective columns inside a rotating body of fluid with
a very unrealistic geometry.
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1.3 Hydrodynamic and MHD experiments

Figure 1.3: Schematics of three dynamo experiments - (a) one at Karlsruhe, Germanya (b)
one at Riga, Latviab and (c) the VKS experiment in Cadarache, France c. All three were
successful in producing and maintaining a magnetic field against ohmic decay through
dynamo action.

aTaken from Stieglitz and Müller (2001), with the permission of AIP Publishing, DOI: http://dx.
doi.org/10.1063/1.1331315

bReprinted figure with permission from Gailitis et al. (2000), copyright (2000) by the American Physi-
cal Society, DOI: https://doi.org/10.1103/PhysRevLett.84.4365 and with permission from Frank
Stefani

cTaken from Boisson and Dubrulle (2011)

Figure 1.4: New spherical MHD experiments. The 3-metre spherical shell experiment in
Maryland contains liquid sodium and is used to study MHD turbulence, the DTS experi-
ment in Grenoble France has a permanently magnetised inner sphere to study motions of
a conducting fluid in a dipolar magnetic field. The Madison Plasma Dynamo eXperiment
(MPDX) is built to be able to reach parameters not achievable by liquid metal experi-
ments. Sources of images: 3m : http://complex.umd.edu/news.html, DTS: Henri-Claude Nataf
(director of the DTS group), MPDX: http://plasma.physics.wisc.edu/mpdx.

Experiments at Maryland, USA The group of Daniel Lathrop in Maryland, USA has
built spherical shell experiments with sizes of 30 cm, 60 cm and 3 m with the space in the
shell filled with liquid sodium, air or water. The results from these experiments have been
the topic of six PhD theses (Sisan 2004, Kelley 2009, Zimmerman 2010, Triana 2011,
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Adams 2016, Mautino 2016). Magnetic instabilities with features similar to the MRI were
observed in the 30 cm experiment, inertial modes (wave-like modes restored by Corio-
lis force, incompressible analogues of internal gravity waves (IGW) mentioned earlier)
were observed in the 60 cm experiment, while extensive studies on turbulence, inertial
modes and precession were performed with the 3m water experiments. Two of the most
puzzling observations from the study were the excitation of inertial modes by differential
rotation, which are otherwise known to be excited by external oscillatory mechanisms like
precession, libration and tidal excitation (Kelley et al. 2007, Rieutord et al. 2012), and a
bistability in torque measurements in the turbulent state (Zimmerman et al. 2011).

DTS Experiment, Grenoble, France The group of Henri-Claude Nataf at Grenoble
France, built a 21 cm setup where the inner sphere of 7.4 cm contains bricks of rare-
earth Cobalt magnets to make it a permanently magnetised dipole. The experiment was
called “Derviche Tourneur Sodium” (DTS, Nataf and Gagnière 2008). Several studies on
the interaction of differential rotation with a dipolar magnetic field have been performed
using this setup. The large scale steady state was measured and characterised by Brito
et al. (2011) while Figueroa et al. (2013) performed numerical simulations of the same.
The results show that the fluid rotations tend to be aligned with the field lines where the
field is strong. Magnetic instabilities, more specifically magneto-Coriolis modes, were
observed in this experiment. The identifications of these instabilities were verified by
numerical simulations (Schmitt et al. 2008, Schmitt et al. 2013).

MPDX, Madison, USA The Madison plasma dynamo experiment (MPDX), built by
the group of Cary Forest, is a spherical experiment consisting of two 3 m hemispheres
confining a hot weakly magnetised plasma using magnets. This experiment will reach
parameters unattainable in liquid sodium experiments and give us further insights into
astrophysical dynamos as well as other MHD processes like the MRI. Preliminary results
from this experiment consist of a successful containment of the plasma and successful
in-situ measurements of the plasma flow (Cooper et al. 2014).

Images of these experiments are provided in figure 1.4. More details and further
reviews of the above experiments and more can be found in Gailitis et al. (2002), Cardin
and Olson (2007), Lathrop and Forest (2011) and Olson (2013).

Need to numerically study a fluid-filled spherical shell

The hydrodynamic and MHD experiments outlined above are extremely useful in study-
ing turbulent flows. However, their diagnostics are limited, for example, by the availabil-
ity of and space for the number of sensors that can be used. This is especially true for
MHD experiments with liquid sodium or plasmas where the whole volume of the work-
ing fluid cannot be seen directly. There is also a large degree of uncertainty associated
with experiments. For example, physical properties of working fluids change with tem-
peratures and keeping precise and constant rotation rates in a sphere is difficult. This
motivates us to simulate a fluid-filled rotating spherical shell, to complement and provide
further insight into the limited laboratory data. Numerical simulations are economically
cheaper to run, have much better control on parameters and have access to the full solu-
tion at every grid point. This makes them ideal for detailed analyses. The diffusivities
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1.4 The spherical Couette system

Figure 1.5: The spherical Couette system. The two concentric spheres rotate differentially
and drive the fluid filled in the space in between. The outer sphere rotates with a rate Ω,
while the inner sphere rotates with a rate Ω + ∆Ω.

in numerical simulations are often much larger compared to experiments and are always
several orders of magnitude away from values of real astrophysical objects. However,
one can reach similar hydrodynamic regimes and often reproduce essential features of the
flow observed in experiments (e.g. Wicht 2014) as well as large-scale features observed
in astrophysical objects (e.g. Christensen and Wicht 2007).

1.4 The spherical Couette system
From the discussions in sections 1.1, 1.2 and 1.3, it is clear that simulations of fluid-filled
differentially rotating spherical shells are imperative. Our objectives in this regard are
twofold:

1. Study a simple model of stellar and planetary interiors to understand the effect of
differential rotation and its interaction with magnetic fields

2. Compare with experimental results and help to gain insight into experimental ob-
servations through numerical simulations.

To achieve these objectives, we study the spherical Couette system which consists
of two concentric differentially rotating spheres with a fluid filling the space inside, as
shown in figure 1.5. This setup resembles interiors of astrophysical objects as well as ex-
perimental setups used for several hydrodynamic as well as the new generation of MHD
experiments. Besides the above two motivations, the spherical Couette system also pro-
vides a unique opportunity to study classic fluid dynamical phenomena such as free shear
layers, waves in rotating fluids as well as rotational turbulence.
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Brief review

The spherical Couette setup has been a classic system of study in fluid mechanics. Its
theoretical study goes back to Proudman (1956) who studied a small perturbation to solid
body rotation when the outer sphere is rotating rapidly. He postulated the presence of a
shear layer on the tangent cylinder circumscribing the inner sphere, which later became
known as the Stewartson layer owing to the work of Stewartson (1966) who formulated its
structure. Bratukhin (1961) determined the critical Reynolds number needed for the first
non-axisymmetric instability for a stationary outer sphere and also formulated the solution
of this instability. Numerical studies go back to Pearson (1967) and Munson and Joseph
(1971a) who studied the axisymmetric flow in the system. Munson and Joseph (1971b)
studied the hydrodynamic stability of the flow using energy theory, as a numerical eigen-
value problem. Munson and Menguturk (1975) presented results from linear analyses and
experiments and explored the effect of radius ratio and flow Reynolds number.

Hollerbach (2003) performed direct numerical simulations (DNS) of a wide-gap spher-
ical Couette flow and found that the azimuthal wavenumbers of the first non-axisymmetric
instabilities are different depending on whether the inner sphere rotated faster or slower
as compared to the outer, similar to experimental results in cylinders (Hide and Titman
1967). Hollerbach et al. (2004) performed DNS of this setup with radius ratio ri/ro = 2/3
and found that the wavenumber of the most unstable mode at onset of instability increases
with outer boundary rotation, while in the supercritical regime mode transitions occur
whereby the wavenumber of the instability decreases. Excellent agreements with ex-
periments were also found in this study. Hollerbach et al. (2006) numerically studied
instabilities of the system with outer boundary stationary for different radius ratios. They
found that the basic state always consisted of a radial jet, but the instabilities depended on
the radius ratio. Wicht (2014) studied this setup with a radius ratio of ri/ro = 0.35 with
a much wider parameter range than in earlier studies. He recovered the instabilities that
had been observed in previous wide-gap studies while finding new ones.

Experimental studies of this system go back to Sorokin et al. (1966) who tried to ver-
ify the criteria of Bratukhin (1961) for a critical Reynolds number for instability when
the outer sphere is stationary, failing to find an agreement. The study of Munson and
Menguturk (1975) has already been mentioned. Egbers and Rath (1995) studied instabili-
ties of the system and their dependence on radius ratio when the outer sphere is stationary,
finding that narrower gaps yield higher azimuthal wavenumbers of instability. Kelley et al.
(2007) and Kelley et al. (2010) and Triana (2011) and more recently Hoff et al. (2016b)
found inertial modes excited by differential rotation. Zimmerman et al. (2011) found a
torque bistability in a turbulent flow under very rapid rotation.

Inertial modes

Inertial modes are wave-like modes of a rotating fluid restored by the Coriolis force.
They have been claimed to be detected in the Earth’s outer core (Aldridge and Lumb
1987). These modes have also been seen as gravito-inertial modes in a rapidly-rotating
B3 star (Pápics et al. 2012) and in a hot Be star (Neiner et al. 2012) where the Cori-
olis force plays a major role in the force balance. They are strongly influenced by the
background rotation and can in turn influence it - being capable of inducing strong zonal
jets (Tilgner 2007b) and transporting angular momentum. The recent importance being
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given to gravito-inertial modes in stars for angular momentum transport has already been
discussed.

Rieutord (1991) studied the linear eigenvalue problem of inertial modes in a spherical
shell in the presence of dissipation using an expansion in spherical harmonics. He found
good agreement with experimental data and was even able to identify some of the modes
identified in the Earth’s core. Rieutord and Valdettaro (1997), Tilgner (1999a) and Rieu-
tord et al. (2001) studied internal shears layers, ray geometries, wave attractors and the
asymptotic spectrum of these modes. Rieutord et al. (2012) used the eigenvalue formula-
tion of inertial modes to compare with data from the 3-metre experiment. Baruteau and
Rieutord (2013) studied the effect of differential rotation on inertial modes in a spherical
shell under a linear approximation.

These modes are thought to be excited due to precession, libration or tidal excitation in
astrophysical objects (Le Bars et al. 2015). However, in the spherical Couette setup they
have been seen to be excited in the absence of any of these mechanisms, but simply in
the presence of differential rotation, both in experiments (Kelley et al. 2007, 2010, Triana
2011, Hoff et al. 2016b) as well as in simulations (Matsui et al. 2011, Wicht 2014). Their
onset is still an open question (Rieutord et al. 2012, Wicht 2014).

Magnetic spherical Couette flow

Imposing an external magnetic field allows one to vary differential rotation and magnetic
fields independently which is not possible in self-consistent dynamo simulations. This
gives rise to new kinds of instabilities, depending on the imposed magnetic field geom-
etry and strength as well as the magnetic boundary conditions. Examples of studies of
magnetic effects in spherical Couette flow are numerical studies by Hollerbach (1994,
1997), Dormy et al. (1998), Hollerbach (2000), Hollerbach and Skinner (2001), Schmitt
et al. (2008), Schmitt et al. (2013), Hollerbach (2009), Gissinger et al. (2011) and analyt-
ical studies by Kleeorin et al. (1997), Starchenko (1997), Soward and Dormy (2010).

A brief review of these works are provided in chapter 9. A detailed review can be
found in Rüdiger et al. (2013).

1.5 Outline of this work

The preceding discussions showed us why a numerical study of rotating spherical shells
is essential and briefly reviewed the work that has been done in this context. The present
study focusses on simulations of the spherical Couette setup with a radius ratio of ri/ro =

0.35, similar to that of the Earth’s core, and tries to answer some of the open questions. A
large part is dedicated to the comparisons with experiments, in particular by Triana (2011)
and Hoff et al. (2016b). The structure of the thesis is as follows.

Chapter 2 provides a background in the theory of rotating fluid mechanics, with spe-
cial emphasis on inertial modes. We derive the continuity and Navier-Stokes equations
and show how a plane wave ansatz in the presence of rotation gives rise to waves restored
by the Coriolis force. Thereafter, we show how boundary conditions prohibit a continuous
spectrum of frequencies and give rise to specific modes which now drift in azimuth. We
discuss inertial modes in a sphere and spherical shell and how boundary conditions give
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rise to internal shear layers. We end the chapter by discussing oscillatory mechanisms
known to excite inertial modes in astrophysical objects.

Chapter 3 provides an overview of the different flow regimes and instabilities observed
in the spherical Couette setup for our chosen radius ratio. We first introduce the solution of
Proudman (1956) and Stewartson (1966) in the rapidly rotating case and briefly discuss
the Stewartson layer instabilities. Thereafter we provide an overview of the parameter
regimes and different instabilities observed by Wicht (2014).

Chapter 4 introduces the numerical methods employed in this study. This includes
poloidal/toroidal decomposition of vector fields and their expansions in spectral space.
We also introduce the code MagIC that was employed in the simulations. Finally, we end
the chapter by explaining how inertial modes can be identified in our simulations using
various methods.

Chapter 5 discusses the case when the outer boundary is stationary. We scale the
thickness of the radial jet and the torque on the inner sphere with the inner boundary
rotation rate. We compare with past experimental studies in a spherical shell as well
as analytical and numerical studies of a sphere rotating in an unbounded fluid and find
similarities. This chapter also discusses an attempt to study the torque bistability observed
by Zimmerman et al. (2011) using simulations at much slower rotation rates.

Chapter 6 compares results of simulations at two different outer boundary rotation
rates with experimental results observed by Hoff et al. (2016b). This chapter is based
on the manuscript “Triadic resonances in the wide-gap spherical Couette system” by A.
Barik, S. A. Triana, M. Hoff and J. Wicht, that has been submitted to the Journal of
Fluid Mechanics. This work was carried out in collaboration with Santiago Triana from
the Royal Observatory of Belgium and Michael Hoff from BTU Cottbus-Senftenberg. We
perform simulations for the case when the inner sphere is rotating slower or in an opposite
direction with respect to the outer one. At a low outer boundary rotation rate, as we
increase the magnitude of differential rotation, we find the three hydrodynamic regimes
identified by Hoff et al. (2016b). At a higher outer boundary rotation rate, a similar
exercise is repeated and closer comparisons with experiments are performed. We identify
triadic resonances of inertial modes in the system, similar to those observed by Hoff

et al. (2016b). Finally, we use artificial symmetry restrictions in numerical simulations to
determine the cause of onset of these fast EA modes.

Chapter 7 discusses the regime where a broadband temporal spectrum was observed in
the simulations as well as in the experiments of Hoff et al. (2016b). We start by providing
a brief theoretical background in rotating turbulence. Thereafter, we attempt to address the
nature of the ‘turbulent’ regime and the cause for the transition to a broadband turbulence.

Chapter 8 provides a background in fundamentals of magnetohydodynamics (MHD)
and discusses waves due to the effect of the Lorentz force - namely Alfvén and magneto-
Coriolis waves. We end the chapter by providing a background in magneto-Coriolis
modes and studies of Hide (1966) and Malkus (1967).

Chapter 9 discusses the effect of an imposed axial magnetic field on the inertial modes
observed in the spherical Couette flow. When the magnetic field is weak, it acts as a
diagnostic and we find similar magnetic induction patterns as observed in experiments by
Kelley et al. (2007). Increasing the magnetic field amplitude leads to flow modifications
and new instabilities that we briefly describe.

The thesis ends with a conclusion and outlook towards plans of future studies.
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2 Theory of inertial modes

“C’est par la logique qu’on démontre,
c’est par l’intuition qu’on invente.”
(It is by logic that we prove, but by
intuition that we discover.)

Henri Poincaré

This chapter introduces the reader to the basic equations of rotational fluid dynamics
and provides a background in inertial mode theory. A more detailed insight into rotational
fluid mechanics in general, can be found in the classic monograph by Greenspan (1968).
For a more recent account of advancements in the field of inertial modes we refer to
Le Bars et al. (2015).

2.1 Basics of fluid dynamics

2.1.1 Conservation equations
The basic equations of motion of a fluid simply represent fundamental laws of nature for
a closed system:

• Conservation of mass

• Conservation of momentum

• Conservation of energy

These equations are derived in brief for a fluid moving with a velocity u(x, t) and
having mass density ρ(x, t), in a domain D of three-dimensional space. Here x and t
represent position vector and time, respectively. In what follows, it is assumed that u and
ρ are smooth functions onD and we consider a finite subregion W ofD, with surface ∂W.

Conservation of mass

The time rate of change of mass in this volume can be written as ∂/∂t
∫

W
ρdV and is

determined by the mass flux into the surface of the volume, −
∫
∂W
ρu · ndS . Here, n is the

normal to the surface ∂W pointing outwards (hence the negative sign). Equating the two,
one gets
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2 Theory of inertial modes

∂/∂t
∫

W
ρdV = −

∫
∂W
ρu · dS, (2.1)

where using the divergence theorem leads to∫
W

[
∂ρ

∂t
+ ∇ · (ρu)

]
dV = 0. (2.2)

Since this holds for all W inD, the following must hold at any point locally

∂ρ

∂t
+ ∇ · (ρu) = 0. (2.3)

Equation (2.3) is referred to as the equation of continuity. For an incompressible fluid
(ρ(x, t) = constant) this reduces to:

∇ · u = 0. (2.4)

Conservation of momentum

The conservation of momentum of the fluid in W can de derived using Newton’s second
law:

Rate of change of momentum = Force due to stress applied on surface ∂W
+ Force applied on the whole volume.

If σ represents the resultant of the stresses on the surface, and the sum of all forces acting
on the volume is denoted by F, then one can write

d
dt

∫
W
ρudV =

∫
∂W
σ · ndS +

∫
W

FdV. (2.5)

The divergence theorem allows us to write the above equation as:∫
W

[ D
Dt

(ρu) − ∇ · σ − F
]

dV = 0, (2.6)

where D/Dt = ∂/∂t + u · ∇ is the material derivative. Since this must hold for all W inD,
the following must be true locally as well,

D
Dt

(ρu) = ∇ · σ + F. (2.7)

Equation (2.7) represents conservation of momentum and is known as the Navier-
Stokes equation. Decomposing σ into isotropic (pressure) and anisotropic (deviatoric
stress) parts, σ = −PI + τ, we get the more commonly used form of the Navier-Stokes
equation:

D
Dt

(ρu) = −∇ · PI + ∇ · τ + F. (2.8)

Here, τ is the rate of strain tensor. For Newtonian fluids, this is given by:
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τi j = 2µ
(
εi j −

1
3
∇ · u

)
, (2.9)

where,

εi j =
1
2

(
∇u + ∇uT

)
, (2.10)

and µ is the dynamic viscosity of the fluid. Substituting the above expressions in equation
(2.8), we get for an incompressible fluid (∇ · u = 0)

ρ
Du
Dt

= −∇ · PI + ∇ ·
(
µ
(
∇u + ∇uT

))
+ F, (2.11)

which, for a constant µ, can be written as:

Du
Dt

= −
1
ρ
∇P + ν∇2u +

F
ρ
, (2.12)

where, ν = µ/ρ is the kinematic viscosity. Equation (2.12) is the form of the Navier-
Stokes equation that we would use in the subsequent sections.

Conservation of energy

Multiplying the Navier-Stokes equation (2.12), by u, we get the equation for energy:

∂

∂t
u2︸︷︷︸

Rate of change of KE

= −u · ∇u2︸    ︷︷    ︸
Advection of KE

+
1
ρ

(−∇P + F) · u︸              ︷︷              ︸
Work done by forces

+ ν
(
u · ∇2u

)︸      ︷︷      ︸
Viscous dissipation

. (2.13)

This does not give us an evolution equation, but a condition that must hold true at all
times.

2.1.2 Rotating frame of reference
In a rotating frame of reference, rotating with a constant angular velocity Ω, the velocity
is given according to the equation

uinert = urot + Ω × r, (2.14)

where subscripts inert and rot indicate quantities in inertial and rotating frames of refer-
ence, respectively. Using a similar transformation, one can write the acceleration as

(
∂u
∂t

)
inert

=

(
∂u
∂t

)
rot

+ 2Ω × urot︸     ︷︷     ︸
Coriolis acceleration

+ Ω ×Ω × r︸      ︷︷      ︸
Centrifugal acceleration

+

(
∂Ω

∂t

)
inert
× r︸         ︷︷         ︸

Poincaré acceleration

. (2.15)

The third term on the RHS, conventionally called the Poincaré acceleration, comes into
the picture only when Ω is evolving in time as is the case, for example, for precession.
However, it is equal to zero here since we only consider an Ω which is constant in time.
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Substituting into equation (2.12), we get in a rotating frame of reference,

Du
Dt

= −
1
ρ
∇P − 2Ω × u −Ω ×Ω × r + ν∇2u +

F
ρ
. (2.16)

The third term on the RHS can be written as Ω×Ω× r = −∇|Ω× r|2/2 and the body force
is assumed to be conservative so that F = −ρ∇Φ. These terms can be grouped together
with the pressure term as

Du
Dt

= −∇

(
P
ρ

+
1
2
|Ω × r|2 + Φ

)
− 2Ω × u + ν∇2u, (2.17)

giving rise to an effective pressure, p = P/ρ + 1
2 |Ω × r|2 + Φ. Thus, one can see that

inclusion of gravity and centrifugal accelerations only changes the effective pressure, and
thus don’t need to be considered separately. Thus, the final form of the Navier-Stokes
equation for a fluid in a rotating frame of reference is as follows:

∂u
∂t

+ u · ∇u = − ∇p︸︷︷︸
Pressure gradient

− 2Ω × u︸  ︷︷  ︸
Coriolis force

+ ν∇2u︸︷︷︸
Viscous force

. (2.18)

Taylor - Proudman theorem

Consider equation (2.18) for the steady state of an inviscid fluid in the limit of rapid
rotation with the fluid velocity in the rotating frame being small in magnitude so that
inertia can be neglected. In such a situation the equation reduces to

∇p + 2Ω × u = 0. (2.19)

Taking the curl of the above equation and using ∇ · u = 0 yields

Ω · ∇u = 0, (2.20)

which means that the fluid velocity is invariant along the axis of rotation. This remarkable
result was found first theoretically by Hough (1897) but is usually credited to Proudman
(1916) who showed it experimentally and Taylor (1917) who also provided a theoretical
explanation.

2.1.3 Non-dimensionalisation
It is easy to see that we have n = 3 variables in equation (2.18) and k = 2 dimensions
(L,T ). Thus, using the Buckingham π theorem, we would have n−k = 1 non-dimensional
number characterising the flow.

Let L and τν = 1/Ω to be the characteristic length and time scales, respectively. Using
these, one can derive the non-dimensional form of the Navier-Stokes (2.18) and continuity
(2.4) equations,

∂u
∂t

+ u · ∇u = −∇p − 2 ẑ × u + E∇2u, (2.21)

∇ · u = 0, (2.22)
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where we have retained the original notation for the non-dimensional variables for sim-
plicity. ẑ is the unit vector along the axis of rotation. E is called the Ekman number and
is given by

E =
ν

ΩL2 =
Viscous
Coriolis

, (2.23)

(2.24)

Thus, the Ekman number defines the relative importance of viscous forces with respect
to the Coriolis force. Thus, a low E number implies lower effect of viscosity and greater
effect of rotation on the fluid.

2.2 Inertial Waves

2.2.1 Inertial oscillations of a fluid particle

CoriolisForce

Centrifugal
Force

Figure 2.1: Simple demonstration of inertial oscillations of a rotating fluid. The fluid
particle in black moves out of the line of solid body rotation whereby the Coriolis force
(blue) acts upon it to make it go in oscillatory circles (green).

Consider a body of fluid in solid body rotation with rotation rate Ω. Consider a fluid
particle/parcel of unit mass perturbed by a velocity u, in a plane perpendicular to the
rotation axis. Without loss of generality, we consider a radial perturbation, since the effect
of a tangential perturbation would be to move the parcel radially outwards (or inwards)
due to residual unbalanced centrifugal force and a resultant radial perturbation. If this
fluid particle moves from a radius r to a radius r + ∆r, then by conservation of angular
momentum, its new angular velocity would be
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Ω∗ =

( r
r + ∆r

)2
Ω < Ω. (2.25)

The centrifugal force per unit mass of the fluid at a radius of r is Ω2r and is balanced by
the pressure gradient at that radius. This displacement will lead to a larger centrifugal
force Ω∗2(r + ∆r) on the particle that is smaller than the pressure gradient Ω2(r + ∆r).
Thus, there will be a net restoring force on the particle, given by:

F = Ω2(r + ∆r) −Ω∗2(r + ∆r)

= Ω2(r + ∆r) −Ω2r
(
1 − 3∆r/r + O

(
∆r2

))
= 4Ω2∆r.

(2.26)

Thus, the equation of motion of the particle is given by:

∆̈r + 4Ω2∆r = 0, (2.27)

which is the equation of a simple harmonic oscillator with angular frequency 2Ω. Thus,
the particle oscillates back and forth radially with an angular frequency of 2Ω. But, as the
particle moves radially, the Coriolis force starts acting on it and makes it move rightward
all the time, making it go in circles in a sense retrograde to that of Ω. The resulting
path of the particle is shown in green in figure 2.1. Such oscillations are called inertial
oscillations of a rotating fluid (Bjerknes et al. 1933, Fultz 1959).

During the whole analysis, we assumed the particle to be in a plane perpendicular
to the rotation axis, where the effect of rotation is felt the most. Now imagine a particle
with a velocity perturbation only along the rotation axis. It will keep rotating in solid body
rotation while moving with a uniform velocity along the rotation axis. It wouldn’t feel any
effect of rotation and thus, would have an oscillation frequency of 0. It is thus clear that
inertial oscillations of a fluid have frequencies between 0 and 2Ω and are continuously
varying depending on the ratio of horizontal to vertical motion.

Below, we derive the properties of inertial waves starting from the Navier-Stokes equa-
tion.

2.2.2 Plane inertial waves
Consider an unbound fluid rotating as a solid body with angular velocity Ω. Let us denote
a small perturbation to the fluid velocity as u. The equation of evolution of this perturba-
tion is given by the Navier-Stokes equation (2.21). The analysis that follows is based on
chapter 4 of Greenspan (1968) which one can refer to for further details.

For small E, that is, in the case of a fast rotating fluid with low viscosity and small |u|,
one can ignore the non-linear and viscous terms and resort to linear theory as follows:

∂u
∂t

= −∇p − 2 ẑ × u, (2.28a)

∇ · u = 0. (2.28b)
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2.2 Inertial Waves

We use the wave ansatz for velocity and pressure:

u = Qei(k·r−ωt), (2.29a)

p = Φei(k·r−ωt). (2.29b)

where k is the wave vector and ω is the angular frequency of the wave. The continuity
equation then gives

Q · k = 0. (2.30)

Thus, the velocity of the fluid is perpendicular to the direction of propagation of the wave
and the wave is transverse.

Taking the curl of the momentum equation twice and using the identity,
∇ × ∇ × u = ∇(∇ · u) − ∇2u = −∇2u, yields

∂2∇2u
∂t2 + 4( ẑ · ∇)2u = 0. (2.31)

Substituting the wave ansatz, we get,

− ω2k2 + 4( ẑ · k)2 = 0, (2.32)

giving the dispersion relation

ω = ±2( ẑ · k̂), (2.33)

where k̂ is the unit vector in the direction of k. In the dimensional form this reads

ω = ±2Ω( ẑ · k̂). (2.34)

Thus, we see that the linearised Navier-Stokes equation (2.28) admits wave solutions with
the dispersion relation given by equation (2.34). Thus, the perturbation to the solid body
rotation of a fluid evolves in the form of travelling waves restored by the Coriolis force.
These waves are called inertial waves.

This peculiar dispersion relation shows that inertial waves have a continuous spectrum
of frequencies between 0 and 2Ω and that their frequency depends not on the magnitude
of the wave vector but only on the angle it forms with the rotation axis. In the last section,
we derived the same result for a fluid particle. The ratio of horizontal to vertical motion
was essentially a measure of the angle of the particle’s motion with respect to the rotation
axis.

The phase and group velocities of these waves, in their dimensional forms, are given
by

Cp =
ω

k
= ±2Ω

ẑ · k̂
|k|

k̂, (2.35a)

Cg = ∇kω = ±2Ω
k̂ × ẑ × k̂
|k|

. (2.35b)
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2 Theory of inertial modes

Their magnitudes are

Cp = 2Ω cos θ,
Cg = (2Ω/k) sin θ,

(2.36)

where θ is the angle between the rotation axis and the direction of propagation. It can
be seen that the peculiar dispersion relation (2.34) leads to the fact that the phase and
group velocities are perpendicular to each other implying that the energy of the wave
travels perpendicular to the wavefronts themselves. The fluid particles oscillate in planes
perpendicular to the direction of propagation of the wave making it a transverse wave. In
addition, the projection of oscillations of the fluid particles onto a transverse plane would
be in the form of circles making the wave circularly polarised. Figure 2.2 illustrates these
features of a plane inertial wave.

The dispersion relation of inertial waves is very similar to internal gravity waves which
are caused when a fluid that is stably stratified in density is perturbed. In that case, the
frequency is determined by the angle between the wave vector and the direction of gravity.
The similarity is not surprising, since a fluid in solid body rotation is also stably stratified,
in terms of angular momentum. This is the reason the two waves are often studied to-
gether. In the present study, we restrict ourselves to fluids with constant density, and thus
to inertial waves alone.

Reflection at boundaries

Inertial waves are monoclinical, i.e., they maintain a constant angle with respect to the
rotation axis, as illustrated in figure 2.3. Thus, their law of reflection is very different from
sound or light waves which maintain a constant angle with the normal to the reflecting
boundary. Since their frequency only depends on the angle between the wavevector and
the rotation axis, inertial waves retain their frequency upon reflection.

Inertial wave rays can be focussed or defocussed depending on the angle at which they
reflect and the direction in which they travel. The situations have been illustrated in figure
2.3. When the angle of incidence with respect to the rotation axis (θ) is less than the angle
the boundary makes with the rotation axis (α), the rays are focussed, i.e, the distance
between them decreases while getting reflected ‘upward’. The opposite happens while
the rays get reflected ‘downward’. The situation reverses when θ > α. Such focussing
can lead to limit cycles of rays where they get focussed along the same path again and
again and lead to standing waves, which are often seen clearly as internal shear layers in
experiments (e.g. Maas 2001) as well as in numerical computations (e.g. Rieutord et al.
2001, Tilgner 2007a).

Since rays are focussed or defocussed during reflection, it would imply that the dis-
tance between two rays of inertial waves changes, thus changing the wavelength. How-
ever, the energy carried by the waves remains the same (ignoring any energy absorbed by
the boundary). Thus, reflection would provide an efficient means of energy transfer from
one wavelength to another. For more details on this, one can have a look at the seminal
study by Phillips (1963).

For more details on inertial waves, we refer to Greenspan (1968), Lighthill and Lighthill
(2001) and Maas (2005).
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Circular particle path in
co-moving frame 

Wavefront

Direction of wave
propagation

Fluid velocity

Figure 2.2: Propagation of inertial waves. The phase velocity is perpendicular to the
group velocity meaning that the energy of the wave propagates perpendicularly to the
wavefronts. The velocity of fluid particles is restricted to planes perpendicular to the
phase velocity - the waves are transverse.

2.3 Inertial modes

Inertial waves propagate in an unbounded fluid in solid body rotation. However, in a
bounded container, the waves cannot take up a continuous spectrum and global modes of
oscillation are set up which are known as inertial modes. However, plane inertial waves
may still travel inside the fluid and get reflected at the boundary, as the wave equation in
an unbounded fluid still holds locally. This section is based on chapter 2 of Greenspan
(1968) to which the reader can refer for further details.

Imagine a container with fluid filled inside rotating at an angular velocity Ω. Given
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2 Theory of inertial modes

Figure 2.3: Reflection of inertial waves. The rays maintain their angle θ with the ro-
tation axis and thus, the wave maintains a constant frequency. The rays in both cases
get focussed if travelling along the directions shown and defocussed if travelling in the
opposite direction.

an initial condition for the velocity of the fluid, we would like to see how this velocity
evolves towards solid body rotation. To solve this initial value problem we resort to the
Navier-Stokes equation (2.21). If the initial condition on the fluid velocity is close to
solid body rotation - the final state of the fluid - then the problem can be investigated
using linear theory. We start with the linear Navier-Stokes equation:

∂u
∂t

= −∇p − 2 ẑ × u + E∇2u, (2.37a)

∇ · u = 0, (2.37b)

combined with an initial condition and boundary conditions on the surface ∂W of the
container:

u(r, 0) = u0(r), (2.38a)
u(r, t) = 0 on ∂W. (2.38b)

The solutions, u and p can be evaluated by splitting them into a number of normal modes,
using E1/2 as an expansion parameter (Greenspan 1965):

u = q0(r, τ) +
∑

AnQn(r)esnt + E1/2
[
q1(r, τ) +

∑
qn1

(
r, t, E1/2

)]
+ . . .

+ q̃0 +
∑

q̃n0 + E1/2
[
q̃1 +

∑
q̃n1

]
+ . . . ,

(2.39a)

p = φ0(r, τ) +
∑

AnΦn(r)esnt + E1/2
[
φ1(r, τ) +

∑
φn1

(
r, t, E1/2

)]
+ . . .

+ φ̃0 +
∑

φ̃n0 + E1/2
[
φ̃1 +

∑
φ̃n1

]
+ . . . ,

(2.39b)
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2.3 Inertial modes

where ‘. . . ’ represent higher order terms in E1/2 representing higher order viscous correc-
tions in each case. τ = E1/2t represents the “Ekman spin-up" time - the time taken for a
fluid to spin-up to solid body rotation from rest. The tilde over a variable indicates the per-
turbation induced by the viscous boundary layer attached to the surface of the container.
Thus, for each variable, the expansion represents the following:

Variable = Inviscid modes + E1/2[Viscous correction to inviscid modes] + . . .

+ perturbation induced by boundary layer

+ E1/2[Viscous correction to BL induced perturbation] + . . . .

(2.40)

These expansions are augmented by an expansion of the exponents sn,

sn = sn0 + E1/2sn1 + . . . , (2.41)

where, sn0 = iωn and sn1 represents viscous decay of an inviscid mode. Thus, ωn

would represent the oscillation frequency of the nth inviscid mode. Note that ω = 0 for q0
and φ0.

Here we restrict our discussion to the inviscid modes. Refer to pages 38 - 63 of chapter
2 of Greenspan (1968) to get more in-depth analysis of the above problem in general.

2.3.1 The geostrophic mode
Consider the zero order problem of the expansion (2.39), with a slow time-dependence of
τ = E1/2t. Since the time dependence is too slow for the problem of spin up to solid body
rotation, this mode is considered to be independent of time, having a zero frequency. This
problem consists of q0 and φ0 and can be formulated as

2 ẑ × q0 = −∇φ0, (2.42a)
∇ · q0 = 0, (2.42b)

with the boundary condition q0 · n̂ = 0 on the container surface ∂W. Taking the curl of
the momentum equation, we get

( ẑ · ∇) q0 = 0, (2.43)

showing that q0 is invariant along the axis of rotation and thus satisfies the Taylor-Proudman
theorem. A flow in which pressure and Coriolis forces perfectly balance each other is
called a geostrophic flow. Thus, this stationary mode with zero frequency (ω = 0) is
called the geostrophic mode. It can be shown that this mode sits in a container along
contours of constant height and possesses a finite mean circulation (circulation of depth
averaged velocity) along these contours:∮

C

〈Q〉 · dS , 0

, where 〈Q〉 is the velocity averaged along the rotation axis and C is a geostrophic contour.
For example, in a sphere, the only mode that can be geostrophic must have an azimuthal
symmetry of m = 0. However, in a cylinder, it can take any azimuthal symmetry.
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2 Theory of inertial modes

2.3.2 Inertial modes
Now, consider the next problem in the expansion (2.39), that of the inviscid modes Qne−iωnt

and Φne−iωnt. Since these modes are separable, we can drop the subscripts while discussing
them here and consider a single mode. The linear Navier-Stokes equations for a mode can
be written as follows

−iωQ = −∇Φ − 2 ẑ × Q, (2.44a)
∇ · Q = 0, (2.44b)

with the boundary condition Q · n̂ = 0 on the surface of the container ∂W. Note again that
ω = 0 will lead to the equations for the geostrophic mode. In terms of pressure alone, the
problem can be formulated as

∇2Φ −
4
ω2 ( ẑ · ∇)2Φ = 0, (2.45)

with the boundary condition

− ω2 n̂ · ∇Φ + 4(n̂ · ẑ)( ẑ · ∇Φ) − 2iω( ẑ × n̂) · ∇Φ = 0, (2.46)

on ∂W. Equation (2.45) is called the ‘Poincaré equation’, a term coined by Cartan (1922).
This is a hyperbolic equation with boundary conditions and is thus ill-posed. Hence, it will
not have solutions for all ω.Thus, even though inertial waves and inertial modes satisfy
the same linearised momentum equation, the boundary conditions on inertial modes lead
to the fact that they cannot have a continuous spectrum of frequencies like inertial waves.
In addition, the solution for inertial modes is no longer in the form of plane waves, but are
dependent on the geometry of the container which also decides whether one would find
smooth solutions or not.

In general, however, one should expect singularities in the solution. We’ll see later that
these singularities give rise to internal shear layers in the presence of viscous dissipation.
But before that, let us glance upon some important properties of inertial modes:

• The eigenvalues, ω, of inertial modes are real and their absolute values lie between
0 and 2Ω. This is similar to the property of plane inertial waves. However, the
spectrum is discontinuous and, in the absence of a simple dispersion relationship
like equation (2.34), one has to mathematically find it from first principles. The
proof is provided in the appendix A.

• Inertial modes are orthogonal. The integral over the volume of the product of two
inertial modes is

∫
W

QiQ j = δi j, where δi j is the Kronecker delta function. This
makes it very easy to project a solution onto a set of inertial modes.

• Inertial modes do not posses a mean circulation about a geostrophic contour,∮
C

〈Q〉 · dS = 0

.
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2.4 Internal shear layers

Figure 2.4: Boundary layer eruptions and the resulting internal shear layers associated
with an inertial mode. The shear layers are conical in 3D while they appear as rays in
2D. δ represents the local boundary layer thickness, ζ is the boundary layer coordinate,
ϕ represents the angle between the rotation axis and the normal to the boundary layer.
ξ = ∇ × u is the fluid vorticity. Illustration based on Le Bars et al. (2015)

2.4 Internal shear layers

As mentioned before, the problem of inertial modes in a container is ill-posed in general.
Let us see the consequences it has. Consider the linearised Navier-Stokes equation (2.28).
Introducing the viscous dissipation term, we get,

∂u
∂t

= −∇p − 2 ẑ × u + E∇2u. (2.47)

Proceeding as before to derive a wave equation yields(
∂

∂t
− E∇2

)2

∇2u + 4
∂2u
∂z2 = 0. (2.48)

For an inertial mode, u = Qe−iωt, we can write the above equation in terms of a
boundary layer coordinate ζ,(

−iω − E
∂2

∂ζ2

)2
∂2

∂ζ2 Q + 4 cos2 ϕ
∂2Q
∂ζ2 = 0. (2.49)

where, ϕ is the angle between the rotation axis and the normal to the boundary layer, as
shown in figure 2.4. This would represent the colatitude in case of a spherical container.

If δ be the local boundary layer thickness, then one can approximate ∂2/∂ζ2 ∼ 1/δ2,
and we get
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2 Theory of inertial modes

|δ| =
E1/2

(ω ± 2 cosϕ)1/2 . (2.50)

Thus, the boundary layer thickness is no longer a simple E1/2 as in the case of a classical
Ekman layer, but is dependent on the angle ϕ. In particular, at angles where ω = ±2 cosϕ,
one would get singularities. In the presence of viscosity, these occur as boundary layer
‘eruptions’ which have a thickness of E1/5 and a spatial extent of E2/5 (Roberts and Stew-
artson 1963).

The equation for inertial modes is a hyperbolic differential equation. Thus, a disconti-
nuity in the boundary conditions will propagate along the characteristics. The propagation
of information in a hyperbolic system can only take place through waves, in this case, in-
ertial waves. Thus, the discontinuities in the Ekman layer propagate inward along the
characteristic cones and spawn internal shear layers, studied first by Bondi and Lyttleton
(1953). These shear layers are nothing but plane inertial waves excited by discontinuities
at the boundary. Although they resemble rays when seen in two dimensions, in three
dimensions they are cones of the characteristics of the Poincaré equation (2.45). These
cones, as visualised by Bondi and Lyttleton (1953) for a sphere, are shown in figure 2.5.

The discussion here showed that a no-slip boundary condition, giving rise to Ekman
layers, makes the inertial mode problem ill-posed in general. However, for specific ge-
ometries like the spherical-shell which will be discussed later, even free-slip and impen-
etrable boundary conditions makes the problem ill-posed and gives rise to internal shear
layers. Further discussions on internal shear layers will take place when we talk about
inertial modes in a spherical shell.

2.5 Inertial modes in a sphere

Inertial modes in a sphere (“spheroid of finite ellipticity”, of which the sphere is a special
case) were considered by Bryan (1889), who also gave a solution in terms of pressure,
being an implicit solution in terms of velocity. Noticing the difficulty with this solution,
Kudlick (1966) expressed Bryan’s solution in terms of a double polynomial FN , which
made it easy to find explicit analytical solutions for small N 6 4. Zhang et al. (2001)
came up with a complete set of analytical solutions for inertial modes in a sphere. We
discuss these developments in more detail below.

To investigate inertial modes in a sphere, let us turn to equations (2.44). For velocity
of the mode, Q, and pressure, p we use the following ansatz in cylindrical coordinates:

Q =
(
us(s, z), uφ(s, z), uz(s, z)

)
ei(mφ−ωt), (2.51a)

p = Φei(mφ−ωt). (2.51b)

Writing down and rearranging the equations for the different components, it can be easily
shown that (e.g. Greenspan 1964, Kudlick 1966, Zhang et al. 2001)
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2.5 Inertial modes in a sphere

Figure 2.5: Internal shear layers spawned from the Ekman layer of a rotating sphere. The
lines show the characteristic cones of the Poincaré equation, which also mark the positions
of the internal shear layers. Figure based on an illustration in Bondi and Lyttleton (1953).
In the figure, Ti represent the points in the Ekman layer from which the internal shear
layers emanate. N and S represent the points where the rays meet inside the sphere while
C and D are the points where rays would theoretically meet outside the sphere.

us =
i

4 − ω2

(
2mΦ

s
− ω

∂Φ

∂s

)
, (2.52a)

uφ =
1

4 − ω2

(
ωmΦ

s
− 2ω

∂Φ

∂s

)
, (2.52b)

uz = −
i
ω

∂Φ

∂z
. (2.52c)

Solution by Bryan

Bryan (1889) provided an implicit solution for Φ in terms of spheroidal coordinates
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(µ, η, φ):

s =

(
4

4 − ω2 − η
2
)1/2

(1 − µ2)1/2, (2.53a)

z =

(
4
ω2 − 1

)1/2

ηµ, (2.53b)

giving the surface of the sphere as µ = cos θ, η =
(
4/ω2 − 1

)−1
. The separable solutions

in terms of these coordinates are (Greenspan 1964)

Φlm = Plm(η/clm)Plm(µ)eimφ, (2.54)

where Plm is an associated Legendre polynomial of degree l and order m, and clm =(
1 − 4/ω2

)−1/2
. Thus, on the surface,

Φlm = Plm( f (ω))Ylm(θ, φ), (2.55)

where, Ylm = Plm(cos θ)eimφ represents a spherical harmonic of degree l and order m and
f (ω) = η/clm is a function of ω. Thus, on the surface of the sphere, the pressure structure
of an inertial mode looks like a spherical harmonic of degree l and order m, with its ampli-
tude depending on the eigenvalue ω. The eigenvalues associated with these eigenmodes,
ωlm are given by solving the eigenvalue equation

mPlm (ω/2) = 2
(
1 −

ω2

4

)
d

dω
Plm (ω/2) . (2.56)

Using recurrence relations of associated Legendre polynomials, this can be simplified to

[l (ω/2) + m] Plm (ω/2) = (l + m)Pl−1,m (ω/2) . (2.57)

In general, this equation has l − m − νlm solutions, where

νlm =

{
0, if l − m is even
1, if l − m is odd (2.58)

The eigenvalues and eigenfunctions are thus denoted using three indices, (l,m, n) where
n denotes the nth eigenvalue. Note that the notation used here is different in order to that
used by Greenspan (1968) - (n,m, k). The correspondence is l→ n,m→ k, n→ m.

Kudlick’s extension

The above solution is not amenable to obtaining explicit solutions in terms of velocity.
Kudlick (1966) expressed the solution for pressure in the form of a polynomial as follows
(using a similar notation)

Φlm = C2
lm

(
z
αβ

)νlm ( s
α

)m N∏
j=1

(
D j + A js2 + B jz2

)
, (2.59)
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where,

Clm =
(2l)!

2ll!(l − m)!
,

νlm =

{
0, if l − m is even
1, if l − m is odd ,

α =

(
1 −

ω2

4

)−1/2

, β =

(
4
ω2 − 1

)1/2

D j = x2
j(x2

j − 1), A j = x2
j(1 − ω

2/4), B j = (ω2/4)(1 − x2
j)

x j are the N = l − m − νlm zeros of Plm excluding 0 and 1.

The explicit solution by Zhang et al. (2001)

Kudlick’s extension of Bryan’s solution allowed one to compute explicit solutions by first
using the zeros of Plm to determine the pressure using equation (2.59) and thereafter using
equations (2.52) to determine the velocity components us, uφ, uz. This proved to be quite
easy for small N. However, analytical expressions for the roots x j do not exist for N > 4,
making obtaining analytical solutions for N > 4 impossible (Zhang et al. 2001).

Zhang et al. (2001) found explicit solutions for velocity for all N by using Bryan’s
coordinate transformation and expressing the terms cleverly in terms of cylindrical coor-
dinates s and z. They found expressions for the two distinct classes of inertial modes:

• Equatorially symmetric:

(us, uφ, uz)(z) = (us, uφ,−uz)(−z) (2.61)

These modes would have l − m = even in Greenspan notation

• Equatorially antisymmetric:

(us, uφ, uz)(z) = (−us,−uφ, uz)(−z) (2.62)

These modes would have l − m = odd in Greenspan notation

Their main motivation behind this was to show that the dissipation integral over the
whole volume vanished identically for any mode in a full sphere,∫

W
Qlmn

∗ · ∇2QlmndV = 0. (2.63)

Mode structures

The use of indices l and m will become apparent here. The surface structure of each
inertial mode in a full sphere is in the form of a spherical harmonic Ylm(θ, φ). However,
it is only when one looks at the full 3D structure does one realize that each mode has a
complex radial structure as well. It is the difference in radial structures that the role of the
third index n comes in. This has been illustrated in figure 2.6.

In what follows, we would be always be dealing with a single eigenmode for each
combination of l and m. Hence, the third index n becomes redundant and will be dropped.
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2 Theory of inertial modes

(a) Structure on the surface (b) 3D Structure

Figure 2.6: Structure of inertial modes of a full sphere. Shown here are isosurfaces of
cylindrically radial velocity, us, red being outward and blue inward, based on the analyti-
cal solution by Zhang et al. (2001). (a) shows the structure on the surface. Note how each
mode resembles the spherical harmonic Ylm on the surface. (b) shows the 3D structure.
This shows that the modes have a complex radial structure as well. The difference in ra-
dial structure is where the third index n comes in to distinguish between different modes
with same surface structure.

Internal shear layers

The analytical solutions derived above for inertial modes in a full-sphere are well-behaved
and the problem for inertial modes in a full-sphere is well-posed only when impenetrable
boundary conditions Q · n̂ = 0 are used. However, these solutions do not satisfy the more
realistic no-slip boundary condition Q = 0. This inevitably gives rise to internal shear
layers, as first noted by Bondi and Lyttleton (1953) and discussed in section 2.4. In the
no-slip case, the above-mentioned analytical solutions become the solutions in the bulk
of the fluid which can be treated as inviscid, while viscous effects are incorporated in a
boundary layer analysis which brings in discontinuities with it.

2.6 Inertial modes in a spherical shell
Unlike in the case of a sphere, the inertial mode problem in a spherical shell is ill-posed.
As a result, formulating analytical solutions for a spherical shell is not possible. An-
alytical solutions for waves in a spherical shell of infinitesimally small thickness were
found by Longuet-Higgins (1964, 1965) and were later computationally explored in a
later work, Longuet-Higgins (1968). These works presented solutions of “of Laplace’s
tidal equations for a thin, uniform layer of fluid on the surface of a rotating sphere.”
(Longuet-Higgins 1968), and were applicable to waves in the Earth’s atmosphere and
oceans.

However, an attempt at formulating analytical solutions of a spherical shell of finite
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thickness was first made by Stewartson and Rickard (1969). Their work considered expan-
sion of velocity components and pressure in powers of the parameter ε = (ro−ri)/(ro +ri),
where ro and ri represent radii of inner and outer boundaries, respectively. It was found
that a singularity occurs at every term after the second in the expansion for pressure
and a singularity of one order higher at every term (thus, starting from the second) of
the velocity components. These singularities take place whenever the colatitude satisfies
cos θ = ±ω/2. These are the circles along which the cones of the characteristics of the
Poincaré equation meet the boundaries. In the presence of viscosity, these singularities
are ‘smoothed’ out as internal shear layers. In two-dimensions, the projection of these
cones looks like rays reflecting at boundaries. These ‘rays’ follow the same reflection law
as plane inertial waves, suggesting that they are inertial waves spawned by discontinu-
ities in the boundary conditions. A comparison of structures for a full sphere mode with
a corresponding spherical shell mode shows the internal shear layers clearly. This can
be seen in figure 2.7. Note that both modes, although similar in structure can be clearly
distinguished by the presence of the internal shear layers.

(a) Full sphere (5, 2) (b) Spherical shell (5, 2)

Figure 2.7: Comparison of the structure of an inertial mode, (5, 2), for a full sphere and
a spherical shell. The internal shear layers for the spherical shell can be clearly seen.
Colormaps show zonal velocity, uφ, in a meridional plane - red being positive (eastward)
blue being negative (westward). The direction of rotation is along ẑ.

Effect of inner sphere

In three dimensions, the inertial eigenmodes of a spherical shell resemble those of a full
sphere to a large extent, as shown in figure 2.8, though small deviations can be noted
because of the presence of the inner sphere. The full-sphere mode uses the analytical
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solution by Zhang et al. (2001), while the spherical shell eigenmode was computed using
SINGE. Note that both were computed using free-slip boundary conditions.

Figure 2.8: Comparison of 3D structures of the (4, 1) mode for a full-sphere and a spher-
ical shell. The structures are very similar with small differences. Shown here are iso-
surfaces of cylindrically radial velocity, us, with red being positive (outward) and blue
being negative (inward). The inner sphere has been rendered in case of the full sphere
illustration for the purpose of comparison.

The effect of the presence of an inner sphere was studied in detail by Aldridge (1967).
He performed libration experiments using a spherical shell setup and computed eigenval-
ues for different spherical shell modes using visualisation and kinetic energy resonances
as well as complemented his experimental results with theoretical models. He estimated
eigenvalues of a spherical shell using two different methods - first, in a crude way using
the fact that inertial mode eigenvalues can be written in terms of the ratio of kinetic ener-
gies, ω2 = KEz/KEs, and second in a better way using a variational principle. He noted
that all modes of the family (n, 1), where n is an integer, showed a decrease in frequency
as compared to the full sphere, with the (1, 1) mode showing a smaller shift compared to
(2, 1), (3, 1) and (4, 1) modes. However, for the (2, 2) mode there was an increase in the
eigenvalue as compared to a sphere.

Since the inertial mode problem in a spherical shell is analytically intractable, numer-
ical investigations were necessary. The first numerical inertial eigenmode computation in
a spherical shell was carried out by Rieutord (1991) who also compared frequencies and
viscous decay factors with experiments of Aldridge (1967) and concluded that the iden-
tification of inertial modes in the Earth’s core using gravimeters by Aldridge and Lumb
(1987) is likely to be correct. In the present study, we use the eigenvalue code SINGE
(Vidal and Schaeffer 2015) to compute inertial modes of a spherical shell.
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2.7 Sustaining inertial modes: triadic resonances

Internal shear layers

The inertial mode problem in a spherical shell, being ill-posed, consists of singularities
in the solutions for velocity and pressure, as found by Stewartson and Rickard (1969).
These discontinuities travel along the characteristics of the hyperbolic Poincaré equation
and in the presence of viscosity, take the form of internal shear layers. These shear layers
are spawned from ‘critical latitudes’ that satisfy sin θ = ω/2, and are tangent to the inner
sphere at the critical latitude. They ‘reflect’ from boundaries following the same law as
plane inertial waves, keeping their angle with the rotation axis always constant at θ. Thus,
the angle that these shear layers emanate from is the same as the latitude from which they
begin. The discontinuities on the boundaries become ‘bumps’ on the Ekman layer in the
presence of viscosity. Roberts and Stewartson (1963) found that these ‘bumps’ have a
size of the order of E1/5 × E2/5. The shear layers themselves have a width that scales as
E1/3 (Walton 1975, Kerswell 1995).

Let us take the example of the ‘spinover mode’ in a spherical shell. This is the
(2, 1) mode in Greenspan notation and is one of the simplest inertial mode to study in
a sphere/spherical shell, with a non-dimensional frequency of ω = 1. In the rotating
frame of reference, it is simply the rotation of the fluid along an axis different from the
rotation axis of the sphere/spherical shell (see Greenspan 1968, for details). Since ω = 1,
critical latitudes occur at sin−1(1/2) = 30◦ and the shear layers make an angle of 30◦ with
the rotation axis. The various scalings of the Ekman layers and the shear layers can seen
in figure 2.9. For more details of these scalings, one can have a look at Kerswell (1995),
Walton (1975) and Hollerbach and Kerswell (1995), who confirmed them with numerical
simulations.

The relationship between these shear layers and plane inertial waves was already dis-
cussed in section 2.4. Their reflections can lead to focussing of ‘ray’ paths along periodic
orbits, and one can analyse the system from a dynamical systems point of view, borrow-
ing the concept of attractors. Examples of such studies in a spherical shell are Tilgner
(1999a), Rieutord et al. (2000), Rieutord et al. (2001) and Rabitti and Maas (2013, 2014).

2.7 Sustaining inertial modes: triadic resonances

From the above analysis, it is clear that inertial modes in a sphere are travelling waves
which travel along the azimuth with wavenumber m and drift speedω/m. They are normal
modes of the system which make up any transient flow in the bulk rotating fluid, ignoring
viscous corrections. In the presence of viscous dissipation, the transient eventually decays
away and the fluid attains solid-body rotation in an Ekman spin-up time scale, τ ∼ E1/2t,
during which the inertial modes also decay away. Thus, all inertial modes decay in an
Ekman spin-up time scale of τ = E1/2t (Greenspan 1968).

To sustain inertial modes in a rotating fluid against viscous dissipation, one needs a
constant source of energy to feed these modes. For astrophysical bodies, this is usually in
the form of a mechanical forcing like precession, libration or tidal forces. The common
mechanism of exciting inertial modes or inertial instabilities from mechanical forcing is
through triadic resonances which involve two inertial modes coupled together with the
fundamental response of the system to the forcing.
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2 Theory of inertial modes

Figure 2.9: A diagram of the viscous response to a spinover velocity field in a spherical
shell. The internal shear layers spawned by singularities in the Ekman layer, are shown
in red. The various scalings of the thickness of the shear layers as well as the ‘bumps’
in the Ekman layer are shown. The corresponding velocity magnitudes are shown with
the O() notation. θ = sin−1(ω/2) is the critical latitude. Figure based on an illustration in
Kerswell (1995).

To elucidate the above statement, we follow a general recipe of inertial instabilities
provided in Tilgner (2007a). Let us begin with the linearised Navier-Stokes equation
(2.28) and write the velocity and pressure into a fundamental response and a perturbation
so that, u = u0 + u′ and p = p0 + p′. Substituting this in equation (2.28) and noting that
u0 and p0 satisfy (2.28), we get an equation for the evolution of u′.

∂u′

∂t
+ 2 ẑ × u′ + ∇p′ +

(
u0 · ∇u′ + u′ · ∇u0

)
= 0 (2.64)

where we have assumed u′ � u0 and have ignored terms quadratic in u′. The last term in
brackets can be written as a perturbation to the Coriolis force,

∂u′

∂t
+ 2 ẑ × u′ + ∇p′ + εVu′ = 0 (2.65)

where, ε is small parameter and V is a linear operator operating on u′ (note that the
non-linear term involving u′ and u0 is linear in both vectors individually).

The solutions of the unperturbed equation are inertial modes as mentioned in section
2.3.2. Since, inertial modes form an orthogonal set in terms of both pressure and veloc-
ity (Greenspan 1968), we can project the corresponding perturbations on to the inertial
modes. Thus,
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2.7 Sustaining inertial modes: triadic resonances

u′ =
∑

c j(t)Q je−iω jt, and p′ =
∑

c j(t)Φ je−iω jt, (2.66)

which would give us, for the jth term,∑
j

[
Q j

dc j

dt
+ c j

(
−iω jQ j + 2 ẑ × Q j + ∇Φ j + εVQ j

)]
eiω jt = 0. (2.67)

Noting that by definition, −iω jQ j + 2 ẑ × Q j + ∇Φ j = 0, and we are left with∑
j

[
Q j

dc j

dt
+ c jεVQ j

]
e−iω jt = 0 (2.68)

Expanding c j in terms of the parameter ε,

c j = c(0)
j + εc(1)

j + ε2c(2)
j + . . . (2.69)

we get, at order 0, (∂/∂t)c(0)
j = 0. At order 1, we get,

∑
k

Qk
dc(1)

k

dt
e−iωkt +

∑
j

c(0)
j VQ je−iω jt = 0 (2.70)

Thus, the projection of the perturbation on an inertial mode Qk can be obtained as

dc(1)
k

dt
= −

∑
j

c(0)
j ei(ωk−ω j)t

∫
Q†

k
VQ jdV (2.71)

Now, if the fundamental mode u0 and hence,V has an azimuthal symmetry of m0 and
a time dependence eiω0t, then separating the time and φ dependences from the integral on
the RHS, we get,

dc(1)
k

dt
= −

∑
j

c(0)
j ei(ω0+ωk−ω j)t

∫
φ

ei(m0+m j−mk)φdφ
∫

Q†
k
(S )VQ j(S )dS (2.72)

where S represents the coordinate system after the φ-dependence has been removed. From
the the last equation two things are clear:

• The integral over φ is non-zero only when m0 = |m j − mk|

• A resonance occurs when, ω0 = |ω j − ωk| and c(1)
k → ∞

The above two criteria define selection rules for the instability of a fundamental flow.
When such a resonance occurs between three different modes (fundamental mode and
two inertial modes), it is called a triadic resonance. In practice, amplitudes never go to
infinity, but get saturated due to non-linear effects and viscous dissipation.

Note that the above discussion leads to two distinct scenarios:

• The fundamental mode has an azimuthal dependence of m0. This will become un-
stable to two inertial modes and three will form a triadic resonance.
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2 Theory of inertial modes

Figure 2.10: Poincaré flow in a precessing spheroid. Note the elliptical streamlines that
are not perfectly aligned leading to a strain. Figure based on an illustration in Le Bars
et al. (2015).

• The background flow with m = 0 can become unstable to only a single inertial
mode, the coupling in this case being through the self-interaction of the inertial
mode.

Below we discuss briefly how mechanical forcings give rise to inertial instabilities in
astrophysical objects, which are often modelled as spheroids.

Precession

The basic flow response to a precessing spheroid is a solution given by Poincaré (1910),
which looks like:

u = Ω̃ × r + ∇ψ (2.73)

where, Ω̃ is the mean vorticity of the flow and ψ is a potential needed to satisfy impenetra-
ble boundary conditions. The flow consists of elliptical streamlines such that the centres
of the ellipses are not aligned, shown in figure 2.10.

This flow can become unstable due to two reasons. One is the well-known elliptical
instability, which is the instability of a strained vortex with elliptical streamlines. Such a
strained vortex becomes unstable to two inertial modes, and the basic vortex flow forms
a triadic resonance with the two inertial modes. This instability acts in the plane of the
streamlines. A detailed review of the elliptical instability has been given byKerswell
(2002). The second is the shearing instability due to shear strain of misaligned centres,
acting cross-plane. This shearing instability also gives rise to two inertial modes forming
a triadic resonance. The detailed analysis of both mechanisms can be found in Kerswell
(1993).

Tides

The excitation of inertial modes and their sustenance due to tidal forces takes place via the
elliptical instability. In this case, it is called the Tide-driven elliptical instability or TDEI
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2.7 Sustaining inertial modes: triadic resonances

(Le Bars et al. 2015). Since a tidal force deforms the fluid boundary periodically into a
spheroid, the basic flow is response is in the form of elliptical streamlines. These elliptical
streamlines act like a strained vortex and become unstable to two inertial modes which
form a triadic resonance with them. If the tidal deformation is due to a gravitational
companion with orbital velocity Ωorb with respect to the reference frame of the outer
boundary of the fluid (e.g: CMB in case of planets), then the corresponding elliptical
distortion will also rotate with the same rate. The basic flow response is given by

u =

(
1 −

Ωorb

Ω

)
(−(1 + β)x2ê1 + (1 − β)x1ê2) (2.74)

where, x1 and x2 are the coordinates perpendicular to the rotation axis, and ê1 and ê2 are
the respective unit vectors, with x1 being along the major axis of the spheroid. β is the
ellipticity of the spheroid, defined as β = (a2

1 − a2
2)/(a2

1 + a2
2), a1 and a2 being the lengths

of the major and minor axes, respectively.
Since, the excited inertial modes form a triadic resonance with the elliptical stream-

lines having an azimuthal symmetry m0 = 2 and time dependence ω0 = 2Ωorb, thus they
must satisfy |m1 − m2| = 2 and ω1 ± ω2 = 2Ωorb. Now, since inertial modes must have
ω ≤ 2Ω, they can only be excited for −2Ω ≤ Ωorb + Ω ≤ 2Ω or −Ω ≤ Ωorb ≤ 3Ω.

Some of the relevant works in this regard are those by Craik (1989), Cébron et al.
(2012a), Lacaze et al. (2004, 2005), Le Bars et al. (2007, 2010).

Libration

Libration or more specifically longitudinal libration refers to the modulation of the ro-
tation rate of an astrophysical object. Mathematically, this refers to an outer boundary
rotation of the form

Ω = Ω0(1 + ε sin( f Ω0t)). (2.75)

ε and f are referred to as the libration amplitude and frequency, respectively. The basic
flow is given by (Kerswell and Malkus 1998)

u = ε sin( f t) (−(1 + β)x2ê1 + (1 − β)x1ê2) (2.76)

The excitation of inertial modes takes place due to the elliptical instability, often called
libration-driven elliptical instability or LDEI (Le Bars et al. 2015). The elliptical insta-
bility couples elliptical streamlines of the flow with m = 2 to two inertial modes. LDEI
is excited only for f < 4, since inertial modes must have frequencies between ±2Ω. The
global analysis using inertial modes was done by Kerswell and Malkus (1998). Other
works in this regard include Wu and Roberts (2013), Cébron et al. (2012a,b), Zhang et al.
(2013) and Grannan et al. (2014).

A review of all the above methods of exciting inertial instabilities can be found in
Le Bars et al. (2015).
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2 Theory of inertial modes

2.8 Discussion
This chapter introduced the fundamentals of rotational fluid dynamics and the theory of
inertial modes. We also reviewed inertial mode structures in spheres and spherical shells
and how boundary effects can give rise to internal shear layers. Finally we explored the
phenomenon of triadic resonances and how different excitation mechanisms give rise to
inertial modes. These concepts, in particular those of inertial modes in spherical shells
and the concept of triadic resonances will be used in the next chapter which studies the
excitation of inertial modes in a spherical shell using only differential rotation.
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3 The spherical Couette system

“I don’t believe in empirical science. I
only believe in a priori truth.”

Kurt Gödel

This chapter introduces the reader to the spherical Couette system with some basic
concepts like that of the Stewartson Layer. Some preliminary simulation results are also
presented.

3.1 Introduction

The spherical Couette system consists of two concentric differentially rotating spheres
with a fluid filled in the space in between. This is shown in figure 3.1. The outer and inner
spheres have radii ro and ri, respectively. Generally, we shall use the subscript o for the
outer sphere and i for the inner one.

The two spheres rotate with dimensional rotation rates of Ωo and Ωi. Using the gap-
width L = ro − ri as length scale and the viscous diffusion time τν = L2/ν as time-scale,
these rates are parametrised with the following non-dimensional quantities

• the Ekman number E = ν/ΩoL2 = 1/Ω, where Ω is the non-dimensional rotation
rate of the outer boundary, and

• the differential rotation ∆Ω/Ω = (Ωi − Ωo)/Ωo, often referred to as the Rossby
number, Ro.

Thus, ∆Ω/Ω > 0 implies that the inner sphere rotates faster than the outer sphere,
while ∆Ω/Ω < 0 implies that it rotates slower. All results are presented in the frame of
reference rotating with the outer boundary.

3.2 Proudman solution and Stewartson Layers

This system was first studied by Proudman (1956), who gave an asymptotic solution for
the case when the outer sphere is rapidly rotating and the differential rotation has a very
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3 The spherical Couette system

Figure 3.1: The spherical Couette system. The outer and inner spheres with radii ro and
ri rotate with rotation rates Ω and Ω + ∆Ω, respectively.

small value. In such a state the flow is laminar and axisymmetric and is described by the
solution

uφ =
s′(1 − s′2)1/4

(1 − s′2)1/4 + (1 − s′2/r2
i )1/4

, (3.1a)

ψ =
s′2

2r1/2
o

(
(1 − s′2)1/4 + (1 − s′2/r2

i )1/4
) , (3.1b)

where, s′ = s(1 − ri/ro) is the cylindrical radius scaled with the outer boundary radius
and ψ is a stream function from which ur and uθ can be determined.

The form of the solution is shown in figure 3.2. The cylinder tangent to the inner
sphere at the equator forms a very important boundary. This cylinder is often called
the ‘tangent cylinder’ or TC. Fluid inside the TC rotates at roughly half the differential
rotation rate, while fluid outside the TC is in solid body rotation with the outer boundary.
Due to this discontinuity, a shear layer forms at the TC. While its presence was predicted
by Proudman (1956), Stewartson (1966) was the first to describe the detailed structure.
He found that it is, in fact, not a single but three nested layers which are illustrated in
figure 3.3a.

The three layers are:

1. The outermost shear layer, seen in figure 3.3 in red with high density of contour
lines in panel 3.3b, serves to adjust the jump in the fluid rotation rate ω̄ and it hosts
most of the meridional circulation. The thickness of this layer scales as E1/4.
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Figure 3.2: The Proudman solution. ω̄ = uφ/s represents the rotation rate of the fluid,
scaled with the differential rotation ∆Ω. The fluid rotates at half the outer boundary
rotation rate inside the tangent cylinder (marked with dotted line), while the fluid outside
the tangent cylinder rotates in solid body rotation with the outer boundary.

(a) (b)

Figure 3.3: The structure of the nested shear layers described by Stewartson (1966). (a)
shows a schematic of the nested shear layer structure, based on an illustration in Stew-
artson (1966). The Ekman layer on the inner sphere has also been shown. (b) shows the
same structure in a simulation at E = 3 × 10−6. Colours show radial velocity, ur - blue
(red) being negative (positive). Contours show meridional circulation - solid lines indicate
clockwise while dotted lines indicate counter-clockwise circulation.
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2. The innermost shear layer, seen in a darker shade of blue, serves to remove a sin-
gularity in the first derivative of ω̄. Its thickness scales as E2/7.

3. The thin layer in between, difficult to make out in figure 3.3b, serves to remove a
discontinuity in the second derivative of ω̄. Its thickness scales as E1/3.

3.3 Stewartson layer instabilities

In the absence of any external forces, the instabilities in a rotating system can be of
broadly two types - the first is due to the violation of the stability criterion of Rayleigh
(1917), ∂(ω̄s2)2/∂s > 0 and second is in the form of waves drifting in azimuth due to an
instability of a shear flow (Busse 1968). The first type occurs in a classical Taylor-Couette
setup with two concentric differentially rotating cylinders in the form of Taylor vortices
(Taylor 1917). This is an extremely well-studied system and one can see Chossat and
Iooss (1994) for details. For a spherical Couette setup, one can get either type depend-
ing on the gap-width. For a narrow gap, the first non-axisymmetric instabilities occur in
the form of Taylor rolls as in the Taylor-Couette setup. For a wide gap, the instabilities
take the form of drifting waves caused by shear flow instabilities. This dependence on
gap-width was explored by Egbers and Rath (1995) as well as Hollerbach et al. (2006).

Instabilities of shear layers in rotating fluids were studied by Busse (1968), who found
a scaling law for a critical Rossby number, |Roc| ∼ E3/4 for rotating cylinders, without any
difference in the nature of instabilities for Ro > 0 or Ro < 0. Hide and Titman (1967) and
Früh and Read (1999) performed experiments with rapidly rotating cylindrical setups, but
with a difference in the way the differential rotation was applied. Hide and Titman (1967)
used a disc in the middle of the cylinder while Früh and Read (1999) used a split disk
setup with a disk embedded in each of the end boundaries of the cylinder. The setups are
shown in figure 3.4. Due to a difference in the fluid flow inside and outside the tangent
cylinders (tangent to the disks and parallel to rotation axis), shear layers form on the TC.
These layers were first described by Stewartson (1957) and are therefore also known as
Stewartson layers (vertical dashed lines in figure 3.4).

Früh and Read (1999) (setup (b) in figure 3.4) observed no difference in the nature
of instabilities of the Stewartson layer for Ro > 0 or Ro < 0, which was in accordance
with the prediction of Busse (1968). Hide and Titman (1967) (setup (a) in figure 3.4),
however, found that the sign of differential rotation matters - one gets high wavenumber
instabilities with Ro > 0, while for Ro < 0, they found an instability with azimuthal
wavenumber m = 1.

This dichotomy in instabilities is also observed for the spherical Couette flow (Holler-
bach 2003). For Ro > 0, one finds large wavenumber instabilities while for Ro < 0, one
finds instabilities with small wavenumbers. Especially, for low differential rotation, one
can find an m = 1 instability which seems to be quite special, as will be explained later in
chapter 6 while discussing the onset of inertial modes.

In general, Stewartson layers occur only when the outer boundary is rapidly rotating.
There are several different kinds of instabilities that take place when the outer bound-
ary rotates slowly or at intermediate rates. An overview of parameter regimes is thus,
required. This has been described below.
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Figure 3.4: Experimental setups of (a) Hide and Titman (1967) and (b) Früh and Read
(1999). Hide and Titman (1967) used a central disc setup and observed a dichotomy in
the instabilities depending on the sign of differential rotation, while no such dichotomy
was observed by Früh and Read (1999) who used a split disc setup. The vertical dotted
lines show the position of the Stewartson layer. Figure based on Hollerbach (2003).

3.4 Overview of parameter regimes

The most comprehensive study of the instabilities of the spherical Couette flow for a wide
gap of ri/ro = 0.35 was performed by Wicht (2014). The main results are summarised in
figure 3.5. The salient points to note are:

• For very low outer boundary rotation (Ω ≤ 1 or E ≥ 1), the first instability takes
place in the form of a radial jet, as found by Hollerbach (2003), Hollerbach et al.
(2006), Guervilly and Cardin (2010), Gissinger et al. (2011).

• For intermediate outer boundary rotations (1 < Ω < 103 or 10−3 < E < 1), the
instabilities for Ro > 0 are similar to the equatorial jet instabilities observed for low
outer boundary rotation, while instabilities for Ro < 0 are in the form of double-roll
and helical instabilities.

• For high outer boundary rotation (Ω > 103 or E < 10−3), the basic flow state is
geostrophic and the instabilities are in the form of Stewartson layer instabilities,
with high wavenumbers observed for Ro > 0 and low wavenumbers for Ro < 0.

• For very high outer boundary rotation (Ω > 3 × 105 or E < 3 × 10−6), the Coriolis
force seems to dominate dynamics and the wavenumber dichotomy between Ro > 0
and Ro < 0 seems to vanish.

These results are discussed in more detail below.
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(a) Ro > 0

(b) Ro < 0

Figure 3.5: Summary of instabilities for the spherical Couette flow across different pa-
rameter regimes. Note the similarities for small and very large Ro = ∆Ω/Ω and clear
differences for intermediate Ro between (a) Ro > 0 and (b) Ro < 0. Figure adapted from
one by Johannes Wicht.
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(a) E = ∞ (b) E = 104,Ro = −1 (c) Ro = −5 (d) Ro = −10

Figure 3.6: The axisymmetric state for Ω 6 1 or E > 1. The colours show the zonal
velocity, uφ, with red being positive and blue negative, while the contours show merid-
ional circulation, with solid lines indicating clockwise and dotted lines indicating counter-
clockwise circulation. (a) is for a case where the outer boundary is stationary and thus,
E = ∞ or Ω = 0. The case for positive differential rotation is the same as (a) even when
the outer boundary rotates at a small rate. However, there is a change in the direction
of the meridional circulation when Ro < 0. This change is shown in (b), (c) and (d) for
E = 104 or Ω = 10−4.

3.4.1 Very low outer boundary rotation: Ω 6 1 or E > 1

Axisymmetric state

The axisymmetric solution in this case mostly consists of the inner sphere driving zonal
flow and of two rolls of meridional circulation, similar to Taylor rolls of the Taylor-
Couette setup. This is illustrated in figure 3.6, which shows the background zonal ve-
locity map and the meridional circulation due to Ekman pumping. For the case when the
outer boundary is stationary, there is absolutely no difference in the axisymmetric states
for both signs of differential rotation. However, when the outer boundary rotates slowly,
the initial directions of meridional circulation depends on the sign of Ro, i.e., whether the
inner sphere rotates faster or slower with respect to the outer. For Ro < 0, as the mag-
nitude of Ro is increased, there is a reversal in the direction of meridional circulation, as
illustrated in panels (b), (c) and (d) of figure 3.6. For Ro > 0, there is no such effect.

Non-axisymmetric instabilities

As mentioned before, when the outer sphere is held stationary, there is absolutely no
dependence of the dynamics of the fluid on the sense of inner sphere rotation. Also,
we saw that when the outer sphere rotates slowly, both senses of differential rotation
resemble each other at high values of differential rotation. Thus, for the non-axisymmetric
instabilities, the sense of inner sphere rotation does not matter when the outer boundary
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Figure 3.7: The radial jet that emergence due to rotation of the inner sphere when the
outer boundary rotates very slow or is stationary. Shown here are isosurfaces of radial
velocity, ur for ∆Ω = 1000 and E = ∞.

rotates slowly. Due to the outward flow of the meridional circulation, a radial jet starts
to develop as illustrated in figure 3.7, which is axisymmetric in the beginning, but soon
falls prey to a non-axisymmetric instability with azimuthal wavenumber mc = 3. The jet
develops a wavy nature that is equatorially antisymmetric, while the background flow is
still symmetric with respect to the equator. As the differential rotation is increased, the
radial jet gets progressively thinner and breaks down and becomes turbulent at very strong
rotation rates.

3.4.2 Intermediate outer boundary rotation rate: 1 < Ω < 103 or
10−3 < E < 1

Axisymmetric state

The axisymmetric state here resembles that of the case with very low outer boundary ro-
tation, but Coriolis effects already start to play a role in making the flow more geostrophic
as seen in figure 3.8. The direction and structure of meridional circulation depends on the
sign of the differential rotation, with Ro < 0 displaying a double-roll structure.

Non-axisymmetric state

The non-axismmetric states show a dichotomy for different signs of differential rotation.
For ∆Ω/Ω = Ro > 0, one finds the equatorial jet instability again, while for Ro < 0, one
gets two special instabilities, called ‘double-roll’ and ‘helical’ instabilities, respectively
by Wicht (2014). Their structures are shown in figure 3.9. The equatorial jet instability
takes over after |Ro| reaches a high value for negative differential rotation.
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(a) Ro = 0.1 (b) Ro = −3

Figure 3.8: The axisymmetric state for intermediate values of outer boundary rotation.
Shown above are flow solutions at E = 10−2. The Taylor-roll like structure of the merid-
ional circulation is reminiscent of the case with outer boundary stationary, but Coriolis
effects can be seen starting to play a role in making the flow more geostrophic. Also, the
cases for Ro > 0 and Ro < 0 are different, with Ro < 0 showing a double-roll structure.

3.4.3 High outer boundary rotation: 103 < Ω < 3 × 105 or
3 × 10−6 < E < 10−3

Axisymmetric state

For an intermediate value of outer boundary rotation, the axisymmetric flow solution
becomes progressively geostrophic as one increases Ω from 103 towards higher values,
or equivalently decreases E from 10−3 onwards. This progressive transition towards a
more geostrophic regime can be seen in figure 3.10, where the colors of zonal velocity as
well as the contours of meridional circulation can be seen getting progressively aligned
with the rotation axis. The Stewartson shear layer adjusting the flow inside and outside
the tangent cylinder becomes progressively narrower and becomes more localised on it.

Non-axisymmetric state

The case for high outer boundary rotation shows the dichotomy for different signs of
differential rotation, mentioned towards the beginning of this section. The azimuthal
wavenumber, m, for the first non-axisymmetric instability is high for Ro > 0 while low
wavenumber instabilities set in for Ro < 0. In particular, an m = 1 instability recurs for
a range of Ekman numbers. In addition, equatorially antisymmetric inertial modes are a
dominant large scale feature in this regime as well as for lower Ekman numbers.

The theory of inertial modes has already been discussed in chapter 2. A study of
inertial modes in this system and their onset mechanism will be provided in the chapter 6.
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Figure 3.9: Different instabilities at onset for intermediate outer boundary rotation rates.
There is a clear difference in the nature of instabilities at onset. The ‘double-roll’ and
‘helical’ instabilities can be seen for negative differential rotation for E = 10−2 and 10−3,
respectively.

3.4.4 Very high outer boundary rotation: Ω > 3× 105 or E < 3× 10−6

Axisymmetric state

The dynamics here are dominated by Coriolis forces due to the high outer boundary ro-
tation. This also gives rise to a strong Taylor-Proudman constraint which leads to the
basic axisymmetric state being geostrophic. The solution is the one given by Proudman
(1956) with a Stewartson layer located on the tangent cylinder. The instabilities taking
place in the system are due to the destabilisation of this layer. The axisymmetric state at
E = 3 × 10−6 is shown in figure 3.12.
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(a) E = 10−3 (b) E = 10−4 (c) E = 10−5 (d) E = 10−6

Figure 3.10: Axisymmetric solutions at different outer boundary rotation rates. As the
outer boundary rotates faster, the flow solution progressively approaches a geostrophic
regime. The colours show zonal velocity, uφ while the contours show meridional circula-
tion, solid lines showing clockwise and dotted lines showing anti-clockwise circulation.
The flow can be seen approaching the strong shear layer solution given by Proudman
(1956) at E = 10−5.

Non-axisymmetric state

For a very high outer boundary rotation, the effect of the Coriolis force is so large that
the nature of the fundamental instabilities are again independent of the sign of differential
rotation. This is shown in figure 3.13 which shows the solutions at onset for both signs
of differential rotation. The structures in both cases are nearly geostrophic and have high
azimuthal wavenumbers.

For very high values of outer boundary rotation rate, the E dependence of the critical
quantities, namely, Roc and mc start to follow simple scaling laws, at least in the parameter
regime investigated. These scaling laws are given as:

Roc ∝

{
E0.63, for Ro > 0
E0.66, for Ro < 0 (3.2a)

mc ∝ E−0.3 (3.2b)

The similarity in scaling laws and the nature of solutions suggest that the sign of dif-
ferential rotation ceases to matter, at least for the first instability, when the outer boundary
is rotating at a very high rate. Note that even though the scaling of Roc is similar, the
values are different with higher |Roc| values needed for Ro < 0.

3.5 Discussion
Figure 3.14 shows the critical values for differential rotation and azimuthal wavenumbers
at onset. The vertical lines separate the regions where the outer boundary rotation is either
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3 The spherical Couette system

Figure 3.11: Different instabilities at E = 10−4. The solutions at onset at Ro = 0.205 and
Ro = −0.379 show a clear dichotomy with an m = 1 mode dominating the solution for
Ro < 0. An equatorially antisymmetric inertial mode is seen for high differential rotation
values for Ro < 0. Shown here are isosurfaces of cylindrically radial velocity, us with red
being positive (outwards) and blue negative (inwards).

very low or very high, rendering the direction of inner sphere rotation rather irrelevant
for the onset of the first instability, in terms of critical values or scaling of the critical
values. In between these two extremes lies a region where the sign of differential rotation
determines the dynamics of the fluid. In particular, an m = 1 branch suddenly seems to
appear for Ro < 0, whose explanation has been sought by Hollerbach (2003) as well as
Schaeffer and Cardin (2005). For more details about the instabilities the reader is referred
to Wicht (2014).

The spherical Couette system provides a host of different instabilities as well as in-
teresting fluid dynamic phenomena such as inertial modes as well as turbulence. In the
following chapters, we will study several other features of it, not just in terms of hydrody-
namics, but also in terms of hydromagnetic instabilities, including dynamo mechanisms.
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3.5 Discussion

Figure 3.12: The axisymmetric state for high outer boundary rotation rate. Here, E =

3 × 10−6 and Ro = ∆Ω/Ω = 3 × 10−6. The solution is the one given by Proudman (1956),
with fluid inside the tangent cylinder rotating at half the rotation rate of the differential
rotation, while fluid outside the TC rotates in solid body rotation with the outer boundary.
The Stewartson layer is located on the TC.

Figure 3.13: Solutions at onset at E = 10−6. Shown here are isosurfaces of cylindrically
radial velocity, us, with red being positive (outward) and blue being negative (inward).
Note the similarity between the solutions at onset for the two signs of differential rotation
under high outer boundary rotation. Also refer to figure 22 of Wicht (2014).
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Figure 3.14: Critical values for onset of the first non-axisymmetric instabilities (a) shows
the magnitude of critical differential rotation, quantified with Roc = (∆Ω/Ω)c, while (b)
shows the azimuthal wavenumbers, mc, at onset. The vertical lines separate regions of
very low and very high outer boundary rotation where there is seemingly no dichotomy
between the two signs of differential rotation.
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4 Numerical methods and diagnostics

“Young man, in mathematics you don’t
understand things. You just get used to
them.”

John von Neumann

This chapter provides an overview of how the spherical Couette system is simulated
using pseudo-spectral methods on a spherical grid. We use the 3D spherical shell MHD
code MagIC (Wicht 2002) to simulate the system, some details of which have also been
provided. This chapter further discusses how the outputs of the code are analysed to pro-
vide useful information, such as identification of inertial modes and building spectrograms
to compare with experiments.

4.1 Numerical methods

4.1.1 Non-dimensionalisation

To simulate the spherical Couette system, we solve the Navier-Stokes and continuity
equation. When magnetic fields are involved we also solve the induction equation and
Maxwell’s equations (introduced in chapter 8). These equations are solved in spherical
coordinates (r, θ, φ) using the width of the spherical shell, L = ro − ri is as the length
scale and the viscous diffusion time τν = L2/ν is as the time scale. The magnetic field
is non-dimensionalised using the quantity (ρµ0λΩ)1/2, where λ = 1/µ0σ is the magnetic
diffusivity, µ0 and σ being the magnetic permittivity of vacuum and conductivity of the
fluid, respectively. Using these, the non-dimensional forms of the equations are

E
(
∂u
∂t

+ u · ∇u
)

= −∇p − 2 ẑ × u +
1

Pm
(∇ × B) × B + E∇2u, (4.1)

∂B
∂t

= ∇ × (u × B) +
1

Pm
∇2B, (4.2)

∇ · u = 0 , ∇ · B = 0 (4.3)

where, E = ν/ΩoL2 = 1/Ω is the Ekman number and Pm = ν/λ is the magnetic Prandtl
number. Here, Ωo is the rotation rate of the outer boundary and Ω is its non-dimensional
form.
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4 Numerical methods and diagnostics

Figure 4.1: The spherical shell geometry used for simulating the spherical Couette system.
The spherical coordinates are shown using a point P(r, θ, φ). The outer boundary rotates
along ẑ with a rotation rate Ω while the inner boundary rotates with a rotation rate Ω+∆Ω.
L = ro − ri is used as the length scale, where ro and ri denote the radii of outer and inner
boundaries, respectively.

Figure 4.2: The spherical grid in (r, θ, φ) used for simulating the spherical Couette system.
The Nφ points in longitude are equidistant in angles from 0 to 2π, the Nθ points in latitude
are zeros in θ of the Legendre polynomial of degree Nθ in cos θ, while the Nr radial grid
points are the extrema of the Chebyshev polynomial of order Nr − 1.
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4.1 Numerical methods

Boundary conditions

The above equations are combined with the following boundary conditions:

• Mechanical The mechanical boundary conditions are no-slip at the boundaries,
thus,

u(ro) = 0,
u(ri) = (0, 0,∆Ωri sin θ),

(4.4)

where ri and ro are now in non-dimensional units.

• Magnetic We treat the regions outside the two boundaries as electrical insulators in
this study. This implies the boundary condition that the magnetic field B must be
continuous across the boundary.

4.1.2 Poloidal/Toroidal decomposition
The spherical Couette system is simulated using pseudo-spectral methods on a spherical
grid, shown in figure 4.2. The first step in the process is a poloidal/toroidal decomposition
of vectors. Velocity and magnetic field vectors, being solenoidal, are decomposed in terms
of two scalar potentials - the toroidal potentials (denoted here by z and g) and the poloidal
potentials (denoted here by w and h)

u = ∇ × ∇ × wr̂ + ∇ × zr̂,
B = ∇ × ∇ × gr̂ + ∇ × hr̂.

(4.5)

Note that the different components can be obtained from the scalar potentials as

ur = −∇2
Hw,

uθ =
1

r sin θ

(
∂

∂r
sin θ

∂w
∂θ

+
∂z
∂φ

)
,

uφ =
1

r sin θ

(
∂

∂r
∂w
∂θ
− sin θ

∂z
∂θ

)
,

(4.6)

where,

∇2
H =

1
r2

(
1

sin θ
∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

)
is the horizontal part of the Laplacian operator. The expressions for the scalar poten-

tials in terms of the vector fields are

r̂ · u = −∇2
Hw,

r̂ · (∇ × u) = −∇2
Hz.

(4.7)
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Using the above expressions, one can derive the evolution equations for the poloidal
and toroidal potentials for velocity by substituting the expressions in the radial compo-
nent of the Navier-Stokes equation and the curl of the Navier-Stokes equation, respec-
tively. Similarly, the evolution equations for the magnetic field potentials can be obtained
from the radial components of the induction equation (4.2) and the curl of the induction
equation, respectively.

Angular expansion

The scalar potentials and other scalars in the equations are expanded in spherical surface
harmonics, Ylm(θ, φ) = Plm(cos θ)eimφ

w =

lmax∑
l=0

l∑
m=0

wlm(r)Ylm(θ, φ) (4.8)

where, l and m are degree and order of spherical harmonics and Plm is an associated
Legendre polynomial. lmax represents the maximum degree of expansion.

The transformation from (r, θ, φ) → (r, l,m) is performed in two steps. First the
transformation (r, θ, φ)→ (r, l, φ) takes place through a Legendre transform using Gauss-
Legendre quadrature. Thereafter, the transformation (r, l, φ)→ (r, l,m) takes place through
a Fourier transform.

The grid in longitude has a uniform spacing of 2π/Nφ, where Nφ is the total number
of longitudinal grid points. The grid in latitude uses the Gauss-Legendre nodes which
are zeros in θ of the Legendre polynomial PNθ

(cos θ), where Nθ is the number of lat-
itudinal grid points. Usually, Nθ = Nφ/2 to ensure equatorial isotropy. In addition,
lmax = [min(2Nθ,Nφ)]/3 is used to avoid aliasing.

Radial expansion

The coefficients of spherical harmonics (e.g. wlm(r)) are expanded in radius using a
Chebyshev basis. Chebyshev polynomials are given by

Cn(x) = cos
(
n cos−1(x)

)
, −1 ≤ x ≤ 1 (4.9)

The scalars are expanded in radius as

wlm(r) =

N∑
n=0

wnlmCn(r) (4.10)

The radius (ri ≤ r ≤ ro) is mapped onto the Chebyshev domain (−1 ≤ x ≤ 1) using a
linear mapping

x(r) = 2
r − ri

ro − ri
− 1 (4.11)

The Nr grid points in radius are chosen to be the extrema of the Chebyshev polynomial
CNr−1, given by

xk = cos
(
π

k − 1
Nr − 1

)
, k = 1, 2, 3, . . . ,Nr (4.12)
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This makes it easier to evaluate the expansion as the values of Cn at these points are
given by

Cn(xk) = cos
(
π

n(k − 1)
Nr − 1

)
(4.13)

Substituting this in the radial expansion, we get

wlm(xk) =

N∑
n=0

wnlm cos
(
(k − 1)

nπ
Nr − 1

)
(4.14)

which is a cosine transform and can be easily evaluated using Fast Fourier Transforms
(FFTs). The radial dealiasing condition is Nr > N.

4.1.3 Non-linear terms and time-stepping

The terms which do not decouple in spherical harmonics, which include the Coriolis term
and the non-linear terms, are evaluated in real space. For example, the components of
the term u · ∇u is evaluated using the components of u and the components of ∇u in real
space, with the gradients in ∇u computed in spectral space.

The time-stepping is performed using a mixed implicit/explicit method. The terms that
decouple in spherical harmonics are treated implicitly. Other terms, namely, the Coriolis
and non-linear terms are treated explicitly. For a general partial differential equation in
time

∂

∂t
x + I(x, t) = E(x, t) (4.15)

where, I and E denote the implicit and explicit terms. The implicit time-stepping is

x(t + ∆t) − x(t)
∆t

= −αI(x, t + ∆t) − (1 − α)I(x, t) (4.16)

where, α = 0.5 gives the classic Crank-Nicolson scheme. For the explicit time-
stepping a second order Adams-Bashforth scheme is used.

x(t + ∆t) − x(t)
∆t

=
3
2
E(x, t) −

1
2
E(x, t − ∆t) (4.17)

Combining the two, the final time-stepping scheme is given by

x(t + ∆t)
∆t

+ αI(x, t + ∆t) =
x(t)
∆t
− (1 − α)I(x, t) +

3
2
E(x, t) −

1
2
E(x, t − ∆t) (4.18)

In our numerical scheme, such an equation is solved for each scalar coefficient like
wnlm.

For further details on numerical MHD simulations in spherical shells, one can refer to
Christensen and Wicht (2007).
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The Courant–Friedrichs–Lewy (CFL) condition

This is a necessary condition for the convergence of numerical solutions of partial dif-
ferential equation formulated by Courant et al. (1928). For a discrete length scale in ∆x
and a discrete time step ∆t and velocity u, the generic condition in one dimension can be
written as

C =
u∆t
∆x

< Cmax, (4.19)

where C is called the Courant number and Cmax depends on the problem.
In our numerical scheme we must take care of two different types of velocities - the

fluid velocity |u|, the Alfvén velocity |ual f | (when magnetic field is present, defined in
chapter 8), two different length scales - radial ∆r and horizontal ∆h and the rotation time
scale. The maximum velocity and smallest length scale over the whole system is used
to compute the necessary time step ∆t needed to satisfy the CFL condition. This is also
compared to the rotation rate of the system so that the rotational physics as well as the
fastest velocities are correctly resolved in the solution.

4.1.4 The code
The code we use for simulations is called MagIC (Wicht 2002). It is open source and
freely available at https://github.com/magic-sph/magic. The website (magic-sph.
github.io) as well as the manual provides details of the equations and their numerical
implementation.

Because of a pseudo-spectral implementation, MagIC needs to transform quantities
back-and-forth between real space and spectral space. The transforms along with their
time-complexities for computation are given below:

• Radial direction: Chebyshev transform, can be modelled as a discrete cosine trans-
form which can be computed using FFT algorithms. Complexity: O(NrlogNr)

• Longitudinal direction: Fourier transform, computed using FFT. Complexity: O(NφlogNφ)

• Latitudinal direction: Legendre transform, computed using Gauss quadrature. Com-
plexity: O(N3

θ )

MagIC uses a hybrid MPI + OpenMP parallelization with MPI between nodes and
shared memory parallelization (OpenMP) inside each node. The grid is partitioned into
spherical shells and is distributed among different MPI ranks. Among the individual
ranks, the computations in l,m space is parallelised using OpenMP, since spherical har-
monic modes are decoupled. The Chebyshev transform, however, needs communication
among different ranks which is carried out using MPI.

The parallelizing algorithm is such that the maximum number of MPI ranks we can
use is Nr − 1, and Nr must be of the form 4 × integer + 1. However, recently the code has
been updated to be able to use a finite-difference scheme in radius, where such restrictions
do not apply. The wall-time per time step of the code scales in a near ideal manner with
the number of processors used, as shown in figure 4.3. These tests were performed on
Haswell processors of the Cray XC40 of the Konrad supercomputing cluster belonging to
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Figure 4.3: Variation of wall-time per time step in milliseconds with the number of pro-
cessors used. One can see that for both hydrodynamic and MHD simulations, the code
scales nearly ideally for the maximum number of processors that can be used. The tests
were performed with a resolution of Nr × Nθ × Nφ = 201 × 1024 × 2048 on Haswell pro-
cessors of the Cray XC40 of the Konrad supercomputing cluster in Berlin, a part of the
HLRN.

the North-German Supercomputing Alliance (Norddeutscher Verbund zur Förderung des
Hoch- und Höchstleistungsrechnens – HLRN). An extreme resolution of Nr × Nθ × Nφ =

201 × 1024 × 2048 was used for the test simulations.
For many of the simulations presented in this study, the spherical harmonics trans-

forms have been carried out using the SHTNS library (Schaeffer 2013). Following tools
were used for post-processing the data from simulations and for visualisations: IPython
(Pérez and Granger 2007), NumPy and Scipy (van der Walt et al. 2011), Matplotlib
(Hunter 2007), Paraview (Ayachit 2015) and MATLAB (MATLAB 2017).

4.2 Identifying inertial modes

4.2.1 Using spherical harmonics

One of the advantages of pseudo-spectral simulations is the direct access to the individual
poloidal and toroidal coefficients, wlm and zlm. A careful study of the behaviour of these
coefficients provides an easy way of identifying the presence of inertial modes in the
system. In what follows we shall use the abbreviations ES for equatorially symmetric and
EA for equatorially antisymmetric.

The equatorial symmetry of the flow field can easily be related to that of these coeffi-
cients. Recall that the velocity field is decomposed into poloidal and toroidal potentials,
which are in turn expanded in terms of spherical harmonics. Now, a spherical harmonic
is symmetric with respect to the equator when l − m = even. The curl (∇×) operator is
an antisymmetric operator (Gubbins and Zhang 1993). Let us write the expansion for u
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4 Numerical methods and diagnostics

Flow Field Toroidal Poloidal

Equatorially antisymmetric (EA) l + m = even l + m = odd
Equatorially symmetric (ES) l + m = odd l + m = even

Table 4.1: Symmetry of flow field and the corresponding conditions on degree and order
of spherical harmonics of poloidal and toroidal potentials

below.

u = ∇ × ∇ ×
∑

wlmYlm r̂ + ∇ ×
∑

zlmYlm r̂ (4.20)

where coefficients are functions of radius and Ylm of angles θ and φ. Now, if Ylm r̂ is
ES (l − m = even), then its curl (which is the case for z) will transform it into an EA
vector, while a double curl (as in the case of w) will transform it back into an ES vector.
Keeping these in mind, a relationship between the symmetry of u and those of w and z
can be derived, as shown in table 4.1.

An equatorially antisymmetric inertial mode of azimuthal wavenumber m0 would
manifest itself as oscillations of spherical harmonic coefficients of the corresponding sym-
metry, i.e., wl1m0 and zl2m0 , where l1 − m0 = odd and l2 − m0 = even. A Fourier analysis
of the oscillations of these coefficients would provide the drift frequency of the inertial
mode.

As an example, let us take the (3, 2) inertial mode identified by Wicht (2014). Figure
4.4 shows that the toroidal coefficient, z22 (l + m = even) is the dominant oscillatory
coefficient while the same is true for the poloidal coefficient w32 (l + m = odd).

The Fourier analyses of the coefficients z22 and w32, show a single strong peak at the
same frequency ofω/Ω = 0.72, whereω is the angular frequency of the Fourier transform.
This is shown in figure 4.4b.

4.2.2 Using spectrograms
Experimentalists regularly make use of spectrograms to identify flow features and insta-
bilities. Observable quantities used are PIV measurements of zonal velocity, uφ (Hoff

et al. 2016b), measurements of cylindrically radial magnetic field, bs using Hall sensors
(Kelley et al. 2007), and pressure measurements using pressure probes (Triana 2011).

To build a spectrogram, one performs the Fourier transform of a time series obtained
from a sensor or a group of sensors, which would provide a power spectrum of the time
series. Plotting the map of such a power spectrum against differential rotation ∆Ω/Ω
makes a spectrogram. Frequencies having high energy content stand out in such a spec-
trogram as drift frequencies of distinct modes and instabilities. An example is shown in
figure 4.5a, based on data from the 3-metre experiment in Maryland. The various dom-
inant inertial modes can be seen as ‘bright’ spectral lines with high power. A list of the
identified modes can be found in Triana (2011).

For our simulations, we use time series of diagnostic quantities from 8 different grid
points, on a single radial surface, radially symmetrically spaced in latitude and longitude.
This is shown in figure 4.5b.
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Figure 4.4: (a) Oscillations of spherical harmonic coefficients of toroidal (z(`,m)) and
poloidal (w(`,m)) potentials. z(2, 2) and w(3, 2) are the dominant oscillatory coefficients.
(b) Fourier transform of time series of z(2, 2) and w(3, 2) coefficients, denoted by tilde,
showing a peak in frequency at the same position, ω/Ω = 0.72

The time series from different sensors are first cross-correlated against the time-series
from one of the sensors, chosen as a reference. Thereafter, each time series is shifted by
the time lag for which the cross-correlation with the reference time series is the highest.
This takes care of the drift of the diagnostic quantity across sensors and brings the time
series to a common time reference.

4.2.3 Structures of solutions

As shown in section 2.6, inertial modes in spherical shells have very specific structures.
Some of them look very similar to the full-sphere modes and can be easily identified with
the Greenspan notation (l,m). We can compare the fluctuating part of a flow component
or pressure from a snapshot of the solution to a standard eigenmode of a full sphere, as
given by the analytical formulae of Zhang et al. (2001), or the pressure solution given
by Bryan (1889), as well as eigenmodes of a spherical shell which are computed using
the eigenvalue solver SINGE (Vidal and Schaeffer 2015). Such a comparison has been
shown as an example in figure 4.6 where isosurfaces of cylindrically radial velocity, us

of a snapshot of a simulation has been compared with the analytical solution of the (3, 2)
mode in a full sphere, based on Zhang et al. (2001) as well as a spherical shell eigenmode,
computed using SINGE. If a mode is not dominantly visible in the full solution, but
its oscillations can be found in the spherical harmonics, then the mode structure can be
filtered out by filtering out the spherical harmonics of a given azimuthal and equatorial
symmetry.
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(a)

(b)

Figure 4.5: (a) The colormap shows a spectrogram built using time series data from pres-
sure probes of the 3-metre experiment in Maryland, USA. The plot below it shows the
power spectrum at a single value of differential rotation. Data supplied by Santiago Tri-
ana. (b) Location of artificial sensors used in simulations. All the probes are situated on
one spherical surface of fixed radius and are placed in a radial symmetric way in latitude
and longitude. The time series of a diagnostic quantity (zonal velocity uφ in the above
plot) is obtained from these sensors and Fourier transformed to provide a power spectrum
S (ω).
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Simulation
(full solution)

Analytical
(full-sphere)

Spherical shell
eigenmode

Figure 4.6: The structure of the solution from a simulation compared with the analytical
structure of the (3, 2) mode in a full sphere and in a spherical shell. Shown here are
isosurfaces of cylindrically radial velocity, us. Red denotes positive (outward flow) while
blue denotes negative (inward flow).

4.3 Discussion
This chapter introduced the numerical methods used to simulate the spherical Couette
system as well as the code MagIC that has been used in this study. Finally, we introduced
how we identify inertial modes in our system using spherical harmonic oscillations, spec-
trograms constructed using virtual probes as well as direct comparisons of flow structures
with eigenmodes of a full sphere or spherical shell. These concepts will be used in the
next chapter where inertial mode identification will be a key topic of discussion.
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“This work contains many things
which are new and interesting.
Unfortunately, everything that is new
is not interesting, and everything
which is interesting, is not new.”

Lev Landau

This chapter talks about some preliminary results obtained in this study. These results
pertain to the radial jet mentioned in section 3.4.1 and the scaling of the torque measured
at the inner boundary as well as a hunt for a torque bistability as found in the 3-metre
experiment at Maryland (Zimmerman 2010).

5.1 Outer sphere stationary
Section 3.4.1 discussed the axisymmetric state for the outer sphere stationary. We found
that a slight rotation of the inner sphere led to a meridional circulation from which a
radial jet emerged at high values of inner sphere rotation. In the scaling chosen here, the
azimuthal velocity of the inner core boundary has the form of a Reynolds number,

Rei = Ωir2
i /ν =

( a
1 − a

)2
∆Ω, (5.1)

where, a = ri/ro is the radius ratio.With this definition, three distinct dynamic regimes
can be identified, that of low, intermediate and high Reynolds numbers.

For low Rei, Bratukhin (1961) and Haberman (1962) provide analytical results for
the laminar flow which was re-derived by Wicht (2014) who compared it with numerical
solutions with an excellent agreement.The analytical flow solution can be written as

uφ = r sin θ
(ri/r)3 − a3

1 − a3 ∆Ω, (5.2a)

ψ = f (r) sin θ cos θ, (5.2b)

where uφ and ψ represent the zonal velocity and the stream function, respectively. f is a
complex function of radius and depends on Ω, ∆Ω and a.

For intermediate Rei, a radial jet starts to develop at the equator. This jet becomes
unstable to a non-axisymmetric instability with azimuthal wavenumber m = 3 at a critical
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Figure 5.1: The radial jet, at E = ∞. Isosurfaces show radial velocity, red meaning
positive (outward). This jet becomes thinner and shorter and becomes unstable to non-
axisymmetric instabilities. For very high Reynolds numbers, Rei, the jet becomes turbu-
lent.

Reynolds number of Rei = 370 (Wicht 2014). This equatorial jet instability has also been
seen by other studies such as Hollerbach (2003), Hollerbach et al. (2006), Guervilly and
Cardin (2010) and Gissinger et al. (2011). At high Rei, the fluid becomes turbulent and the
jet cannot be uniquely identified any more. The structure of the radial jet and its various
transitions have been shown in figure 5.1 for different values of Rei.

Comparison with sphere in unbounded fluid
Our system has a wide-gap and in the case when the outer sphere is stationary, is bound to
share some features with studies of a sphere rotating in an unbounded fluid. We explore
certain aspects of this similarity that can also explain some numerical observations.

Brief review

As mentioned before, the radial jet develops at intermediate values of Rei. It is the result
of the fluid being thrown out centrifugally at the equator of the inner sphere. To quantify
this effect, we look at analyses of an inner sphere rotating in an unbounded fluid at rest
and compare with our numerical results.

The boundary layer over a sphere rotating in a fluid at rest, was studied by Howarth
(1951) who used series expansion in θ as well as a momentum integral method, similar
to what von Kármán (1921) did for a rotating disc. His result showed that there are two
boundary layers originating from diametrically opposite poles of the sphere. Similar to
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Figure 5.2: The model of laminar boundary layer on a sphere rotating in a bulk fluid,
given by Howarth (1951) and refined by Stewartson (1958). Fluid drawn in along the axis
of rotation along both poles of the sphere, moves on the surface of the sphere. Finally
when the two boundary layers collide, the fluid is thrown out in the form of a radial jet.

the disc problem, fluid is drawn in along the axis at the poles, and thereafter moved along
surface of the sphere, radially outwards. Since this happens at both poles, the fluid in the
boundary layers is bound to collide at the equator, where the solution of Howarth (1951)
breaks down due to the parabolic nature of the equations. The schematic of the boundary
layer flow is shown in figure 5.2. The assumption of the theory was that the zonal velocity
flux in the boundary layer is much larger compared to the non-zonal components:∫ δ

0
u2
θdr �

∫ δ

0
u2
φdr (5.3)

Other notable theoretical studies on the boundary layer on a rotating sphere are Stew-
artson (1958), Fox (1964), Banks (1965) and Manohar (1967). Stewartson (1958) con-
jectured that the flow at the equator would evolve as a radial jet with a profile given by
that due to Landau (1944a) and Squire (1955), often referred to as the Landau-Squire jet.
Singh (1970) showed using analytical theory and numerical investigations that “ordinary
boundary layer theory is capable of describing the outflow near the equator as a narrow
radial jet”. These theoretical results agreed well with the torque measurements in the
experiments of Bowden and Lord (1963) who studied a rotating sphere in a fluid at rest
in a much larger cylinder. These experiments also showed the emergence of a radial jet
from the equator. Dennis et al. (1981) showed numerically that the expanse of the region
around the equator where the boundary layers collide is of O(Re−1/2

i ).

Width of radial jet

We determine the latitudinal width of the jet for each longitude for the spherical surface
where it has its maximum. The mean over all longitudes then provides an estimate of the
jet width

δ =< r∆θ >φ (5.4)
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Figure 5.3: Determination of the width of the jet. The left panel shows how the radial
level is chosen based on urmax . This gives ur as a function of colatitude θ. The width of the
jet is computed using the FWHM of the function ∆θ as δ = r∆θ.
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Figure 5.4: Scaling of the width of the radial jet. The scaling agrees to a great extent to
the proposed region of discontinuity near the equator of O(Re−1/2

i ) by Stewartson (1958)
and shown by Dennis et al. (1981). The agreement is better at higher Rei. The scattered
points towards the end indicate a regime where the jet starts to become turbulent.

where ∆θ is given by the full width at half maximum (FWHM) of the function ur(θ)
on the chosen spherical surface. This has been illustrated in figure 5.3.

Figure 5.4 shows the variation of the width of the radial jet with the Reynolds number.

80



5.1 Outer sphere stationary

One can distinguish the three regimes of low, intermediate and high Rei. For low Rei,
the jet width is constant and a well-defined jet hasn’t started to form yet. At high Rei,
the fluid becomes turbulent and we begin to lose a well-defined jet. Thus, scaling the
jet-width makes sense in the regime of intermediate Rei. The width of the radial jet in this
regime varies as

δ ∝ Re−0.5
i . (5.5)

This is excellent agreement with the analytical investigation of Stewartson (1958)
and the numerical results of Dennis et al. (1981), which showed that the boundary layer
collision happens around a region of O(Re−1/2), which is where the radial jet emerges
from. This scaling also agrees with that of the viscous boundary layer thickness, as found
by Finke and Tilgner (2012).

Torque on the inner sphere

Figure 5.5 shows the numerical torque measurement on the inner sphere as a function of
Rei. For low values of Reynolds numbers, as expected, the flow does not play a crucial
role in determining angular momentum transport and the torque scales nearly linearly
with the rotation rate of the inner sphere (Rei). Once the radial jet starts to form, it acts
as a more efficient mode of transporting angular momentum and thus, a higher torque is
necessary to keep the inner sphere rotating at a constant rate. This leads to a deviation
from the linear scaling.

Analyses by Howarth (1951), Bowden and Lord (1963) and Singh (1970), verified by
the experiments of Bowden and Lord (1963), show that the torque on a sphere rotating in
a fluid at rest should scale as

T ∝ ρν1/2r4
i Ω

3/2
i , (5.6)

(see Bowden and Lord 1963). This torque scaling was also found by Sorokin et al.
(1966) for a spherical Couette experiment with the outer sphere stationary, with a larger
radius ratio of ri/ro ≈ 0.6. Translated to the scaling used here, this shows that the dimen-
sionless torque obeys

G ∝ Re3/2
i (5.7)

Figure 5.5 shows that, at high rotation rates, the non-dimensional torque on the inner
sphere from our numerical results scales as Re1.47

i which is very close to that found by the
theoretical and experimental results mentioned above.

For even higher rotation rates, unachievable in simulations due to numerical difficul-
ties, one would expect a deviation from the scaling found here. Lathrop et al. (1992)
deduced, on dimensional grounds, that for very large Reynolds numbers the torque would
approach an asymptotic scaling of G ∝ Re2. This analysis was for a Taylor-Couette sys-
tem. However, experiments of Zimmerman (2010) at high Rei ∼ 108 showed an approach
to this limit. The scaling obtained in the experiment was G ∝ Re1.89

i .
The above results show that for the spherical Couette flow with outer boundary station-

ary, there lies a regime of intermediate Reynolds numbers where the theory of Howarth
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Figure 5.5: Scaling of the torque with the Reynolds number Rei. One can see that at
rotation rates after a radial jet has formed, the scaling agrees well with that proposed by
Howarth (1951).

(1951) and others for an inner sphere rotating in a stationary fluid works quite well. How-
ever, for low Rei, when the boundary layer is not well-pronounced or for very high Rei,
where the fluid is turbulent, the same doesn’t hold true. For low Rei, we fortunately have
analytical solutions like those by Bratukhin (1961), Haberman (1962) and Wicht (2014)
which explain the fluid dynamics excellently. However, for very high Reynolds numbers,
such as those in the 3-metre experiment (Zimmerman 2010), the fluid is too turbulent to
be treated analytically or numerically making the role of experiments important in com-
plementing numerical modelling.

5.2 Torque bistability

There was an unexplained bistability in the torque that was observed in the 3-metre exper-
iment in Maryland (Zimmerman et al. 2011) between Ro = ∆Ω/Ω = 1.8 and Ro = 2.75
at all Ekman numbers (E 6 10−7 for the experiments). It consisted of a sudden jump in
the torque to a very high value and then a relatively slow decay to a low state, as shown in
figure 5.6a. The high state (marked ‘H’) in figure 5.6a was characterised by a broadband
spectrum in temporal frequency, while the low state (marked ‘L’) was characterised by
two peaks - at ω/Ω = 0.18 and ω/Ω = 0.71 where ω is the Fourier angular frequency.
The high state has small peaks at ω/Ω = 0.40 and ω/Ω = 0.53 and a “broader buildup
around ω/Ω = 0.22” (Zimmerman 2010). These spectra are shown in figure 5.6b.

The reason for this bistability is unknown, but Zimmerman (2010) speculated some
possible reasons based on experimental observations. He concluded that there must be a
mechanism by which fast zonal flow is created and destroyed close to the inner sphere
in a cyclical manner. In the low torque state, shown in figure 5.7a, the fluid just outside
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Figure 5.6: Torque bistability observed in the 3-metre experiment. ‘H’ and ‘L’ refer to
‘high’ and ‘low’ states respectivelya. The parameters are E = 2.1 × 10−7 and Ro = 2.13.
(a) shows the measurements of the torque sensor, (b) shows the spectra of wall shear stress
in the two states.

aReprinted from Zimmerman et al. (2011), with the permission of AIP Publishing. DOI: http://dx.
doi.org/10.1063/1.3593465

the zone of this fast azimuthal flow is not in solid body rotation with the outer sphere,
but rather is slowing down over a long period of time, during which Ekman pumping
transports angular momentum from this region to the ‘fast’ part of the flow quicker than
the ‘fast’ zone pumps angular momentum out - resulting in a net localised rise in angular
momentum and hence, torque. The boundary between the two regions might host Rossby
waves (whose peaks are visible in the spectrum) and possibly complex vortex structures
called “tripolar vortices” (van Heijst and Kloosterziel 1989). In the high torque state,
shown in figure 5.7b, this special fast zone is destroyed and there is efficient mixing of
angular momentum by turbulence, leading to a ‘flatter’ zonal velocity profile and hence,
a higher torque.

We attempt to reproduce this torque bistability in our numerical simulations, at a much
higher Ekman number of E = 10−4 due to numerical difficulties. Our hope was that a ramp
from low to high values of differential rotation and then the other way round would show
a hysteretic behaviour and might produce a bistability in the time-averaged torque. We
perform two ramps in Ro - one from Ro = 1 to Ro = 5 (marked ‘L2H’ in figure 5.8) and
another the other way round (marked ‘H2L’ in figure 5.8). Unfortunately the value of the
time-averaged torque at different Ro showed negligible difference between the two ramps.

However, we observed short transients which had a higher torque state, which then
settled down to a lower torque state as shown in figure 5.9 for Ro = 4, starting from a
flow solution at Ro = 3. The difference between the high and low states was, of course,
much smaller than that observed by Zimmerman (2010), but one must keep in mind that
our Ekman number and thus, our fluid viscosity is three orders of magnitude larger than
that in the experiment, and would hence provide less “dramatic” results. This transition is
nothing like the bistability observed in the experiments. However, we follow an analysis
similar to Zimmerman (2010) in order to try to capture some of the observed features.
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Figure 5.7: Schematic figures by Zimmerman (2010) speculating the possible flow states
during the low torque state (figure (a)) and the high torque state (figure (b)).a

aReprinted from Zimmerman et al. (2011), with the permission of AIP Publishing. DOI: http://dx.
doi.org/10.1063/1.3593465
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Figure 5.8: Time-averaged torque at different differential rotation rates. Numerical ramps
are from Ro = 1 to Ro = 5 and back. The ramp from low to high Ro (‘L2H’) are marked
with green circles while the one which is other way round (‘H2L’) is marked with red
circles.

Figure 5.10 shows the spectra of the time series of torque in the two states. This is
similar to obtaining the spectra of wall shear stress in experiments since the wall shear
stress varies linearly with the torque. The spectra in the figure shows some similarities
to that of the experiments - the ‘high’ state exhibits a broadband spectrum with no clear
peaks while the ‘low’ state has a peak at ω/Ω = 0.43. However, this peak could not
be associated with a particular mode in the flow as was found by Zimmerman (2010)
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Figure 5.9: Time series of torque (G) on the inner sphere at E = 10−4 and Ro = 4. Black
dashed line marks the transition from a high torque state to a low one. Green dashed lines
marks times at which flow solutions are shown in figure 5.11.
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Figure 5.10: Power spectra (S (ω)) of the torque series in the two states at E = 10−4 and
Ro = 4. The high torque state ‘H’ shows a broadband spectrum with no clear peaks while
the low state ‘L’ shows a clear peak at ω/Ω = 0.43.

and Zimmerman et al. (2011). Comparing the flow structures in the two states in figure
5.11 we find that the solution in the high torque state consists of two large scale circulation
cells while the flow in the low torque state consists of more small scale structures. Another
noticeable difference is the fact that in the low torque state, the fluid around the tangent
cylinder seems to have a larger azimuthal velocity as compared to that in the high torque
state and zonal velocity profile looks more flat for the high torque case. This is similar to
the idea of Zimmerman (2010) (figure 5.7) of a zone of high zonal velocity surrounding
the tangent cylinder. However to achieve a bistability, one would need a destruction of
this zone of high zonal flow. As to why this would happen remains an open question.
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Figure 5.11: (a) and (b) show flow solutions at the two different torque states. Colors
show Azimuthal average of zonal velocity with red being positive (velocity into plane)
while lines represent meridional circulation with solid (dashed) lines meaning clockwise
(anti-clockwise). (c) shows profiles of uφ averaged in θ and φ.

5.3 Summary and discussion

In this chapter, we first investigated the spherical Couette system with the outer sphere
stationary. We found that with the increase in the inner sphere rotation rate, the onset
of a radial jet takes place, as has been observed in past studies of the spherical Couette
flow (Hollerbach 2003, Hollerbach et al. 2006, Guervilly and Cardin 2010, Gissinger
et al. 2011, Wicht 2014) as well as those for a sphere rotating in an unbounded fluid (e.g.
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Bowden and Lord 1963, Dennis et al. 1981). Observing that the jet gets thinner with
the rotation rate of the inner boundary, we tried to scale the thickness of the jet with the
Reynolds number of the flow at the inner boundary equator Rei and found a scaling of
δ ∝ Re−1/2

i , which was proposed for a sphere rotating in an unbounded fluid (Stewartson
1958, Dennis et al. 1981). In addition, we found that the torque on the inner sphere has
three distinct regimes. For very low Rei < 20, the radial jet has not formed yet and the
torque scales linearly with Rei. However, there is a regime change beyond the point where
the jet starts to form and we find a scaling of G ∝ Re3/2

i , a scaling found for the case of
an inner sphere in an unbounded fluid (Howarth 1951, Bowden and Lord 1963) as well
as for a spherical Couette flow experiment with a larger radius ratio than ours (Sorokin
et al. 1966). For very large Rei, the torque scaling, observed in experiments (Zimmerman
2010), gets closer to an asymptotic scaling of Re2

i proposed for the Taylor-Couette setup
(Lathrop et al. 1992).

Hollerbach et al. (2006) found that the development of a radial jet when the outer
boundary stationary is a common feature for several different radius ratios. However, the
open question remains on whether the similarity with studies of a rotating sphere in an
unbounded fluid would still hold at all radius ratios. Intuitively, one would assume the
similarities to break down once the gap width of the shell becomes narrow. But this limit
is still to be exactly determined.

At a finite outer boundary rotation of E = 10−4, we attempt to reproduce the torque
bistability observed in experiments at Maryland (Zimmerman et al. 2011). We fail to find
such a bistability at our simulation parameters, but observe certain similarities while com-
paring a transient high torque state to a low torque state when the solution has statistically
saturated. We observe that the temporal spectrum of torque has no clear peaks in the
high torque state, unlike the low torque state which has a clear peak at ω/Ω = 0.43. We
couldn’t find a mode of flow that exactly matched this frequency. Comparing the flow so-
lutions in the two states, we found that the flow in the low torque state consists of a region
of high zonal velocity close to the tangent cylinder and a less flat zonal velocity profile as
compared to the high torque state, which is very similar to the schematic picture proposed
by Zimmerman (2010). Even though we observed such similarities, we still failed to an-
swer the key question of what might be the reason for such a region of high azimuthal
velocity to break down and be rebuilt again in a cyclical manner. Simulations at lower
Ekman numbers might be able to get closer to finding the answer to this yet unanswered
question.
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6 Triadic resonances in the wide-gap
spherical Couette system

“Probably every theory will someday
experience its "No" - most theories,
soon after conception.”

Albert Einstein

6.1 Introduction
In the last few chapters, we learned about the spherical Couette system as well as had an
understanding of inertial modes in a sphere and spherical shell. We saw in chapter 2 that
inertial modes in astrophysical objects are thought to be excited due to three mechanisms -
precession, libration and tidal excitation. However, several experiments with the spherical
Couette setup (Kelley et al. 2007, Kelley 2009, Kelley et al. 2010, Triana 2011, Rieutord
et al. 2012, Hoff et al. 2016b) as well as direct numerical simulations (Matsui et al. 2011,
Wicht 2014) have found the onset of inertial modes at certain critical differential rotation
rates which have raised several questions. First and foremost is the fact that these modes
onset in the absence of any external oscillatory mechanisms as thought to be the case
for astrophysical objects. Secondly, the modes that have been observed in these studies
are equatorially antisymmetric. This is surprising as the driving of the spherical Couette
system is symmetric with respect to the equator and the Taylor-Proudman constraint tries
to impose geostrophy, especially at high rotation rates such as that of the 3-metre experi-
ment (e.g. Triana 2011). Lastly, these modes are more prominent for negative differential
rotation, Ro < 0. Wave-like oscillations have also been reported for positive differen-
tial rotation (Zimmerman 2010) but their structures and symmetries haven’t been clearly
characterised.

Most of the contents of this chapter have been reproduced from the article: A. Barik, S. A. Triana, M.
Hoff, J. Wicht, “Triadic resonances in the wide-gap spherical Couette system” that has been submitted to
the Journal of Fluid Mechanics.
Contribution: I ran all the simulations with MagIC, performed all the analyses and wrote the first draft of
the paper. After thorough revisions, much of the original structure and text is preserved. S. A. Triana ran
the simulations using XSHELLS, M. Hoff provided the experimental data and J. Wicht contributed to
writing of the final draft, physical interpretations of the results and supervision of research.
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Past attempts at explaining the onset and selection of modes involve using the theory
of over-reflection (Kelley et al. 2010) or being thought to be excited due to a critical
layer at the tangent cylinder (Rieutord et al. 2012). The theory of over-reflection comes
from sound waves Ribner (1957) and states that when a sound wave meets a shear flow
at angles above a certain critical angle, the reflected wave can be amplified implying that
energy is transferred from the shear flow to the sound wave. Kelley et al. (2010) used this
idea and applied it to inertial waves stating that the Stewartson shear layer can act as a
source of energy for over-reflecting inertial waves and in the process, certain modes get
preferentially amplified. They used the critical angle of the internal shear layers of the
modes as the critical angle for over-reflection and used the exact same formulae that were
derived for sound waves by Ribner (1957). Their analysis broadly matched experimental
observations, but there quite some exceptions. Besides, an analysis of over-reflection
for an inertial wave must be done on similar lines as sound waves. The critical layer
hypothesis of Rieutord et al. (2012) states that if there is a critical layer in the fluid that
rotates with the drift rate of an inertial mode, it might resonantly excite one. However,
this is a speculation and leaves much to be desired in terms of further investigations.

6.2 Fast and Slow modes
Inertial modes in a full sphere can be equatorially symmetric or antisymmetric. The
equatorially symmetric modes that we find in simulations are the slow inertial modes
described by Zhang et al. (2001) which are “nearly geostrophic”. This implies that they
satisfy the Taylor-Proudman constraint to a large extent, i.e., the pressure gradient and
Coriolis forces roughly balance each other,

− iωu = −∇p/ρ − 2Ω ẑ × u ≈ 0. (6.1)

In such a scenario, the frequency of these modes, ω, are ‘small’ in magnitude as com-
pared to the boundary rotation Ω and can thus change by a large fraction even for a small
mismatch between pressure gradient and the Coriolis force. This is in contrast to the
equatorially antisymmetric modes for which no such slow modes are found and which
completely defy the Taylor-Proudman constraint and have larger magnitudes of frequen-
cies as compared to the slow, nearly geostrophic, modes. Owing to this clear distinction
between frequencies of these two classes of modes, the equatorially antisymmetric modes
were referred to as ‘fast inertial modes’ by Wicht (2014). Thus, while the fast modes are
easily identified by their frequencies, the same cannot be said of the slow columnar modes
whose frequencies are susceptible to the slightest of changes in the force balance.

6.3 Experimental methods
Experimental studies have characterised the flow by building spectrograms using time
series of various different quantities like zonal velocity, uφ, using PIV measurements (Hoff

et al. 2016b), cylindrical radial magnetic field, bs, using Hall sensors (Kelley et al. 2007)
and pressure using pressure probes (Triana 2011). The Hall sensors measure changes in
the magnetic field induced in the fluid due to an imposed axial magnetic field.
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6.4 Results from experiments

The set-up for the spherical Couette experiments at BTU Cottbus-Senftenberg, Ger-
many, consists of two concentric rotating spheres with radii ri = 40 mm and ro = 120
mm, with an aspect ratio of ri/ro = 1/3 and shell gap of width L = 80 mm. The fluid in
the gap is a silicone oil of viscosity ν = (0.65 ± 0.07) mm2/s. Two ramps in differential
rotation were performed at Ekman numbers of E = 3.04× 10−5 and E = 1.52× 10−5. The
flow is visualised in the meridional plane using Kalliroscope particles and a vertical laser
sheet. In the horizontal plane, the flow was characterised using particle image velocimetry
(PIV), using hollow spherical glass spheres as tracers. A Fourier analysis of the horizontal
flow components gave spectrograms which were used to identify hydrodynamic regimes.
Further details of the experimental setup and analysis techniques can be found in Koch
et al. (2013), Hoff et al. (2016b) and Hoff et al. (2016a).

6.4 Results from experiments
Hoff et al. (2016b) describe three distinct hydrodynamic regimes encountered while in-
creasing the magnitude of differential rotation (|Ro|) from small to large values for a fixed
outer boundary rotation rate (Ω = 1/E),

i. Fundamental instability : At a critical differential rotation rate, Roc, the flow changes
state from a purely axisymmetric configuration to a non-axisymmetric one, with a
well-defined azimuthal symmetry, having wavenumber mc = 1 in both cases shown
in figure 6.1. Thereafter, this is the dominant large-scale feature in this regime, along
with its higher harmonics, as seen in the spectrogram in figure 6.1. The onset of
this first non-axisymmetric instability has been observed and studied before in other
experimental and theoretical works, as mentioned in chapter 3.

ii. Inertial Modes : As one keeps increasing the differential rotation rate, at a critical
value around Ro ≈ −0.6, one finds an onset of a pair of inertial modes, the dominant
one being the (5, 2) mode in Greenspan notation. There are also sub-dominant m = 1
and m = 3 modes that also come in as two branches beside the (5, 2) mode. These
modes are ‘fast’ and antisymmetric with respect to the equator. The pairs form triadic
resonances with the first m = 1 instability (Hoff et al. 2016b). The two branches have
not been distinctly identified by the authors. Thereafter, these modes go away as
the differential rotation is increased further and the m = 1 first instability becomes
the prominent large-scale structure again for a short range in Ro. Soon after, around
Ro ≈ −0.9 one finds a second onset of ‘fast’ inertial modes - the dominant one
being the (3, 2) mode. There are two branches associated with this mode, again. The
‘lower’ branch (in terms of frequency) has been identified as the (4, 1) mode. The
‘upper’ branch is an m = 3 mode, which has not been distinctly identified. These
modes again form triadic resonances with the fundamental m = 1 mode.

iii. Turbulence : Further increasing the differential rotation beyond a critical values of
Ro = −2.011 and Ro = −1.730 for E = 3.04×10−5 and E = 1.52×10−5, respectively
leads the system to transition into a turbulent regime, seen as the regime of broadband
peaks in the spectrograms. The triadic resonance that existed in the regime above is
still seen to exist here.
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Figure 6.1: Spectrogram from PIV measurements of azimuthal velocity from experiments
at BTU Cottbus-Senftenberg, uφ at (a) E = 3.04 × 10−5 and (b) E = 1.52 × 10−5. One can
see three distinct hydrodynamic regimes described by Hoff et al. (2016b). Abbreviations:
SI = Stewartson layer Instability, EA = Equatorially Antisymmetric.
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6.5 Numerical methods

6.5 Numerical methods
The Navier-Stokes and continuity equations are solved using two independent codes:
MagIC (Wicht 2002) and XSHELLS (Figueroa et al. 2013). Both codes use a poloidal/toroidal
decomposition of the velocity field

u = ∇ × ∇ × r̂w + ∇ × r̂z (6.2)

where w and z are the poloidal and toroidal potentials, respectively. Spherical har-
monics are used for the spectral representation of these scalar potentials and pressure in
latitude and longitude. For example,

w(r, θ, φ, t) =

lmax∑
l=0

l∑
m=0

wlm(r, t)Ylm(θ, φ). (6.3)

The codes differ in the radial representation of the variables w, z and p. In MagIC,
they are expanded in terms of Chebyshev polynomials and the radial grid consists of
Gauss-Lobatto nodes. XSHELLS uses second-order finite differences in radius.

The reader is encouraged to have a look at Christensen and Wicht (2007) and Figueroa
et al. (2013) for further details on the numerical methods. Some of the simulations using
MagIC and all the simulations using XSHELLS presented here used the SHTns library
(Schaeffer 2013) for spherical harmonic transforms. The identification of inertial modes
using spherical harmonics has already been discussed in chapter

Tables 6.1 and 6.2 give a list of the ‘fast’ inertial modes identified in our simula-
tions and compares it with experimental data as well as data obtained from analytical
predictions (e.g. Greenspan 1968, Zhang et al. 2001) and eigenmode computations using
SINGE. The frequency ranges provided in tables reflect the fact that the drift frequen-
cies of the modes are not constant but change with differential rotation (Ro) and outer
boundary rotation (Ω = 1/E).

6.6 Results from simulations
To explore the parameter space, we typically keep the rotation rate of the outer bound-
ary constant (constant E) and vary the differential rotation (Ro). We start by discussing
numerical results at an Ekman number of 10−4 where a scan through a large range of
Ro is numerically possible and the three hydrodynamic regimes found in the experiments
are accessible. Thereafter, we present results for E = 10−5, which is so close to the
experimental values that we also attempt a more detailed comparison. Some important
parameters of the experiments and simulations are provided in table 6.3.

6.6.1 Ekman number, E ∼ 10−4

In this case, the outer boundary rotation rate was kept constant at E = 10−4 and the
differential rotation was varied from Ro = −1 to Ro = −3.5. We present here results from
two sets of such simulations:

The MagIC simulations were performed at E = 10−4 using an aspect ratio of ri/ro =

0.35. The radius ratio has been chosen in accordance with that of the Earth and the 3-metre
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Exp/Simulation Frequency (ω/Ω) E |Ro|

(3,2) mode

Full sphere 0.667
Spherical shell1 0.667 10−5

3m 2 0.700 - 0.760 ≤ 10−7 0.70 - 1.25
60 cm 3 0.683 - 0.698 ≤ 10−7 0.816
BTU C-S (24 cm)4 0.698 - 0.715 3.04 × 10−5 0.945 - 1.989
BTU C-S (24 cm) 0.688 - 0.708 1.52 × 10−5 0.888 - 1.727
MagIC5 0.717 - 0.741 10−4 1.33 - 2.9
XSHELLS6 0.719 - 0.783 10−4 1.335 - 2.9
MagIC 0.670 - 0.710 10−5 0.85 - 1.4
XSHELLS 0.690 - 0.705 10−5 0.85 - 1.17

(5,2) mode

Full sphere 0.467
Spherical shell 0.466 10−5

3m 0.508 - 0.573 ≤ 10−7 0.50 - 0.77
60 cm 0.492 - 0.531 ≤ 10−7 0.6
BTU C-S (24 cm) 0.515 - 0.529 3.04 × 10−5 0.631 - 0.693
BTU C-S (24 cm) 0.508 - 0.536 1.52 × 10−5 0.600 - 0.729
MagIC 0.504 - 0.588 10−5 0.55 - 0.75
XSHELLS 0.500 - 0.540 10−5 0.55 - 0.7

1 : Using SINGE (Vidal and Schaeffer 2015)
2 : From Triana (2011)
3 : Frequency ranges from Kelley et al. (2007). |Ro| values

are single representative values from Santiago Triana.
4 : From Hoff et al. (2016b) and Hoff et al. (2016a).
5 : Frequencies determined using spherical harmonics
6 : Frequencies determined from spectrograms

Table 6.1: List of the most dominant inertial modes observed and identified and compar-
isons with experiments. For simulations at E = 10−5, the modes seem to occur at similar
ranges of |Ro| as all the experiments spanning a huge range of Ekman numbers.
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6.6 Results from simulations

Exp/Simulation Frequency (ω/Ω) E |Ro|

(4,1) mode

Full sphere 0.612
Spherical shell 0.602 10−5

3m 0.605 - 0.639 ≤ 10−7 1.42 - 2.20
60 cm 0.602 - 0.627 ≤ 10−7 1.32
BTU C-S (24 cm) 0.591 - 0.615 3.04 × 10−5 1.041 - 1.989
BTU C-S (24 cm) 0.596 - 0.625 1.52 × 10−5 0.888 - 1.727
MagIC 0.609 - 0.756 10−4 1.33 - 2.9
MagIC 0.588 - 0.617 10−5 0.85 - 1.4
XSHELLS 0.596 - 0.705 10−4 1.335 - 2.9
XSHELLS 0.600 - 0.614 10−5 0.85 - 1.17

(6,1) mode

Full sphere 0.440
Spherical shell 0.419 10−5

3m 0.444 - 0.500 ≤ 10−7 > 0.8 - 1.4
60 cm 0.435 - 0.450 ≤ 10−7 1.13
BTU C-S (24 cm) 0.403 - 0.429 3.04 × 10−5 1.583 - 1.989
BTU C-S (24 cm) 0.407 - 0.414 1.52 × 10−5 1.540 - 1.727

(4,3) mode

Full sphere 0.500
Spherical shell 0.499 10−5

3m 0.512 - 0.511 ≤ 10−7 0.33 - 0.40
60 cm 0.509 - 0.511 ≤ 10−7 0.44
MagIC 0.582 - 0.693 10−5 0.55 - 0.75
XSHELLS 0.578 - 0.619 10−5 0.55 - 0.70

(10,3) mode

Full sphere 0.850
Spherical shell 0.855 10−5

MagIC 0.822 - 0.859 10−4 1.33 - 2.9
MagIC 0.751 - 0.808 10−5 0.85 - 1.4
XSHELLS 0.790 - 0.843 10−4 1.33 - 2.5
XSHELLS 0.776 - 0.798 10−5 0.85 - 1.17

(5,0) mode

Full sphere 0.570
Spherical shell 0.570 10−5

MagIC 0.496 - 0.630 10−4 1.33 - 2.4
XSHELLS 0.476 - 0.501 10−4 1.35 - 2.1

Table 6.2: List of less dominant inertial modes and comparisons with experiments and
theory. Sources of data same as in table 6.1.
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6 Triadic resonances in the wide-gap spherical Couette system

E ri/ro Step in Ro

Experiment 3.04 × 10−5, 1.52 × 10−5 1/3 0.02
MagIC 10−4 0.35 0.1
MagIC 10−5 0.35 0.05

XSHELLS 1.125 × 10−4 1/3 0.05
XSHELLS 10−5 1/3 0.05

Table 6.3: Parameters for simulations and experiments. The experiments at BTU C-S
were run at other Ekman numbers as well, we provide here the one with which we closely
compare the simulations.

experiment in Maryland. Time series for the non-axisymmetric part of uφ are stored for
eight different points spread out symmetrically in latitude and longitude (θ = π/4, 3π/4
and φ = 0, π/2, π, 3π/2) at r = 0.7ro. These are stacked after shifting them by the time
lag providing the highest cross-correlation value. A Fourier transform of the stack yields
a spectrum of uφ giving the power in different frequencies. Combining the spectra at
different Ro finally provides the spectrogram shown in figure 6.2(a).

The XSHELLS simulations were run at a slightly larger E = 1.125 × 10−4 and the as-
pect ratio was ri/ro = 1/3, same as the experiments at BTU C-S. In this set of simulations,
we collect time series data for three components of velocity, ux, uy and uz at 8 different
points symmetrically spread out in latitude and azimuth. The Fourier transforms of the
time series from all points are then averaged to build a spectrogram. Hereafter, we refer
to the MagIC simulations as ‘SIM1’ and the XSHELLS simulations as ‘SIM2’.

Figure 6.2(a) and 6.2(b) compare both numerical spectrograms using velocity from
SIM1 and SIM2, respectively. Both show similar hydrodynamic regimes and instabilities,
but there are differences because of the smaller resolution in Ro and longer integration
times used for SIM2. This results in better constraints on mode onsets and a higher
frequency resolution. We broadly find the three distinct regimes, that have been identified
in the experiments at BTU C-S (see section 6.4 and refer to Hoff et al. 2016b), namely the
fundamental instability, inertial modes and turbulence.

6.6.1.1 Fundamental Instability

The onset of the first non-axisymmetric Stewartson layer instability (SI) takes place when
Ro = −0.379. It has a wavenumber m = 1, is nearly geostrophic and drifts in azimuth
with a frequency ω/Ω = 0.086 (Wicht 2014). Figure 6.3 shows isosurfaces of cylindri-
cally radial velocity, illustrating the two counter rotating circulation cells that have also
been identified in the spherical Couette experiments at BTU C-S. This instability resides
primarily inside the tangent cylinder.

This m = 1 mode has been identified as the (5, 1) mode by Hoff et al. (2016b). Wicht
(2014) identified the (5, 1) mode as being the most probable candidate for identification
of this mode, while commenting that it has the wrong sign for frequency.
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6.6 Results from simulations

Figure 6.2: (Colour online) (a) Spectrogram of uφ for E = 10−4 at r = 0.7ro, obtained
from MagIC. (b) Spectrogram at E = 1.125 × 10−4 obtained from XSHELLS. In both
cases, one can clearly identify the onset of the EA inertial modes at Ro ≈ −1.3. There are
three regimes visible: m = 1 drifting instability till Ro ≈ −1.3, onset of inertial modes at
Ro ≈ −1.3, transition to turbulence at Ro ≈ −2.3.
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6 Triadic resonances in the wide-gap spherical Couette system

Figure 6.3: (Colour online) Structure of the fundamental m = 1 instability. Shown here
are isosurfaces of non-axisymmetric cylindrically radial velocity (us). Red is positive
(outward) while blue is negative (inward). The instability lives primarily inside the tan-
gent cylinder.

6.6.1.2 Oscillations

Around Ro = −1.25 one can see the total kinetic energy of the flow oscillating. The
spectrum is shown in figure 6.4a. Figure 6.4b shows that the oscillations are caused due
to the onset of a second mode with a different drift frequency. Nonlinear interactions feed
energy to higher wavenumbers and one observes a spectrum of several modes. However,
the dominant large-scale feature of the flow is still the m = 1 SI mode.

6.6.1.3 Inertial Modes

As the differential rotation reaches a critical value of Ro = −1.33, ‘fast’ equatorially
antisymmetric inertial modes are excited, as seen in the spectrograms in figure 6.2.

Since these are the first EA modes in the system, their onset is clearly marked by a
growth of the equatorially antisymmetric kinetic energy. Figure 6.5a shows the growth of
some of the individual mode energies (truncated at l = 6 in spherical harmonic expansion).
One can see that modes with different azimuthal wavenumbers grow at the same rate,
indicating that these modes are coupled together via nonlinear interactions. Figure 6.5b
shows the steady state. Most of the kinetic energy is carried by modes with m ≤ 3 and
m = 2 clearly dominates.

By analysing the m = 2 spectral contributions more closely the (3, 2) inertial mode
was unambiguously identified based on its frequency and structure. It can be seen in the
spectrograms in figure 6.2 as the ‘brightest’ line in this regime. Figure 6.6 compares the
solution at Ro = −2 to the (3, 2) mode for a full sphere and a spherical shell. The latter
two are practically identical. A possible explanation is that they are ‘toroidal’ modes with
l − m = 1. Since these modes have no radial velocity, the presence of the inner sphere is
not communicated to larger radii. While the full numerical solution looks similar to the
eigenmodes, it has also been evidently modified by the background flow due to the shear
on and inside the tangent cylinder.
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Figure 6.4: Regime of oscillating kinetic energy. (a) shows the oscillating nature of the
total kinetic energy of flow at Ro = −1.25. (b) shows the power spectrum of the toroidal
coefficient z21 representing the m = 1 equatorially symmetric modes present in the system
at two different rates of differential rotation.

Figure 6.5: Onset of inertial modes at E = 10−4 and Ro = −1.33. (a) shows the growth in
terms of energy (SH expansion l ≤ 6) of some of the individual modes at r = 0.5ro. Shown
in (a) is also the fundamental instability, m = 1 SI. (b) shows the spectrum for equatorially
antisymmetric kinetic energy, EA

kin, at r = 0.5ro. EA = Equatorially Antisymmetric, ES =

Equatorially Symmetric
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Simulation
(full solution)

Analytical
(full-sphere)

Spherical shell
eigenmode

Figure 6.6: (Colour online) Comparison of flow structures between simulation (top row),
analytical prediction for a full sphere (middle row) based on Zhang et al. (2001) and
spherical shell eigenmode computed using SINGE (bottom row) for the (3, 2) mode at
E = 10−4, Ro = −2. Shown here are isosurfaces of non-axisymmetric cylindrically
radial velocity (us). Red is positive (outward) while blue is negative (inward). The inner
sphere has been shown for the full sphere mode for comparison. Note that no filtering
has been performed on the solution. The whole solution is dominated by this mode at this
parameters. The similarities are self-evident.

100



6.6 Results from simulations

Figure 6.7: (Colour online) Comparison of flow structures between simulation (top row),
analytical prediction for a full sphere (middle row) based on Zhang et al. (2001) and
spherical shell eigenmode (bottom row) for the (4, 1) mode at E = 10−4, Ro = −2. Shown
here are isosurfaces of non-axisymmetric cylindrically radial velocity (us). Red is pos-
itive (outward) while blue is negative (inward). The inner sphere has been shown for
the full sphere mode for comparison. The mode was filtered out using relevant spheri-
cal harmonics. The mode structure in the simulation somewhat resembles the theoretical
structures, but has been twisted up by the background flow. The effect of background flow
is discussed in section 6.7.

Table 6.1 compares the frequencies of the (3, 2) mode found in different experimental
setups as well as the two numerical simulations presented here and the eigenvalues for a
full sphere and a spherical shell. Both eigenvalues agree perfectly. However, numerical
and experimental values show a slight deviation. Possible reasons can be differences
in Ekman numbers, differential rotation or more generally, the effect of the background
flow. Since the values in table 6.1 span four decades in Ekman number, the dependence
on Ekman number can only be weak. The dependence on differential rotation is likely
larger and will be discussed in section 6.7.

Besides the two most dominant lines in the spectrogram for the m = 1 SI and the
(3, 2) mode, there are several other lines which are less dominant, but nevertheless clearly
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6 Triadic resonances in the wide-gap spherical Couette system

Figure 6.8: EA inertial modes with m = 0 and m = 3, not identified by Hoff et al. (2016b)
and Hoff et al. (2016a). Simulation parameters are E = 10−4, Ro = −1.5. Shown here is
pressure at the outer boundary on a Hammer projection. Red is positive (outwards) while
blue is negative (inwards). Note that the (10,3) mode is not the only m = 3 mode present,
but is the one that corresponds to the spectrogram line around ω/Ω = 0.85.

visible against the background. Among the less dominant modes, the (4, 1) mode can be
easily identified. It can be seen as a relatively ‘bright’ line around ω/Ω = 0.6 in the spec-
trograms in figure 6.2. We tried to visualise this mode by filtering out spherical harmonic
contributions with azimuthal wavenumber, m = 1 and equatorially antisymmetric. Figure
6.7 compares the result with (4, 1) eigenmodes of a full sphere and a spherical shell. Once
more, an overall similarity is convincing enough but also reveals the impact of the back-
ground flow. The frequency agrees with eigenvalues and experimental values to a great
extent, as can be seen in table 6.2.

The line in the spectrogram around ω/Ω = 0.85 is an m = 3 mode which can be
identified as a (10, 3) mode based on its frequency (table 6.2). Analysis of the spectral
flow contribution shows that another m = 3 mode is present in the system. Filtering
out the m = 3 equatorially antisymmetric contributions of spherical harmonics reveals
a dominant (10, 3) structure. The dominant axisymmetric EA mode is the (5, 0) mode.
These modes are shown in figure 6.8.

As discussed by Hoff et al. (2016b) the ‘fast’ inertial modes appear in pairs that form
a triadic resonance with the fundamental instability. These triadic resonances will be
discussed in more detail in section 6.8.

6.6.1.4 Turbulence

Around |Ro| = 2.3, the spectrograms show a transition to a regime where small scale flows
form a broadband spectrum. The frequencies of the dominant (3, 2) and the fundamental
mode are more strongly influenced by the background flow, including a sudden jump in
the frequency of the (3, 2) mode, similar to observations by Hoff et al. (2016b). The
inertial mode (3, 2) is still the dominant large-scale structure of the flow. Around Ro =

−2.7, one finds a new mode onset which has an m = 2 and is equatorially symmetric.
However, this mode has not been identified yet. The details of the turbulent regime will
be discussed in chapter.

102



6.6 Results from simulations

6.6.2 Ekman number, E = 10−5

This Ekman number corresponds well with that of the experiments of Hoff et al. (2016b).
Strong computational requirements prevented us from venturing into the turbulent regime,
but we concentrate on the fundamental instability and the ‘fast’ inertial modes. Figure 6.9
shows the clear similarities of the respective MagIC and XSHELLS numerical spectro-
grams at E = 10−5 with the experimental results at E = 1.52 × 10−5. Differences arise, as
before, due to differences in resolution in Ro which was 0.05, 0.01 and 0.02, for MagIC,
XSHELLS and the experiments, respectively, and in the duration for which time series
data were collected in the three cases. Note that the regimes covered in Ro by the individ-
ual simulations and the experiments are different. We discuss the different flow transitions
in the spectrograms as follows.

6.6.2.1 Fundamental instability

The first non-axisymmetric instability found using MagIC is the primary Stewartson layer
instability with an azimuthal wavenumber of m = 2 that sets in at Ro = −0.133. A
secondary m = 1 instability already comes in at Ro = −0.16 and from there on dominates
the solution. Frequency and structure analysis identifies it as the fundamental Stewartson
layer instability discussed for E = 10−4 above.

Numerical exploration at a lower Ekman number of 3 × 10−6 and the experimental
results of Triana (2011) confirm that this mode continues to set in as a secondary insta-
bility for smaller Ekman numbers and negative differential rotation. Figure 6.10 shows
the critical wavenumber in panel (a) and the critical differential rotation in panel (b) at
onset of the first non-axisymmetric instability for different Ekman numbers for Ro < 0.
In addition to that, the onset of the secondary m = 1 instability has also been shown. A
straight line fit has been used to extrapolate the onset of this instability to lower Ekman
numbers. For example, at E = 3 × 10−6, the first instability sets in for Ro = −0.0213
and has a wavenumber of mc = 12 . The secondary m = 1 instability clearly dominates
at Ro = −0.09, as shown in figure 6.11. The experimental parameters of the 3-metre ex-
periment are clearly located beyond the extrapolated m = 1 onset, which may explain the
prominence of this instability in their data (Triana 2011).

Hoff et al. (2016b) find an m = 1 mode at onset at all their Ekman numbers, the critical
|Ro| for which have been shown in figure 6.10b. The critical values seem to be slightly
above those determined by MagIC simulations. The XSHELLS simulations confirm the
critical |Ro| and mc observed at BTU C-S for E = 10−5. Both use the same aspect ratio of
ri/ro = 1/3 that slightly differs from the ri/ro = 0.35 used for MagIC and could explain
the discrepancy.

6.6.2.2 Fast inertial modes

An analysis of the MagIC results shows that equatorial symmetry is broken at Ro = −0.35,
but the equatorial antisymmetric energy remains too low to identify the underlying mode.
At around Ro = −0.4, the total kinetic energy starts to show minor oscillations which can
be attributed to nonlinear interactions between different modes. This shows as a distinct
regime in the spectrograms. At Ro = −0.55, the kinetic energy becomes chaotic due to
the onset of a ‘fast’ inertial mode - identified as the (5, 2) mode.
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6 Triadic resonances in the wide-gap spherical Couette system

Figure 6.9: Spectrograms at (a) E = 1.52 × 10−5, obtained from experiments at BTU-CS
and at E = 10−5 ((b) and (c)) obtained using MagIC and XSHELLS, respectively. The
similarity in the different observed regimes can be clearly seen. All the major modes
identified in the simulations have been marked in (b). EA = Equatorially antisymmetric,
SI = Stewartson layer Instability, Osc = Oscillatory regime.
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6.6 Results from simulations

Figure 6.10: Critical values for onset of first non-axisymmetric instability at different
Ekman numbers. (a) shows the critical wavenumber m. (b) shows the critical differential
rotation. Red circles in (b) mark the onset of the fundamental m = 1 mode seen as a
secondary instability at low Ekman numbers. A straight line approximation shows that
the 3-metre experiment was always supercritical to the m = 1 onset.

Figure 6.11: The m = 1 fundamental mode at (a) E = 10−4, (b) E = 10−5 and (c)
E = 3× 10−6. At E = 10−4, the mode is the first non-axisymmetric instability to set in. At
lower Ekman numbers, it comes in as a secondary instability.
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Figure 6.12: (Colour online) Comparison of flow structures between simulation (top row),
analytical prediction for a full sphere (middle row) based on Zhang et al. (2001) and
spherical shell eigenmode computed using SINGE (bottom row) for the (5,2) mode at
E = 10−5, Ro = −0.6. Shown here are isosurfaces of non-axisymmetric cylindrically
radial velocity (us). Red is positive (outward) while blue is negative (inward). The inner
sphere has been shown for the full sphere mode for comparison. Note that no filtering
has been performed on the solution. The whole solution is dominated by this mode at this
parameters. The similarities are self-evident.

A comparison with the analytical structure shown in figure 6.12 as well as an agree-
ment in frequency confirms the identification of this mode. We further compare the
MagIC simulations with the experimental PIV measurements from BTU-CS in figure
6.13. Note that the field of view in the experiment only covers a section of the planar
circle (see figure 2(b) in Hoff et al. (2016a) ). Hence, the velocity field had to be recon-
structed for a full circular geometry.

An analysis of the MagIC results shows that a (4, 3) inertial mode sets in together with
the dominant (5, 2) mode. A third mode present at the same time has been identified as an
m = 1 mode with a frequency close to that of the (6, 1) ‘fast’ inertial mode. However, its
structure seems too complex and distorted to verify this identification.

At Ro = −0.8, the ‘fast’ inertial modes disappear, the equatorially antisymmetric
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6.6 Results from simulations

Figure 6.13: Comparison of z-slices of velocity magnitudes from experiments and simu-
lations. The experimental data have been taken at z/ro = 1/3, while the simulation data
has been shown at z/ro = 0.35. The structures look very similar for both modes - (5, 2)
and (3, 2). For the (5, 2) mode the data have been taken at Ro = −0.68 for the experiment
and at Ro = −0.7 for the simulation. For the (3, 2) mode, the corresponding numbers are
Ro = −1.11 and Ro = −1.1, respectively. Colours represent velocity magnitudes - hor-
izontal velocity for experiments and total velocity for simulations. The arrows indicate
local flow speed and direction.

kinetic energy decreases significantly and the fundamental m = 1 Stewartson instability
becomes the dominant large-scale structure in the solution again.

At Ro = −0.85, we see the emergence of ‘fast’ EA inertial modes yet again. The (3, 2)
mode, which has already been identified at E = 10−4 is the dominant mode. Figure 6.13
shows the clear similarities of the structure from the numerical simulations and the PIV
measurements obtained in the experiments at BTU C-S.

The other sub-dominant modes identified in this regime are the (10, 3) and (4, 1)
modes, pairs of which also form triadic resonances with the m = 1 mode, explained
in more detail in section 6.8. The (4, 1) mode has a structure which could resemble a
twisted (4, 1) as well as a distorted (6, 1) mode (figure 6.14). Since its frequency matches
well with that of the spherical shell eigenvalue of the (4, 1) mode, we classify it as such.
The m = 3 modes seen at this Ekman number have been compared to their spherical shell
eigenmodes in figure 6.15.

These modes remain dominant till the point the simulations were run, Ro = −1.4
for MagIC and Ro = −1.17 for XSHELLS, whereby computational demands made it
increasingly difficult to increase differential rotation magnitudes. Hoff et al. (2016b) finds
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6 Triadic resonances in the wide-gap spherical Couette system

Figure 6.14: Comparison of structure of m = 1 EA mode at Ro = −1. The structure
of the solution could be said to match a twisted (4, 1) mode or a distorted (6, 1) mode.
Since its frequency matches well with that of the theoretical value for the (4, 1) mode,
we classify it as such. Shown here are isosurfaces of cylindrically radial velocity. Red
(online) represents outwards while blue represents inwards.

the transition to turbulence in this regime to be at Ro = −1.73 at E = 1.52 × 10−5.

6.7 Effect of background flow on inertial modes

Table 6.1 and 6.2 show that the frequencies of the inertial modes in the simulations as
well as in the experiments (BTU C-S, 3 metre, 60 cm) match the theoretical predictions
very closely, while for other cases, like for the (4, 3) mode, the difference can be as large
as 40%. The structures of the modes found in simulations and experiments are mostly
distorted close to or inside the tangent cylinder. The comparison of eigenvalues for a
spherical shell and a full sphere in tables 6.1 and 6.2 show that the presence of an inner
sphere has a relatively small effect, at most 5% seen for the (6, 1) mode. The presence of
a background shear flow has, obviously, a much larger impact.

To explore this, we artificially excite inertial waves at different Ro and analyse how
their resonance frequency changes. Following Rieutord et al. (2012), the excitation is an
artificially imposed boundary forcing of the form
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6.7 Effect of background flow on inertial modes

Figure 6.15: Comparison of structure of the m = 3 EA modes at Ro = −0.6,−1. The
modeshave frequencies ω/Ω = 0.585 and 0.806 can be identified as the (4, 3) and (10, 3)
modes, respectively. The solutions closely match the respective eigenmodes of the spher-
ical shell in terms of frequencies as well as structures. Shown here are contour maps of
pressure at the outer boundary on a Hammer projection.
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where u(θ, φ) is the velocity on a fixed spherical surface, and ê represent unit vectors
in θ and φ directions.

Figure 6.16 shows the resonances at eight different Ro for an m = 2 excitation which
efficiently excites the (3, 2) mode. Figure 6.17 shows how the resonance frequency de-
pends on Ro. For no differential rotation, we recover the spherical shell eigenvalue. Low-
ering Ro, the frequency of 0.73 found for the onset of the (3, 2) mode at Ro = −1.33 is
gradually approached. The onset of the kinetic energy oscillations at Ro = −1.25 pre-
vented us from going closer to the onset value of the inertial mode.

Figure 6.18 shows the effect of background flow on the (3, 2) inertial mode. Until
Ro = −1.2, the mode is artificially excited while the other panels illustrate the mode being
naturally excited in the system. However, with increase in differential rotation, the mode
starts to gets distorted at around Ro = −0.5 - the part inside the tangent cylinder getting
slowly twisted. This is due to the vastly different nature of the background flow inside
and outside the tangent cylinder, shown in figure 6.19. As approximated by Proudman
(Proudman 1956), the bulk of the flow outside the tangent cylinder is in solid body rotation
with the outer boundary and thus has a weaker effect on the inertial mode as compared to
the flow inside.

Internal shear layers are a characteristic feature of inertial modes in a spherical shell
because of the ill-posed nature of the problem (e.g. Stewartson and Rickard 1969). They
emanate from critical latitudes for which cos θ = ω/2Ω, travel along the characteristics
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Figure 6.16: (Colour online) Influence of background rotation on inertial mode frequency
for mode (3, 2) in Greenspan notation, at E = 10−4. For very small differential rotation,
we recover the analytical prediction for a full sphere. Increase of Ro to more negative
values changes the normal mode frequency and shifts it towards the value we observe
in simulations. The onset of inertial modes for simulations at this Ekman number is at
Ro = −1.3.
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Figure 6.17: Change in normal mode frequency vs Ro for the (3, 2) mode at E = 10−4.
The frequency changes from the analytical value for full sphere to the one found in our
simulations.
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Figure 6.18: Change in the structure of (3, 2) mode. The labels indicate |Ro|. One can see
that the mode keeps getting twisted inside the tangent cylinder and breaks down after a
certain point. The top panel shows the mode structures that have been excited artificially,
while the bottom panel shows the mode that onsets naturally. Shown here are isosurfaces
of cylindrically radial velocity us.

Figure 6.19: A typical axisymmetric flow solution. It shows axisymmetric z-averaged
zonal flow at E = 10−4 and 10−5. The general form of the solution is independent of Ro.
The position of the tangent cylinder coincides with the solid vertical line.
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Figure 6.20: The figure shows meridional slices of zonal velocity uφ of the filtered (3, 2)
mode as Ro changes. The internal shear layers seen initially seem to get aligned more and
more with the rotation axis as the frequency of the mode increases.

of the inertial wave equation and always maintain the same angle of cos−1(ω/2Ω) with
respect to the rotation axis. Since they are so thin, they have only been detected once in
experiments (Triana 2011) and only for the ‘spin-over’ mode, which is not present in our
system.

To illustrate how the shear layers change with differential rotation, we filter out the
(3, 2) mode and compare meridional sections of zonal velocity uφ in figure 6.20. With
no differential rotation, the internal shear layers mode are perfectly emanating as straight
rays from the expected critical latitudes at the critical angle. However, as one increases the
differential rotation, the shear layers seem to get aligned more and more with the rotation
axis.

6.8 Triadic interactions

6.8.1 Theoretical background

The phenomenon of triadic resonance inevitably appears in any physical problem involv-
ing non-linear wave interactions. Coupled harmonic oscillators, photon decay and waves
in plasma (see e.g Bellan 2008) are just a few examples. In a geophysical context, they
have been studied in the context of internal waves in oceans (McComas and Bretherton
1977) and resonant interactions of Rossby waves (Pedlosky 1987) and their instability
(Zhang and Pedlosky 2007). Triadic resonances are also observed when a flow becomes
unstable to inertial modes as explained in chapter 2. We first present the basic idea and
then elaborate how it can apply to the present scenario.

The non-linear interaction between two waves would obey a general form like

ei(k1·x±ω1t)ei(k2·x±ω2t) = ei((k1+k2)·x±(ω1+ω2)t) (6.5)

where k andω represent wavevector and angular frequency, respectively. If the system
has a normal mode (k3, ω3) such that
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k3 = k1 ± k2, ω3 = ω1 ± ω2 (6.6)

it can get resonantly excited due to the non-linear interactions of the waves with sub-
scripts 1 and 2.

Consider two inertial modes Q1 and Q2, with azimuthal and time dependences ei(m1φ−ω1t)

and ei(m2φ−ω2t), respectively and the velocity and pressure perturbations u and p due to their
nonlinear interaction, denoted by u. u follows

∂u
∂t

+ 2 ẑ × u + ∇p +
(
Q1 · ∇Q2 + Q2 · ∇Q1

)
ei((m1±m2)φ−(ω1±ω2)t) = 0 (6.7)

Expanding u and p in terms of inertial modes Q j and Φ j, respectively,

u =
∑

j

c jQ je
i(m jφ−ω jt), p =

∑
j

c jΦ jei(m jφ−ω jt) (6.8)

where, c j ≡ c j(t), we get

∑
j

[
Q j

∂c j

∂t + c j(−iω jQ j + ∇Φ j + 2 ẑ × Q j)
]

ei(m jφ−ω jt)

= −
(
Q1 · ∇Q2 + Q2 · ∇Q1

)
ei((m1±m2)φ−(ω1±ω2)t)

(6.9)
By definition, −iω jQ j + ∇Φ j + 2 ẑ × Q j = 0, for any inertial mode Q j. Thus, we get

∑
j

Q j
∂c j

∂t
ei(m jφ−ω jt) = −

(
Q1 · ∇Q2 + Q2 · ∇Q1

)
ei((m1±m2)φ−(ω1±ω2)t) (6.10)

Let us project the perturbation u onto an inertial mode Qk. Since inertial modes are
orthogonal, we multiply both sides by Q†k and integrate over the whole volume of the
container. We get

∂ck

∂t
= −e−i(ω1±ω2−ωk)t

∫
φ

ei(m1±m2−mk)φdφ
∫

Q†k ·
(
Q1 · ∇Q2 + Q2 · ∇Q1

)
dτ (6.11)

where τ represents a φ-slice.
Equation (6.11) defines different “selection” rules for the inertial mode Qk that could

potentially be resonantly excited by the nonlinear interaction:

1. The wavenumbers have to match

mk = m1 ± m2 (6.12)

for the integral over φ to be non-zero.

2. The frequencies have to fulfil ω1 ± ω2 − ωk = 0 for there to be a resonance.
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Figure 6.21: Triadic resonances at E = 10−4. ωdi f f refers to the lines of various differ-
ences: ω(3,2) − ω(4,1) − ωm1, ω(10,3) − ω(3,2) − ωm1 and ω(4,1) − ω(5,0) − ωm1. ωdi f f is close to
zero at all times.

3. The integral over τ provides additional selection rules. An obvious one concerns the
equatorial symmetry. The product of two vector fields of opposite equatorial sym-
metry vanishes when integrated over volume. Thus, the integral over τ is non-zero
only when Q†k has the same equatorial symmetry as the nonlinear term involving
Q1 and Q2. If Q1 and Q2 have opposite equatorial symmetries, then Qk has to be
equatorially antisymmetric. If both of them possess the same equatorial symmetry,
Qk has to be equatorially symmetric.

4. The τ integral may also define additional constraints for the radial and latitudinal
structure that are not explored here.

6.8.2 Triadic resonances in the inertial mode regime

All the identified ‘fast’ inertial modes form pairwise triadic resonances with the funda-
mental m = 1 Stewartson layer instability. For example, at E = 10−4, we identify the
pairs [(3, 2), (4, 1)], [(10, 3), (3, 2)] and [(4, 1), (5, 0)]. The triads obviously fulfil the wave
number criteria and figure 6.21 confirms that their frequencies indeed add up to nearly
zero. As for spherical harmonics, inertial modes are equatorially symmetric (antisymmet-
ric) when the difference l − m is even (odd). The equatorially symmetry criterion is thus
also fulfilled.

Figure 6.22 shows the 3D structure of the nonlinear advective acceleration of the triad
[(3, 2), (4, 1)] and the fundamental m = 1 mode in the left column. This is compared with
the effective acceleration of the mode with the respective wavenumber, frequency, and
equatorial symmetry on the right. While the driving has a richer radial and latitudinal
structure, only the simpler modes are resonantly driven.

To check that the triads also preserve a consistent phase locking, we compute the
bicoherence, defined as
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6.8 Triadic interactions

Figure 6.22: (Colour online) Comparison of the 3D structure of the advective acceleration
due to the nonlinear interaction of two modes on the left with the structure of the effective
acceleration of the third mode of the triad on the right, at E = 10−4 and Ro = −2. Shown
here are isosurfaces of cylindrically radial (s) components. Red denotes outward (posi-
tive), while blue denotes inward (negative). Subscripts 32, 41 and m1 denote the (3, 2),
(4, 1) and the m = 1 fundamental instability, respectively.
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Figure 6.23: Bicoherence of uφ time series taken at r = 0.7ro, computed for E = 10−4 and
Ro = −2. All frequencies are non-dimensionalised by Ω. Compare with figure 6 from
Hoff et al. (2016b).

B(ω1, ω2) =
|
∑

n Fn(ω1)Fn(ω2)F∗n(ω1 + ω2)|2

|Fn(ω1)Fn(ω2)|2|Fn(ω1 + ω2)|2
(6.13)

where F(ω) represents the Fourier transform of a signal at frequency ω and ∗ denotes
a complex conjugate. This is a statistical measure of the quadratic phase coupling (Nikias
and Raghuveer 1987) determined by splitting a signal into several parts, computing the
‘bispectrum’ (one of the terms in the numerator) of individual parts and eventually sum-
ming them up. Wave interactions that preserve the same phase relation over the different
parts of the time series result in a particularly strong B(ω1, ω2). The HOSA Toolbox for
MATLAB (Swami et al. 1998) is used for this purpose.

We compute the bicoherence for a time series of zonal velocity, uφ, that we split into
16 segments overlapping by 50%. For each segment, 4096 points are used for the Fast
Fourier Transform. B(ω1, ω2) attains a high value for all identified triadic resonances, as
shown in figure 6.23. For example, take the peak of (ω1, ω2) = (0.61, 0.11) representing
the coupling for the (4, 1) mode and m = 1 SI mode seen in this regime. B(0.61, 0.11)
has a very high value as these modes are phase coupled to the (3, 2) mode, having a
frequency of 0.61 + 0.11 = 0.72. The couplings with higher frequencies denote triadic
resonances between pairs of higher harmonics of the (3, 2), (4, 1) and (10, 3) modes and
the higher harmonics of the m = 1 fundamental mode. Strong self-interactions along the
main diagonal can also be seen, especially for the dominant (3, 2) mode.

The major modes forming triadic resonances at E = 10−5 and the degree to which they
satisfy the frequency criteria are shown in figure 6.24. The pairs forming triads with the
fundamental instability are [(5, 2),m1EA], [(4, 3), (5, 2)]), [(3, 2), (6, 1)] and [(10, 3), (3, 2)],
where m1EA refers to the m = 1 EA inertial mode which could not be clearly identified.
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Figure 6.24: Triadic resonances at E = 10−5. ωdi f f refers to the lines of various frequency
differences which form triadic resonances. ωdi f f is close to zero at all times.

These triads have also been found in experiments at BTU C-S (Hoff et al. 2016b,a).

6.9 Onset of inertial modes
Since pairs of the ‘fast’ inertial EA modes form triadic resonances with the m = 1 funda-
mental instability, there are two possibilities:

i. The EA modes are secondary instabilities of the equatorially symmetric (ES) modes
- the m = 1 SI and its higher harmonics. This mechanism would be similar that
of the shear and elliptical instabilities of precessing flow (Kerswell 1993), where a
background flow becomes unstable to two inertial modes and the three form a triadic
resonance. For the present system this would mean that the pairs of EA modes are to
be interpreted as an instability of the SI and could only appear together and always at
the same time.

ii. The EA modes are instabilities of the background flow. If the background flow (m =

0) becomes unstable, it would give rise to not two, but a single EA mode which would
then dominate the solution.

To determine whether the fundamental m = 1 instability is essential for the appearance
of fast inertial modes, we suppress its onset by restricting the symmetry in numerical
simulations. We choose the onset of the EA modes at E = 10−4 as a test case since it
is computationally less demanding. We initiate our simulations from an axisymmetric
state and add an initial random noise perturbation to all spherical harmonic coefficients.
Thereafter, we allow only all axisymmetric m = 0 modes and all EA modes to grow.

We find that at Ro = −0.7 all EA modes decay away as seen from the negative growth
rates γ in panel (a) of figure 6.25. At Ro = −0.8, we find the onset of the first EA mode,
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Figure 6.25: (a) Growth rates γ and (b) saturation energies (Emax) of EA modes at different
Ro. Horizontal line in (a) marks zero growth rate.

which is the (4, 3) mode, not observed in the full system at E = 10−4. Till Ro = −1.1,
this is the only instability in the system. However, at Ro = −1.2, the (3, 2) mode has
a positive growth rate, grows to a higher saturation value than the existing (4, 3) mode
and remains as the dominant mode thereafter as can be seen in panel (b) of figure 6.25.
Finally, at Ro = −1.33, where the onset of EA modes takes place for the full system, we
find the emergence of an m = 1 EA mode, which could not be identified owing to its
twisted structure. In the absence of any equatorially symmetric mode, there are no triads
in the system.

The above observations show that the fast inertial modes are secondary instabilities
of the background flow and even though the equatorially symmetric instabilities of the
system are not essential to their onset, they play a key role in selecting the modes that are
allowed to emerge while shifting the critical value of Ro by a small amount. The resonant
triads are not a prerequisite for the appearance of the EA modes but a consequence of the
fact that the m = 1 SI mode is already present when these modes set in.

6.10 Conclusion

The experiment at BTU C-S allowed exploring the spherical Couette system in a param-
eter regime also accessible to numerical simulations. We have used the two codes MagIC
and XSHELLS for a detailed study at Ekman numbers E = 10−4 and E = 10−5 and a close
comparison to the experiment for the latter parameter.

All the principle regimes and modes discovered in the experiment are recovered by the
numerics. The complete access to the full solution in the simulations not only confirmed
the sometimes challenging mode identifications in the laboratory but also revealed addi-
tional instabilities. At both Ekman numbers a fundamental Stewartson layer instability
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(SI) with wave number m = 1 is the first non-axisymmetric instability. This is followed
by a regime consisting of ‘fast’ equatorially antisymmetric (EA) inertial modes. We find
the initial dominant mode to be a more complex (5, 2) mode at E = 10−5 as compared to
the (3, 2) mode at E = 10−4, most likely due to a smaller viscous dissipation at a lower
Ekman number. They are modified by the presence of the background flow and therefore
differ from the respective eigenmodes of a rotating spherical shell. However, the modifi-
cations are small enough to still allow a clear identification in most cases. By artificially
exciting the inertial mode (3, 2) at different differential rotation rates we could trace how
its frequency increases from a perfect match with the eigenmode prediction at Ro = 0 to
close to the value found for the full simulations at Ro = −1.33. Not surprisingly, their
shape is mostly affected at the Stewartson layer and inside the tangent cylinder where the
shear exerted by the background flow is strongest.

A striking feature of the EA modes is that they always come in pairs that form res-
onant triads with the SI. Triads are found for many wave phenomena and require that
the non-linear interaction between two modes matches the wave number, frequency and
equatorial symmetry of a third mode. It seems surprising that such resonances exist but
the dense spectrum of inertial modes may see to that, or at least significantly increase the
likelihood for triads to occur. More exploration is certainly required to clarify this point.
Modifications due to the background flow and the SI could also play a role.

To explore whether the triads with the SI are essential for facilitating the onset for the
EA modes we conducted numerical experiments where the SI was suppressed. Since fast
inertial modes were still excited and could exist as the only non-axisymmetric instability
in the system we conclude that the triads are mostly a consequence of an EA mode onset
and not a condition. Once, for example, the (3, 2) mode has set in, the triadic resonance
with the m = 1 SI immediately feeds energy into the (4, 1) mode. The existence of
the triads certainly changes the system behaviour in the sense that the EA mode onset is
shifted and that other EA modes set in than preferred for a pure axisymmetric background
flow.

The resonance more easily allows the system to drain energy from the imposed dif-
ferential rotation. The system therefore seem to prefer the resonances and manages to
maintain them over a larger range of differential rotation. However, at E = 10−5 we find
a cessation of triads at intermediate differential rotation rates. The background flow and
nonlinear interaction may have modified the modes so such that the resonance becomes
infeasible. However, at a larger |Ro| value another triad with the fundamental SI becomes
possible and the respective new EA modes set in. A succession of several EA modes has
been reported for the 3-metre experiment (Triana 2011), when Ro is decreased to more
negative values. We speculate that this has a similar origin, though the triadic pairs have
not been clearly identified for this experiment. For a very low Rossby number, however,
the (4, 1) mode clearly dominates the flow without any other strong mode being present.
This shows that triads are not required to support EA modes but are preferred under cer-
tain conditions.

Finally, we note that the critical magnitude of differential rotation needed to excite the
m = 1 SI or the EA modes seem to decrease with Ekman number. Further investigations
at lower Ekman numbers are therefore necessary to understand the scaling of these regime
boundaries. A scaling of E1/5 for the transition to the turbulent regime has already been
found in the experiments by Hoff et al. (2016b). Such scaling laws would also allow
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further insight into the experiments of Triana (2011) as well as into the hydrodynamics
of astrophysical objects which are at parameter regimes beyond the reach of numerical
investigations.
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7 The turbulent regime

“Big whorls have little whorls
Which feed on their velocity,
And little whorls have lesser whorls
And so on to viscosity.”

Lewis Fry Richardson

7.1 Introduction
The turbulent regime of the spherical Couette system for Ro < 0 was mentioned in chap-
ter 6. However, we feel the results in this regime deserve a separate chapter. This chapter
compares results from simulations with observations of two experiments - those of Hoff

et al. (2016b) at BTU-CS, Germany and of Triana (2011) in Maryland, USA. The turbu-
lent regime raises two fundamental and difficult to answer questions - (i) how to explain
the features observed in the turbulent regime? and (ii) what is the mechanism by which
the flow transitions to turbulence?

In what follows, we shall attempt to answer these questions using insights from our
numerical simulations. A brief theoretical background to rotational turbulence is pro-
vided, dealing with only the most relevant topics.

7.2 Theoretical background
Turbulent flows are ubiquitous in nature, examples ranging from a jet emerging from a
fire hose to the solar wind. The extreme sensitivity of the Navier-Stokes equation to initial
conditions and the high degree of coupling of various spatio-temporal scales in turbulent
flows, make it impossible to describe them analytically. Direct numerical simulations
provide a good description till certain length scales but the available computing power
limits the spatial resolution. In the absence of exact solutions to the equations of motion
and computational limitations, one turns towards statistical measures of flow properties
over ensemble averages, in volume or time.

The most well-known breakthrough in turbulence theory is that due to Kolmogorov
(1941a,b) and Obukhov (1941) who described the energy spectrum in a homogeneous
(independent of position), isotropic (independent of direction) turbulent flow to be

E(k) = αε2/3k−5/3 (7.1)
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Figure 7.1: The basic idea of turbulence. There are three distinct scales - (i) the driving
range k f where energy is injected into the system, (ii) the inertial range where this energy
then cascades down to smaller scales in the inertial range, without any dissipation, and
finally (iii) the dissipation range where the energy is dissipated away by small scales, near
kη. x-axis represents wavenumber k while the y-axis shows kinetic energy. Based upon a
figure by Frank Jenko.

where, α is a constant, ε is the rate of viscous dissipation and k is the wavenumber and
E(k) is the energy content in wavenumber k. The range of velocity scales over which
this is valid is called the inertial range. The very basic statistical idea of turbulence
can be summarised as follows: there are three distinct scales defined by whether energy
production, transfer or dissipation takes place on a certain scale. The first of these, called
the drive range are the scales, typically large, at which the system is driven and energy
is pumped in to the system. The second range is the inertial range where transfer of
energy takes place from the drive range to smaller scales via an energy cascade, called the
‘Richardson cascade’ after Lewis Fry Richardson. This cascade is assumed to be local
in nature and takes place without any dissipation. Locality of interactions implies that
flow at a certain length scale only interacts with flows of the same or nearby length scales.
The interaction takes places between flows with wavevectors that form a triadic resonance
k1 + k2 + k3 = 0 (Tennekes and Lumley 1972, Waleffe 1992). The final range of scales
is the dissipation range where this energy is dissipated in small scales. This is illustrated
schematically in figure 7.1.

2D and rotational turbulence

Kraichnan (1967) derived the spectrum for 2D turbulence, where the length scales along a
certain axis (k‖) are very different from those perpendicular (k⊥) to it and the flow becomes
independent of one axis (note that this is much like the Taylor-Proudman theorem, dis-
cussed in section 2.1.2). Leith (1968) and Batchelor (1969) further developed this work.
The main result of ‘KBL theory’ is that there are two cascades for 2D turbulence - an
‘inverse’ energy cascade where energy goes from the driving scale to larger scales with
k−5/3 scaling and a ‘forward’ cascade of enstrophy (mean-squared vorticity, an invariant
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for 2D incompressible flows) with a scaling of k−3.
Waleffe (1992) projected a fluid velocity field onto a set of inertial waves and stud-

ied their nonlocal interactions meaning that a certain scale of motion need not necessarily
interact with only scales close to it as was previously assumed for the inertial range of mo-
tions. Waleffe (1993) showed that under rapid rotation such nonlocal triadic interactions
between different modes of decomposition made the flow tend towards a two dimensional
state. Chen et al. (2005) considered Fourier modes of a periodic box and showed nu-
merically that there is a subclass of ‘slow’ modes which are aligned with the rotation
axis and decouple from the rest of the ‘fast’ modes, having independent dynamics of their
own. They provided proof of a ‘dynamic Taylor-Proudman’ theorem which shows that the
resonant interactions of three ‘slow’ modes yields a 2D, three component Navier-Stokes
equation. Other experimental (e.g. Baroud et al. 2003, Yarom et al. 2013) and numerical
(e.g. Sen et al. 2012) studies also concur that rotational turbulence can be described by
invoking the formalism of 2D turbulence.

Note that rotational turbulence only occurs when Re >> 1 and Rou < 1, where Re and
Rou are the Reynolds and flow Rossby numbers defined as

Re =
UL
ν

and Rou =
U
ΩL

. (7.2)

The first one describes the importance of inertial advection with respect to viscous dis-
sipation while the second describes the importance of inertia to the Coriolis force. Re is
named after Reynolds (1883) who popularised the idea of Stokes (1851) that it is the crit-
ical parameter that determines when a flow transitions from being laminar to turbulent.
Rou, named after Carl-Gustaf Rossby, tells us how much a flow is influenced by rota-
tion. Thus, ‘rotational turbulence’ takes place when the flow is turbulent but still strongly
influenced by rotation.

Wave turbulence

According to Nazarenko (2011), wave turbulence is defined as “out-of-equilibrium statis-
tical mechanics of random nonlinear waves”. This provides an alternative formalism of
turbulence in the form of weakly nonlinear wave interactions which is valid for cases
where equations of motion can be linearised. In a rotating system, these take place
through inertial waves. Smith and Waleffe (1999) used the wave turbulence formalism
for a rapidly rotating system in terms of triadic resonant interaction of inertial waves to
obtain the Smith-Waleffe spectrum

E(k) ∼ Ω2k−3 (7.3)

for an inverse energy cascade for k < k f . They conclude that there is an inverse cascade
to large scales which are aligned with the rotation axis resulting in the flow becoming
quasi-2D. However, inertial waves have an anisotropic dispersion relation, ω = 2Ωk‖/k⊥.
Galtier (2003) looked at weak wave turbulence in terms of inertial waves and found that
the anisotropic spectrum follows

E(k) ∼ k−5/2
⊥ k−1/2

‖
(7.4)
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and that the energy cascade is towards smaller scales. Here, ‖ and⊥ are with respect to the
rotation axis. Rhines (1975) looked at turbulence in terms of interacting Rossby waves for
geophysical application and found a scaling of k−5. Davidson et al. (2006) and Staplehurst
et al. (2008) postulated theoretically and showed experimentally how a blob of vorticity
would radiate inertial waves in all directions, but with the energy content being highest
on the rotation axis. This would lead to the creation of columnar eddies and tend to make
the flow two dimensional.

Both formalisms of 2D as well as wave turbulence provide a good description of
rotational turbulence. Duran-Matute et al. (2013) performed experimental and theoretical
studies of the importance of inertial waves in energy cascades and found a cut-off at 2Ω

in the temporal spectrum of the flow velocity beyond which there was a decay in the
energy indicating that energy transfers occur due to inertial wave interactions. Yarom
and Sharon (2014) performed experimental studies describing rotational turbulence and
concluded that the whole 3D flow field can be well described by 3D wave turbulence due
to inertial waves, and that a quasi-2D formalism might not be needed.

The body of work in rotating turbulence is large and a more detailed review is beyond
the scope of this work. For a more detailed introduction to the theory of turbulence, we
refer to classical books such as Tennekes and Lumley (1972), Frisch (1995), Pope (2000),
Nazarenko (2011) and Davidson (2013).

7.3 Turbulent regime of spherical Couette flow
As explained in chapter 6, three distinct regimes of the spherical Couette flow have been
observed in experiments by Hoff et al. (2016b) at BTU C-S. Two of these, namely, the
fundamental instability and inertial mode regime were discussed in section 6.6. Here,
we focus on the third turbulent regime. Hoff et al. (2016b) found that at a fixed Ekman
number E, as the Rossby number, Ro = ∆Ω/Ω is increased to higher magnitudes, at a
certain critical value, the velocity spectrum becomes very broadband, with inertial mode
peaks still visible, but with a high energy background. This is accompanied by a jump in
the mode frequency of the dominant inertial modes, while still maintaining their triadic
resonance with the fundamental m = 1 Stewartson instability (SI). The critical Ro for
transition depends on the Ekman number and a scaling law of Roc ∝ E1/5 was suggested
by Hoff et al. (2016b). However, the experiments did not go very deep into the turbulent
regime. In our simulations at E = 10−4, a similar transition is observed at Ro = −2.3.
Below we compare several observations from the numerical simulations in this regime
with those of the experiment.

7.3.1 Temporal spectrum

Figure 7.2 shows the temporal spectrum in the turbulent regime from three different
sources and different parameter regimes - (a) from MagIC simulations at E = 10−4, (b) at
E = 1.52×10−5 from the experiments by Hoff et al. (2016b) at BTU C-S and (c) the three
metre experiment at Maryland, USA, whose Ekman numbers are extremely low (6 10−7)
and not achievable through present day computational resources. Despite spanning 4
decades in Ekman number, all the spectra have three common features - (i) they are all
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Figure 7.2: Temporal spectra in the turbulent regime for (a) MagIC simulation, (b) ex-
periment by Hoff et al. (2016b) and (c) 3-metre experiment. The x-axis shows angular
frequency in terms of the outer boundary rotation rate. The y-axis shows the power S (ω)
in a frequency ω/Ω. All of them show a ‘knee’ at ω/Ω = 2. Data for figure (b) provided
by Michael Hoff. Figure (c) taken from Triana (2011).

broadband with a high energy content over a large span of frequencies, (ii) they all retain
a peak representing a dominant inertial mode and most importantly, (iii) they have a clear
‘knee’ at ω/Ω = 2. This points towards a common nature of turbulence in the spherical
Couette system that is independent of the Ekman number. The sharp knee at ω/Ω = 2
is a clear indication of turbulence via inertial wave triad interactions (Duran-Matute et al.
2013, Clark di Leoni et al. 2015).

Triana (2011) noted a decay in energy of the form ω−3 beyond the 2Ω knee, which has
an exponent similar to that of the Smith-Waleffe spectrum (Smith and Waleffe 1999) and
of an enstrophy cascade in KBL theory and might be indicative of a strong influence of
rotation on the flow. However, the regime where this is observed, there is a strong spectral
peak of the (4, 1) inertial mode, whose presence makes the flow far from two dimensional,
making both theories inapplicable. The simulations of MagIC show a decay which falls
as ω−5 whose exponent looks similar to the β-plane scaling of k−5 due to Rhines (1975),
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Figure 7.3: Temporal spectra in different regimes for MagIC simulations at E = 10−4 and
E = 10−5 in panel (a), (b) and (c) and from BTU C-S at E = 1.52 × 10−5 in panel (d).
Axes similar to figure 7.2. Experimental data provided by Michael Hoff.

where the Coriolis force is parametrised as a linear function of latitude with a slope of β.
This may not be directly applicable to the spherical Couette system, certainly not to one
with a wide-gap such as ours as the β-plane approximation only works for shallow fluids.
Comparing exponents in temporal and spatial spectra is of course questionable, especially
since Taylor’s hypothesis (Taylor 1938) of eddies getting ‘sweeped’ by background flow
(giving ω = Urmsk) is only valid when the perturbation to the background flow is very
small. A more detailed analysis in this regard is thus certainly required.

A knee at 2Ω is visible in the inertial mode regime before the transition to turbulence
as well. Figure 7.3 shows the temporal spectra in different regimes for simulations as well
as experimental data. At E = 10−4, no such knee can be seen for Ro = −1.1 where the
onset of inertial modes has not yet taken place, as seen in panel (a). At Ro = −1.4 which,
close to the critical onset value at Ro = −1.33 for equatorially antisymmetric (EA) inertial
modes to set in, one can see a knee already starting to develop. The decay is steeper but
short-lived in ω and levels off beyond ω/Ω ≈ 4, unlike that in the turbulent regime for
Ro = −2.7 where the decay is sustained through the whole frequency range. The noisy
background around the peak of the dominant (3, 2) mode ends up in a higher energy state
after the transition to the turbulent regime. In panels (b) and (c), one can see a clear ‘knee’

126



7.3 Turbulent regime of spherical Couette flow

100 101 102

m

10−29

10−21

10−13

10−5

103

E
k
in

m−5/3

(a)

100 101 102

l

10−3

100

103

106

E
k
in

l−5/3

(b)

Figure 7.4: Spatial spectra in l and m for −3.5 < Ro < −1 at E = 10−4. The solid green
lines represent the classic Kolmogorov (−5/3) scaling. Darker colours show higher values
of |Ro|. The lines for Ro = −1.5 and Ro = −2.3 have been plotted in black.

at 2Ω in the regimes where inertial modes are visible. In panel (d), the experimental data
from BTU C-S shows a similar behaviour - presence of a ‘knee’ in both inertial mode and
turbulent regimes - the one for the turbulent regime being more pronounced.

7.3.2 Spatial spectra
Though it is easy to get temporal spectra in experiments, obtaining information about
the spatial spectra can be more tricky, especially in a spherical shell. In pseudo-spectral
simulations this is fairly straightforward as one has access to the spectral coefficients. For
a spherical harmonic decomposition, one would usually look at spatial spectra in terms of
spherical harmonic degree l or order m.

Figure 7.4 shows the spatial spectra at different values of Ro at E = 10−4 and compares
it with the classical Kolmogorov (−5/3) scaling. Two prominent jumps can be observed
in the spectra in m which have been marked with black lines in panel. One is at Ro =

−2.3 where the transition to temporal broadband turbulence is observed. In the spatial
spectrum, this is associated with a jump to a more Kolmogorov like scaling. Beyond
Ro = −2.3, the spectrum can be seen to be getting closer and closer to the (−5/3) scaling,
showing a progressive transition towards homogeneous and isotropic turbulence. The
other jump in the form of the spatial spectrum occurs at Ro = −1.5. The spectral power
between Ro = −1.5 and Ro = −2.2 can be scaled roughly as m−5/2 or l−5/2, as shown in
figures 7.5a and 7.5b, which is reminiscent of the Galtier spectrum (equation 7.4) showing
that this regime can be described in terms of weak inertial wave turbulence. This is also
the case for the inertial mode regime at E = 10−5, as shown in figures 7.5c and 7.5d, where
a jump at Ro ≈ −0.5 is seen when the transition to inertial mode regime occurs. Due to
numerical difficulties of resolving small spatial scales, we could not proceed towards the
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Figure 7.5: (a) and (b) show spatial spectra in the inertial mode regime for E = 10−4 while
(c) and (d) show spectra in all regimes at E = 10−5. Straight lines at the top show a (−5/2)
scaling. Black lines in (c) and (d) show where a change in spectral behaviour is expected.

region of broadband temporal spectrum.

As shown in figure 7.6a, Ro = −1.5 is the point where the (3, 2) inertial mode becomes
the dominant mode of the system. After the transition to the isotropic turbulent regime, the
energy in the dominant (3, 2) mode seems to suddenly drop by a large amount, showing a
sudden transition to a regime where rotation plays a less important role, as also inferred
above from the spatial spectra. This sudden drop in the energy of the dominant (3, 2)
mode is also seen in the experiments at BTU C-S, as shown in figure 7.6b. For MagIC
simulations at E = 10−5, one also sees the rise in the (3, 2) mode energy, as shown in
figure 7.6c, where numerical difficulties stopped us from pursuing more negative Ro.
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Figure 7.6: Non-dimensional energies of different modes in the system. (a) and (c) show
MagIC simulations while (b) shows experiments at BTU C-S at E = 3.04 × 10−5. The
vertical dotted lines in (a) mark the Ro where the (3, 2) mode becomes dominant (Ro =

−1.5) and for the transition to broadband temporal spectrum (Ro = −2.3). Vertical dotted
line in (b) marks the transition to broadband turbulence.

7.3.3 Flow and Torque
One can find clear signatures of a transition to broadband turbulence in the variation of
the time-averaged kinetic energy and torque with Ro. Section 5.1 discussed torque scaling
with the outer sphere stationary where two distinct regimes were found - one varying
linearly with ∆Ω and one as ∆Ω3/2. We saw that the torque scaling at more extreme
∆Ω would scale asymptotically as ∆Ω2. Here, when the outer boundary is rotating, the
torque scaling looks quite different. One can see the different scalings in figures 7.7b and
7.7d, that change in accordance with the hydrodynamic flow regimes observed. This is
accompanied by changes in the kinetic energy behaviour as well.

At very low values of |∆Ω| the torque scales nearly linearly and the kinetic energy (KE)
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Figure 7.7: Time-averaged kinetic energy Ekin and torque G on the inner sphere versus
|∆Ω|. The transition to the turbulent regime at E = 10−4 has been marked with the vertical
dotted line.

scales close to |∆Ω|2 till the onset of EA inertial modes at both values of E, as expected for
a laminar flow. A transition in this behaviour takes place once EA inertial modes emerge.
At E = 10−4, we find a ≈ 50% decrease in the KE scaling and a similar increase in the
torque scaling, indicating that these instabilities efficiently dissipate energy and transport
angular momentum. This can be seen in an increase in the scaling of viscous dissipation,
shown in figure 7.8, where the scaling of viscous dissipation increases by almost six fold
in the inertial mode regime. A better visualisation is offered by figure 7.9a showing the
azimuthal average of uφ along with the meridional circulation at E = 10−4. At Ro = −1,
almost all the meridional circulation is confined close to the tangent cylinder. At Ro = −2,
in the EA inertial mode regime, little vortices can be seen developing outside the tangent
cylinder and close to the outer boundary and the background flow seems to be spreading
out gradually into the bulk. These small scale structures would cause a more efficient
viscous dissipation, and the broadening of the background flow profile would start to
transport angular momentum more efficiently. After the flow transitions to broadband
turbulence, both scalings - KE and torque - increase again, with a three fold increase in
the KE scaling and a ≈ 50% increase in the torque scaling. Thus, the viscous dissipation
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Figure 7.8: RMS values of viscous dissipation at different |∆Ω| at E = 10−4. Vertical lines
mark transition to temporal broadband turbulence.

is less efficient in this regime, as seen in figure 7.8 while the angular momentum transport
is more efficient. The solutions in this regime ( last three panels of figure 7.9a) show
that the fluid differential rotation which was mostly confined to the tangent cylinder (TC)
diffuses out into the bulk outside. The Stewartson layer boundary between the two fluid
rotation rates (differential and solid-body) is not very well-defined any more and becomes
diffuse.

This breakdown of the Stewartson layer can also be observed in figure 7.9 which
shows how the well-defined Stewartson layer close to the tangent cylinder starts to become
more diffuse beyond Ro = −2.3, leading to a more efficient angular momentum transport,
as observed in the torque scalings. In particular, at Ro = −2.5 in figure 7.9a, one can
see the development of two circulation cells attached to the boundary layer on the inner
sphere which seem to be directly aiding the transport of high angular momentum fluid by
being connected to larger circulation cells in the bulk. A more clearer picture of this can
be found at Ro = −3.5 where this phenomenon is more extreme. This is also visualised
in figure 7.10 which shows the evolution of background flow with Ro and shows that
it matches well with experimental observations. Hoff et al. (2016b) say that the cause
of this transition might be Görtler vortices (Görtler 1955) produced by the instability of
the boundary layer at the equator which are known to cause an increase in mean flow
(Ghasemi V et al. 2016), thus explaining the sudden increase in the kinetic energy scaling
of the flow. The Ekman layer at the equator of the inner sphere scales as E1/5 (Stewartson
1966), just like the Ekman layer at critical latitudes. If the instability of the Ekman layer
at the equator causes the onset of the Görtler vortices, this might help explain the E1/5

scaling observed in experiments.
At E = 10−5, there are two inertial mode regimes - with the (5, 2) and (3, 2) modes

being the dominant ones in each regime. As shown in figure 7.7c and 7.7d, the scaling
behaviour in the laminar regime before onset of any EA mode is similar to that for E =

10−4. However, in the first inertial mode regime, the KE scaling increases by about 25%
while the torque scaling decreases by about 50%, showing that the instabilities in this
regime are neither efficient in viscous dissipation nor in transporting angular momentum.
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Figure 7.9: Azimuthal averages of zonal velocity, uφ at different parameters from MagIC
simulations. The lines represent meridional circulation - solid (dotted) lines show clock-
wise (anti-clockwise) circulations. Colours represent zonal velocity with blue correspond-
ing to negative or retrograde motion.

This is different from the behaviour observed in the inertial mode regime at E = 10−4.
However, as one can see for Ro = −0.7 in figure 7.9b, the flow is composed of small
scale vortices in the whole bulk of the fluid which would imply a high viscous dissipation
and angular momentum transport. This is followed by a regime where the inertial modes
disappear and the meridional circulation becomes constrained to live inside the tangent
cylinder again, as seen for Ro = −0.8 in figure 7.9b. Thereafter, we get a behaviour similar
to that observed in the inertial mode regime for E = 10−4 - the KE scaling decreases
while the torque scaling increases showing that the (3, 2) and others modes present in this
regime are more dissipative and are efficient in transporting angular momentum than the
EA modes seen before.
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Figure 7.10: Variation of background flow profiles with Ro. (a) and (b) show simulations
from MagIC while (c) and (d) show experimental data from BTU C-S. s is the cylindrical
radius. The dotted horizontal and vertical lines mark the position of the tangent cylinder
and the Ro for transition to the ‘turbulent’ regime, respectively. The x-axis in (b) has been
extended to the same range as (d) for ease of comparison - no data is available for the
white patch. All velocities have been non-dimensionalised. Due to large uncertainties
in close to the centre experiments, the s values start from a finite value rather than zero.
Experimental data provided by Michael Hoff.

7.3.4 A new mode

At E = 10−4, around Ro = −2.7, a new mode emerges and becomes the dominating large-
scale structure in the flow solution. This is an equatorially symmetric columnar mode
with m = 2. Its structure at Ro = −3 is shown in figure 7.11 and it drifts with a frequency
aroundω/Ω ≈ 0.4. This mode could not be identified as a full sphere inertial mode. At the
beginning of the chapter, in section 7.2, we cited a number of studies which suggest that
turbulence in the presence of rotation gives rise to columnar structures associated with
the rotation axis. However, these studies are all based on the assumption that rotation
is the dominant force in the system, which is not the case any more in the regime for
homogeneous and isotropic turbulence. The force balance is discussed below.

7.4 Critical Balance - criteria for transition?

We conjectured before that there is a transition from a weak-inertial mode wave turbulence
towards a homogeneous and isotropic turbulent regime. We try to predict this transition
using an argument similar to the lines of the Zeman scale (Zeman 1994) which predicts

133



7 The turbulent regime

Figure 7.11: Isosurfaces of non-axisymmetric cylindrical radial velocity us, at Ro = −3,
E = 10−4.

that if the scale at which the eddy turnover time-scale matches the inertial wave time-scale
is kΩ, then the energy spectrum for k < kΩ would be dominated by rotation and that for
k > kΩ would be the Kolmogorov spectrum for homogeneous and isotropic turbulence.
For our system, the criteria for the eddy turnover time-scale matching the inertial wave
time-scale can be written as a balance between the non-linear term and the Coriolis force
in the Navier-Stokes equation

|u · ∇u| ∼ |2Ω × u| ⇒ l/ul ∼ 1/2Ω (7.5)

To check this balance, we plot the force balance in figure 7.12 showing the time-
averaged RMS (in volume) magnitude of the different terms in the Navier-Stokes equation
obtained from MagIC simulations as function of Ro at E = 10−4. As can be seen, the
Coriolis force dominates the dynamics till the transition to the turbulent regime. The
transition then takes place exactly when the magnitude of the non-linear term matches
the Coriolis force. In the isotropic turbulent regime, inertia dominates the force balance,
leading to a more homogeneous and isotropic system. To check whether this is a more
generic criteria or simply a coincidence, one should continue this work and test the same
at different Ekman numbers.

7.5 Triaidic resonances in the turbulent regime
The last chapter focused on triadic resonances in the ‘inertial mode’ regime. Here, we
see if they still exist in the ‘turbulent’ regime. Hoff et al. (2016b) find that the triadic
resonances that existed in the inertial mode regime, still continue to exist in the turbulent
regime. However, they did not go more negative Ro in the turbulent regime. MagIC
simulations at E = 10−4 lose the triads around Ro = −2.9 and the new m = 2 mode
mentioned above becomes the dominant large-scale structure, though signatures of the
previously dominant but distorted (3, 2) mode are still visible.

Let us now turn towards a much more turbulent case - the 3-metre experiment at
Maryland, USA. According to the E1/5 scaling law derived by Hoff et al. (2016b) for the
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Figure 7.12: Time averaged non-dimensional magnitude of forces affecting the dynamics
of flow from MagIC simulations at E = 10−4. The vertical dotted line marks the transi-
tion to the turbulent regime. Note that the transition takes place exactly when advection
balances the Coriolis force. The dominant force balance changes from the Coriolis force
to advective transport.

critical Ro for transition, the 3-metre experiment was always well inside the turbulent
regime. This offers us a unique possibility to observe possible inertial mode triads in the
turbulent regime. Figure 7.13 shows the data from the 3-metre experiment. The two lines
at the top mark the dominant frequencies at different Ro over the whole range. The solid
line at the bottom shows their difference which almost always lies in the broad peak of the
m = 1 Stewartson layer instability. Unfortunately, for most of these cases, one of the lines
forming the triad pair was not identified. In a few cases where they have been identified,
the wavenumber criteria for triadic resonances matches as well.

7.6 Conclusion
We explored the turbulent regime of the spherical Couette flow for negative differential
rotation, Ro < 0. We found excellent agreements between experiments and simulations
while comparing possible observables. It was seen that in all cases, the temporal spectra
in the turbulent regime has a sharp decay beyond ω/Ω = 2, indicating that the turbulent
energy transfers take place via triadic resonances of inertial waves. This sharp ‘knee’,
though less pronounced, is also present in the ‘inertial mode’ regime where the broad-
band background of the temporal spectra has less energy compared to the inertial mode
peaks. This would indicate that the energy transfers via inertial waves already begin in
the ‘inertial mode’ regime and become progressively more efficient at more negative Ro.
In the ‘inertial mode’ regime, the spatial spectra show a scaling of m−5/2 and l−5/2 which
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Figure 7.13: The search for triadic resonances in the pressure probe spectra of the 3-
metre experiment at Maryland, USA. x-axis shows Ro = ∆Ω/Ω while y-axis shows the
frequency ω/Ω. The colormap gives the power S (ω) in ω/Ω. The two lines above mark
positions of dominant frequencies while the solid line at the bottom shows their difference.
The differences mostly lie in the broad band of the m = 1 mode below. Data from Santiago
Triana.

is similar to the spectrum given by Galtier (2003) for ‘weak inertial-wave’ turbulence,
i.e, for weak nonlinear interactions between inertial waves as can be seen in the temporal
spectra as well. When the temporal spectrum becomes broadband and all inertial mode
frequencies seem to be resonantly excited, the spatial spectra get asymptotically close
to the Kolmogorov (−5/3) scaling. Prominent ‘jumps’ can be seen in the spectra which
correspond to either the appearance of a dominant inertial mode in the system or the tran-
sition to Kolmogorov-like turbulence. The transitions between different hydrodynamic
regimes are also marked with changes in slopes of kinetic energy and torque on the inner
sphere. These slopes have been quantified for the first time in this study.

Besides the spectra, the transition to the turbulent regime is also marked by sudden
changes in the slopes of kinetic energy and torque on the inner sphere as a function of
Ro. At E = 10−4, the flow solutions show a breakdown of the Stewartson shear layer and
vortices and small circulation cells developing in the bulk of the fluid. These transport
angular momentum very efficiently and match the observations of the background flow in
experiments at BTU C-S. According to Hoff et al. (2016b), these might be Görtler vortices
emerging due to an instability of the Ekman layer at the inner sphere equator, the width of
which scales as E1/5, hinting towards a possible origin of the similar scaling of the critical
Ro for transition found by Hoff et al. (2016b).

To determine a criteria for this transition from rotation dominated inertial wave turbu-
lence to homogeneous and isotropic turbulence, we turned to the concept of Zeman scale
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in turbulence where the inertial wave time-scale matches the eddy turnover time and de-
termines whether the turbulent spectrum at a certain scale will be dominated by rotation
or be isotropic. An analysis of the dominant forces in the system showed that the transi-
tion takes place exactly where the nonlinear advection term matches in magnitude with
the Coriolis force implying that the system transitions from a rotation dominated regime
to an inertia dominated isotropic regime.

A new m = 2 mode is seen to emerge in the turbulent regime of the MagIC simula-
tions at E = 104. The experiments at BTU C-S did not go to sufficiently negative Ro in the
turbulent regime to observe new modes. This mode could not be identified with a corre-
sponding full sphere inertial mode and could be a result of large-scale columnar structure
formation by small scale turbulent eddies as proposed by several studies (Waleffe 1993,
Smith and Waleffe 1999, Davidson et al. 2006, Staplehurst et al. 2008). However, these
studies were all in a rotation dominated regime and further investigation is needed for
their applicability to an inertia dominated regime under the influence of rotation. Lastly,
inertial mode pairs forming triadic resonances with the m = 1 Stewartson layer instability
could be identified in the data of the 3-metre experiment at Maryland, USA, showing that
the system “prefers” these resonances even in a highly turbulent regime.

Landau (1944b) proposed that transition of a flow to turbulence takes place due to
bifurcations that lead to oscillations of velocity at certain frequencies fi, i being an inte-
ger. When i becomes too large, the flow appears chaotic and turbulent. Contradicting this
picture, Ruelle and Takens (1971), using abstract mathematics, proposed an alternative
scenario where after three or four time-dependent bifurcations, one should lose any peri-
odicity of the flow. Gollub and Swinney (1975) found the transition to turbulence in the
case of a cylindrical Taylor-Couette setup to consist of periodic states which disappeared
and gave way to aperiodic behaviour confirming the Ruelle and Takens (1971) scenario.
The transition was sharp and non-hysteretic. In our simulations as well as in experiments
at BTU C-S, one always find dominant spectral peaks even deep into the turbulent regime.
In fact, in the 3-metre experiment, where the flow was always turbulent, one found very
clear spectral peaks, favouring the scenario of Landau (1944b).

The spherical Couette system provides a unique playground for exploring rotational
turbulence. Though a large number of interesting observations were made in our simula-
tions and in experiments, their complete understanding remains limited. The remarkable
similarity of observations over several orders of magnitude of Ekman numbers shows the
close similarity in the turbulent states. A more detailed analysis of the flow using simula-
tions at other Ekman numbers would provide further insight into this turbulent state.
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8 MHD Theory

“It is of great advantage to the student
of any subject to read the original
memoirs on that subject, for science is
always most completely assimilated
when it is in the nascent state . . . ”

James Clerk Maxwell

Electromagnetic interactions between moving conductors and magnetic fields have
been studied extensively since the time of Faraday. But what if the conductor is a fluid,
such as liquid iron in the interior of the Earth, the plasma inside a star or liquid metals in
industry? To understand fluid motion and magnetic field interactions in such scenarios,
one needs to combine the realms of hydrodynamics and electromagnetic theory.

This chapter introduces the reader to the basics of magnetohydrodynamics (MHD).
MHD is a vast subject in itself, and discussing it in great detail is beyond the scope of this
text. For greater insights into magnetohydrodynamics, a good place to start would be the
book of Davidson (2001) and the notes of Jones (2008) and Spruit (2013).

8.1 Pre-Maxwell and induction equations
Maxwell’s equations form the foundation of electromagnetic theory and are necessary to
understand magnetic fields and their interactions with conductors. Since most magne-
tohydrodynamic phenomena in the universe take place at speeds much lower than that
of light, the displacement current is ignored and one considers ‘pre-Maxwell’ equations.
They can be written as

∇ × E = −
∂B
∂t
, (8.1a)

∇ × B = µJ, (8.1b)
∇ · B = 0, (8.1c)
∇ · E = ρe/ε, (8.1d)

where, E, B and J represent magnetic field, electric field and current density, respec-
tively. µ is the magnetic permeability of vacuum. ρe is the charge density, c is the speed
of light and ε is the dielectric constant. In vacuum, 1/µε = c2.
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The first equation is Faraday’s law of induction, the second is Ampere’s law relating
the magnetic field generated to the current flowing in the conductor. The third equation
says that there are no magnetic monopoles while the fourth relates the electric field in a
region to the density of electric monopoles (charges).

In a frame of reference moving with a velocity u, where Galilean transformation
would imply x → x − ut, the form of the pre-Maxwell equations remain the same. The
only difference is that the resultant electric field in the moving reference frame is not only
the native electric field in the system, but is also has a contribution from the movement of
magnetic field. Thus, E → E + u × B. To arrive at an equation for the evolution of the
magnetic field we begin with the classical resistive Ohm’s law,

J = σ (E + u × B) . (8.2)

From equations (8.1a), (8.1b) and (8.2) we get

∂B
∂t

= ∇ ×

(
−
∇ × B
µσ

+ u × B
)

= ∇ × (u × B) − ∇ ×
(
∇ × B
µσ

)
.

(8.3)

The quantity λ = 1/µσ is called the magnetic diffusivity. Thus the above equation can
be rewritten to give

∂B
∂t

= ∇ × (u × B) − ∇ × (λ∇ × B) . (8.4)

Equation (8.4) is called the induction equation. We will deal with conductors con-
sisting of a single fluid where u would refer to the flow field. For conductors whose
conductivity and hence magnetic diffusivity is constant in space, one can use the vector
identity ∇ × ∇ × B = ∇(∇ · B) − ∇2B = −∇2B, and write

∂B
∂t

= ∇ × (u × B) + λ∇2B. (8.5)

The ratio of the typical magnitudes of the two terms on the RHS is an important quantity
called the magnetic Reynolds number

Rm =
|∇ × (u × B)|
|λ∇2B|

∼
UB/L
λB/L2 =

UL
λ
, (8.6)

where U and L represent the characteristic velocity and the characteristic length scale of
the flow. The similarity to the flow Reynolds number Re = UL/ν is evident. Rm provides
a measure for the ratio of induction to diffusion. We distinguish two limiting cases:

Case I: Rm→ 0

In this case, the induction equation reduces to a diffusion equation

∂B
∂t

= λ∇2B. (8.7)
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Any initial magnetic field in the fluid simply decays away through Ohmic dissipation in
a characteristic time τλ given by B/τλ = λB/L2 ⇒ τλ = L2/λ, known as the magnetic
diffusion time.

Case II: Rm→ ∞

In this case, the diffusion term is negligible and one obtains

∂B
∂t

= ∇ × (u × B). (8.8)

For any solenoidal field G, ∇ · G = 0, one can show that

d
dt

∫
∂W

G · dS =

∫
∂W

[
∂G
∂t
− ∇ × (u × G)

]
· dS (8.9)

where ∂W is a material surface embedded in a fluid and moving with it. A formal
proof can be found on page 40 of Davidson (2001). Qualitatively, it shows that the flux
of G through a material area ∂W changes due to two reasons - changes in G itself and
changes in the area while it moves with the fluid. Using equations (8.8) and (8.9), we get

d
dt

∫
∂W

B · dS = 0 (8.10)

This is an important result known as Alfvén’s theorem or the frozen flux theorem.
Physically it means that when Rm → ∞, the flux of magnetic field through an area co-
moving with the fluid remains constant. Thus, the magnetic field lines remain frozen in
the fluid and move along with it, without having the freedom to diffuse away.

The first term on the RHS of (8.5) can be written as: ∇ × (u × B) = B · ∇u − u · ∇B.
Substituting this into the induction equation gives

∂B
∂t

+ u · ∇B︸ ︷︷ ︸
Advection

= B · ∇u︸ ︷︷ ︸
Stretching

+ λ∇2B︸︷︷︸
Diffusion

. (8.11)

Thus, the magnetic fields evolves through three processes: advection of the field by
the flow, stretching of magnetic field lines in the direction of the flow and diffusion of the
magnetic field through the fluid.

8.2 The Lorentz force
The induction equation shows how the flow of a conducting fluid affects the magnetic
field. The magnetic field, too, affects the fluid through the Lorentz force, FL = J × B =

(1/µ)(∇ × B) × B. Adding this additional body force to the Navier-Stokes equation in a
rotating frame (2.18) yields

∂u
∂t

+ u · ∇u = −∇p︸︷︷︸
Pressure gradient

− 2Ω × u︸  ︷︷  ︸
Coriolis force

+
1
µ

(∇ × B) × B︸           ︷︷           ︸
Lorentz force

+ ν∇2u︸︷︷︸
Viscous force

. (8.12)
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The Lorentz force can be written as

1
µ

(∇ × B) × B = −
∇|B|2

2µ︸  ︷︷  ︸
Magnetic pressure

+
B · ∇B
µ︸  ︷︷  ︸

Magnetic tension

(8.13)

Note how similar the above expression is to the stress tensor decomposition into pres-
sure and deviatoric stresses and takes the form of a magnetic stress tensor:

τB
i j =

(
−B2/2µ

)
δi j + BiB j/µ (8.14)

Thus, the Lorentz force can be thought of as an additional set of stresses on the fluid, with
the magnetic pressure adding to the effective pressure, while the magnetic tension adds
to the deviatoric stresses on the fluid. These stresses are often referred to as Maxwell
stresses. The magnetic tension along field lines makes the magnetic field lines act like a
set of strings under tension (like a guitar), which can give rise to wave phenomena as well
as a magnetic analogue of the Taylor-Proudmdan constraint, both of which we discuss
below.

8.3 Waves due to the Lorentz force
One of the most important effects of the Lorentz force, in particular the magnetic tension,
is to give rise to waves. In the absence of other forces, the simplest of these are Alfvén
Waves, while in the presence of rotation, we get magneto-Coriolis waves, which can also
be thought of as magnetically modified version of inertial waves from chapter 2. Much of
the material below is based on Finlay (2008) to which one can refer for further details on
MHD waves.

8.3.1 Alfvén waves
The simplest form of magnetically influenced waves are the Alfvén waves, named after
Alfvén (1942) who first described them. Consider a highly conducting fluid at rest in an
inertial frame under the influence of a constant uniform magnetic field B. Consider that
at some instant the fluid receives a small velocity perturbation u and the corresponding
small perturbation to the magnetic field is b.

Using the frozen flux approximation for high Rm, we can write the linearised equation
of motion and the linearised induction equation

∂u
∂t

= −
1
ρ
∇p︸ ︷︷ ︸

Effective pressure
including magnetic pressure

+
1
ρµ

(B · ∇)b + (b · ∇)B︸                      ︷︷                      ︸
Magnetic tension

, (8.15a)

∂b
∂t

= −(u · ∇)B + (B · ∇)u, (8.15b)

The terms involving ∇B are zero since B is taken to be uniform. Taking the curl of
(8.15a), we get the equation for the evolution of fluid vorticity ξ = ∇ × u:
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8.3 Waves due to the Lorentz force

Figure 8.1: Example of an Alfvén wave. The magnetic tension in the field lines acts as a
restoring mechanism for the waves. u here is the velocity of the fluid as forced upon by
the magnetic field lines.

∂ξ

∂t
=

1
ρµ

(B · ∇)(∇ × b). (8.16)

Taking the curl of (8.15b) yields

∇ ×
∂b
∂t

= (B · ∇)ξ. (8.17)

Taking a time derivative of (8.16) and substituting (8.17), leads to

∂2ξ

∂t2 =
1
ρµ

(B · ∇)2ξ, (8.18)

which is the Alfvén wave equation. The restoring force, as can be seen from the RHS, is
due to the stretching of magnetic field lines by the flow. In other words, magnetic field
lines, when stretched, react back on the flow in the form of waves, just like strings under
tension. In this case, the frozen flux theorem works in reverse - the fluid is forced to move
as the magnetic fields want them to, not the other way round. This reaction is shown in
figure 8.1.

Using a wave ansatz ξ ∝ ei(k·r−ωt), one obtains the dispersion relation for Alfvén waves,

ω2
A =

B2
(
k · B̂

)2

ρµ
. (8.19)

Thus,

ωA = ±vA

(
k · B̂

)
, (8.20)

where vA = B/
√
ρµ is known as the Alfvén velocity, which is the speed at which Alfvén

waves travel along the field lines. Their phase velocity is equal to their group velocity and
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depends on the angle between waves and the background magnetic field and is indepen-
dent of |k|. They are thus non-dispersive. The waves are transverse with particle motions
being linearly polarised.

8.3.2 Magneto-Coriolis waves
Now let us add rotation to the system. The new equations for the perturbations are

∂u
∂t

= −
1
ρ
∇p︸ ︷︷ ︸

Effective pressure
including magnetic pressure

+
1
ρµ

(B · ∇)b︸       ︷︷       ︸
Magnetic tension

− 2Ω × u︸  ︷︷  ︸
Coriolis force

, (8.21a)

∂b
∂t

= (B · ∇)u. (8.21b)

As before, we start by taking the curl of both equations, which gives us

∂ξ

∂t
= 2Ω · ∇u +

1
ρµ

(B · ∇)(∇ × b) (8.22a)

∂(∇ × b)
∂t

= (B · ∇)ξ. (8.22b)

Note that if it were a steady state and the Lorentz force was not present, we would
get back the Taylor-Proudman constraint (2.20) from (8.22a). Taking a time-derivative of
(8.22a) and using (8.22b) gives

∂2ξ

∂t2 = 2(Ω · ∇)
∂u
∂t

+
1
ρµ

(B · ∇)2ξ. (8.23)

Taking the curl of this and using the fact that ∇ × ξ = ∇ × ∇ × u = −∇2u, we get

− 2(Ω · ∇)
∂ξ

∂t
=

(
∂2

∂t2 −
1
ρµ

(B · ∇)2
)
∇2u. (8.24)

Taking a time-derivative of (8.24) and eliminating ξ from (8.23) and (8.24) gives the
equation: (

∂2

∂t2 −
1
ρµ

(B · ∇)2
)2

∇2u = −4(Ω · ∇)2∂
2u
∂t2 . (8.25)

Equation (8.25) represents magneto-Coriolis waves (MC waves). These waves have
the Coriolis and Lorentz forces as restoring forces and can thus be thought of as a combi-
nation of inertial and Alfvén waves.

Substituting a plane wave ansatz u ∝ ei(k·r−ωt) in equation (8.25) gives a quadratic
equation in ω whose roots are

ωMC = ±(Ω · k̂) ±
((

Ω · k̂
)2

+
1
ρµ

(B · k)2
)1/2

, (8.26)
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which is the dispersion relation for MC waves. Note that it can be written as

ωMC = ±
ωC

2
±

((
ωC

2

)2
+ ω2

A

)1/2

(8.27)

where, ωC = ±2Ω · k̂ is the frequency of a pure inertial wave and ωA = ±(B · k)/
√
ρµ

is the Alvén wave frequency. The dispersion relation shows that an MC wave is simply
the combination of an inertial and an Alfvén wave. Setting either Ω or B to zero allows
one to recover the dispersion relation of a pure Alfvén or inertial wave, respectively. The
dispersion relation (8.26) defines two distinct classes of MC waves:

• Fast MC waves When both terms in (8.26) have the same sign, the wave has a
high frequency. Both forces, Coriolis and Lorentz, act in unison and give rise to a
large restoring force.

• Slow MC waves When the two terms in (8.26) have opposite signs, the wave
frequency is low because Coriolis and Lorentz forces act against each other and
give rise to a small restoring force.

The two classes become very clearly distinct in the case when the inertial wave fre-
quency is much larger than the Alfvén wave frequency, ωC � ωA. In this case, one can
perform a Taylor series expansion in the small parameter ωA/ωC and obtain the dispersion
relations for the two classes of waves by ignoring higher order terms:

ω
f
MC = ±ωC

(
1 +

ω2
A

ω2
C

)
, (8.28a)

ωs
MC = ±

ω2
A

ωC
= ±ωA

(
ωA

ωC

)
. (8.28b)

Equation (8.28a) shows that a fast MC wave is essentially an inertial wave modified
slightly by the magnetic field (ω2

A/ω
2
C is a small quantity) with its frequency being higher

than that of a pure inertial wave. Thus, fast MC waves can have frequencies higher than
2Ω. For a slow MC wave, equation (8.28b) shows that the Lorentz force is the primary
restoring force for these waves with the Coriolis force opposing it. These waves are of
interest to geophysicists as their time-period τMC = 2ΩL2/v2

A is equal to about 300 years
for the parameters of the Earth and is thus similar to the time-scale of wave-like secular
variation observed in the Earth’s magnetic field (Finlay and Jackson 2003).

In the presence of temperature gradients, buoyancy comes in as a third restoring force
and the waves generated are then called Magnetic Archimedes Coriolis (MAC) waves - a
topic of great interest in geodynamo research (e.g. Braginsky 1993).

8.3.3 Lorentz force and differential rotation: Ferraro’s law of isoro-
tation

As one can guess by now, strong magnetic tension inhibits fluid motion. Thus, magnetic
tension would try to align fluid motions along field lines. This is the magnetic equivalent
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of the Taylor-Proudman theorem and is known as Ferraro’s law of isorotation after Ferraro
(1937). Consider an axisymmetric magnetic field B (∂B/∂φ = 0) permeating a fluid with
velocity u that is differentially rotating about an axis with

u = sω̄(s, z)φ̂, (8.29)

where we have used cylindrical coordinates (s, z, φ). B can be separated into an azimuthal
contribution (toroidal field) and a non-azimuthal one (poloidal field).

B = Bp(s, z, t) + Bφ(s, z, t)φ̂ (8.30)

In the limit of high magnetic Reynolds number, one can ignore diffusion and the induction
equation would give

∂Bp

∂t
= 0, (8.31a)

∂Bφ

∂t
= s(Bp · ∇)ω̄, (8.31b)

which, in a steady state yields

Bp · ∇ω̄ = 0, (8.32)

indicating that lines of isorotation are aligned with the poloidal magnetic field lines. This
is known as Ferraro’s law of isorotation. Taking the analysis further and including the
linearised Navier-Stokes equation would yield the equation for torsional Alfvén waves

∂2ω̄

∂t2 = v2
T A
∂2ω̄

∂z2 (8.33)

where, vT A = ±Bp/
√
ρµ is the speed of the torsional Alfvén waves.

8.4 Magneto-Coriolis modes
In a bounded container rotating with a rotation rate Ω in a magnetic field B, any velocity
perturbation u would grow according to the MC wave equation (8.25). However, in this
case, it wouldn’t give rise to plane waves and must satisfy the boundary condition u·n̂ = 0,
where n̂ is the normal to the surface of the container.

The two most significant studies of magneto-Coriolis modes were by Hide (1966) and
Malkus (1967). They are explained below in brief

Hide’s β-plane model
Hide (1966) developed a model for MC modes in a spherical shell whose motions are
roughly parallel to the rotation axis, thus concentrating on local fluid motions in east-
ward (x̂) and northward (ŷ) directions in a spherical shell and the evolution of z-vorticity
(ξz). Following Rossby et al. (1939), he assumed that the Coriolis force varies linearly
with latitude, often referred to as the β-plane approximation, because of the parameter β
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defining the slope of the variation. The simplification results in the Coriolis force hav-
ing components − f uy and f ux in the east and northward directions, respectively, where
f = 2Ω cos θ + (2Ω/ro) sin θ y = f0 + βy. Hide argued that β should change its sign in
thick spherical shells.

In Hide’s scenario, the background magnetic field B is uniform making a constant
arbitrary angle with the x̂ direction. For simplicity, let us consider the case when B is
directed along x̂. The equations for the perturbations (u, b) are

∂ux

∂t
− βyuy = −

1
ρ

∂p
∂x
, (8.34a)

∂uy

∂t
+ βyux = −

1
ρ

∂p
∂y

+
B
ρµ

(
∂by

∂x
−
∂bx

∂y

)
, (8.34b)

∂bx

∂t
= B

∂ux

∂x
, (8.34c)

∂by

∂t
= B

∂uy

∂x
, (8.34d)

These can be manipulated to yield an equation for the evolution of z-component of vor-
ticity (∇2

H = ∂2/∂x2 + ∂2/∂y2),(
∂2

∂t2 −
B2

ρµ

∂2

∂x2

)
∇2

Hξz + β
∂

∂t

(
∂ξz

∂t

)
= 0, (8.35)

which is satisfied by plane-wave equations for the form ξ ∝ ei(kx+ky−ωt), k being the
wavenumber and ω the angular frequency. They satisfy the dispersion relation

ω = −
β

2k
±
β

2k

(
1 +

4B2k4

ρµβ2

)1/2

(8.36)

A Taylor expansion in (4B2k4/ρµβ2) would yield two distinct classes of long-wavelength
waves with

ωRossby = −
β

k
and ωMC =

B2k3

ρµβ
(8.37)

The first one can be identified as classical Rossby waves which are slow quasi-geostrophic
inertial waves on a sphere and were first studied by Rossby et al. (1939). The second one
looks similar in nature to the slow MC wave (8.28b) and are often referred to as an MC
Rossby wave or Hide’s wave. Recently, using numerical simulations Hori et al. (2015)
have shown that these waves can be the key to gaining information about the toroidal
magnetic field inside the Earth which is opaque to observations.

Malkus’ MC modes in full sphere
Malkus (1967) investigated the problem of MC modes in a full sphere rotating at a rate
Ω under the influence of a toroidal (azimuthal) magnetic field of the form B = Bsφ̂ in
cylindrical coordinates (s, z, φ). Using the inertial mode ansatz (u, b) ∝ ei(mφ−ωt), he was
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successful in reducing the MC mode problem in a full sphere to resemble the Poincaré
equation for inertial modes (2.45),(

∇2 −
4
ω2

m

∂2

∂z2

)
p = 0. (8.38)

where,

ωm =
−ωρ + B2m2

µω

Ωρ + B2m
µω

(8.39)

As in the case of inertial modes (section 2.3.2), ωm are real and |ωm| 6 2Ω. Thus, one
would obtain the same set of modes as that of a full sphere with their frequencies modified
by the magnetic field. Note that in this case, the restriction on frequencies is on ωm and
thus ω may take values beyond 2Ω. Solving for ω gives

ω =
ωmΩ

2

−1 ±
(
1 +

4B2m(m − ωm)
Ω2ω2

mρµ

)1/2 . (8.40)

A Taylor expansion in 4B2m(m−ωm)
Ω2ω2

mρµ
provides us with two classes of long-wavelength (small

m) modes:

ωC ≈ −Ωωm and ωMC ≈
B2

Ωρµ

m(m − ωm)
ωm

. (8.41)

ωC represents a pure inertial mode, whileωMC represents a slow MC mode in a full sphere.

8.5 Discussion
The above text provides a very fundamental knowledge of magnetohydrodynamic flows
and MHD waves in the absence of thermal or density stratification. In chapter 1, we
saw how hydromagnetic waves are very important in the context of geophysics as well as
astrophysics. Thus, a study of these waves, especially in rotating spherical shells is quite
imperative. The above theoretical background shall be useful in understanding the next
chapter where we study the effect of an imposed magnetic field.
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“I have had my results for a long time:
but I do not yet know how I am to
arrive at them”

Carl Friedrich Gauss

We explored hydrodynamic instabilities of the spherical Couette system in chapter 6.
In this chapter, we study the effect of an imposed magnetic field on the system when the
fluid is conducting. We end the chapter with a short discussion on self-consistent dynamo
action in the system.

9.1 Introduction
The question of whether and how magnetic fields interact with differential rotation is fun-
damental to understanding interior dynamics of astrophysical objects. However, simula-
tions of self-consistent dynamo action in these objects are not able to control the strength
of the magnetic field and differential rotation independently to study the parameter de-
pendence. This motivates the study of the spherical Couette system under an imposed
magnetic field.

We saw in chapter 3 that the solution by Proudman (1956) and Stewartson (1966) for
the spherical Couette flow consists of a large change in the fluid rotation rate inside and
outside the cylinder tangent to the inner core equator (the tangent cylinder or TC). This
gives rise to a nested shear layer structure called the Stewartson layer consisting of three
layers with thickness O(E1/3), O(E2/7) and O(E1/4). In the presence of a magnetic field,
the shear is modified by the magnetic tension. This gives rise to magnetic free shear layers
called Shercliff layers after Shercliff (1962) who first described such layers in the context
of magnetic pipe flows.

The difference arises because of the competing constraints of Taylor-Prouman the-
orem and the Ferraro isorotation law. In general, the type of solution depends on the
magnetic boundary conditions and the magnetic field topology with magnetic field lines
separating regions of constant angular velocity. The magnetic spherical Couette system
was studied numerically by Hollerbach (1994) and analytically using asymptotic analysis
by Kleeorin et al. (1997) who studied the effect of an axisymmetric dipole field originat-
ing in the inner sphere, with regions outside both outer and inner boundaries insulating.
As the field strength is increased, it was found that there is a gradual suppression of the
nested Stewartson layer structure and a transition to a single Shercliff layer. The transition
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takes place at slightly different field strengths for the three different nested layers, the first
suppression being noticeable once Λ > O(E1/3), where Λ is the Elsasser number - a non-
dimensional measure of magnetic energy. Around Λ ∼ O(1), all three layers have merged
into a single layer. Similar results were found by analytical investigations of the effect
of an axial field by Ingham (1969) and Vempaty and Loper (1975, 1978) for cylindrical
Taylor-Couette flow and numerical simulations by Hollerbach (1997) for a spherical Cou-
ette flow with a finitely conducting inner core. The latter study found that for weak fields,
O(E1/2) 6 Λ 6 O(E−1/3), the main effect of the magnetic field is to enhance the rotation
rate of the fluid inside TC through electromagnetic coupling with the inner core. For
strong fields, Λ > O(E−1/3), the Ekman layer transitions to an Ekman-Hartmann layer (a
magnetically modified boundary layer) of width (E/Λ)1/2 and the three nested Stewartson
layers merge together to form a single (E/Λ)1/4 Shercliff layer. For conducting boundaries
and different magnetic topologies, strong Lorentz forces can give rise to super and sub-
rotating jets (Starchenko 1997, Dormy et al. 1998, Hollerbach 2000, 2001). Soward and
Dormy (2010) performed an asymptotic analysis to map out the entire parameter space
of dependence of the super-rotation of the jet on the outer boundary conductance with an
inner conducting sphere.

The above studies discuss axisymmetric solutions at very low Re or Ro. Instabili-
ties of the Shercliff layer in the spherical Couette flow at finite Re were first studied by
Hollerbach and Skinner (2001) for an axial field, and a stationary outer boundary. Further
development took place with studies by Hollerbach (2009) and Gissinger et al. (2011),
with the last one having a rotating outer boundary and thus a Stewartson layer. Gissinger
et al. (2011) found that a strong magnetic field can stabilise a hydrodynamically unstable
Stewartson layer, but applying a stronger field causes instabilities of the Shercliff layer as
already investigated by Hollerbach and Skinner (2001). Wei and Hollerbach (2008) con-
sidered the transition from a Stewartson layer instability to a Shercliff layer instability,
but without any definite conclusions. The difference in the nature of instabilities is that,
unlike in the case of the Stewartson layer, Shercliff layer instabilities do not depend on
the sign of Ro.

The 60 cm and 3-metre experiments at Maryland USA use a weak axial magnetic
field as a diagnostic to characterise the flow (e.g. Kelley et al. 2007). Since the fields are
too weak to modify the flow significantly, the modes observed in Kelley et al. (2007) are
probably close to inertial modes without the effect of magnetic field. Magnetic effects
are more significant in the DTS experiment at Grenoble, France where the inner sphere
is a permanent dipolar magnet. There one can observe clear magneto-Coriolis modes, the
identifications of which have been verified by eigenmode computations and numerical
simulations (Schmitt et al. 2008, Schmitt et al. 2013). Numerical simulations suggest that
if the fluid is strongly conducting, the spherical Couette flow can even give rise to a self-
consistent dynamo (e.g. Guervilly and Cardin 2010, Cao et al. 2012). A more detailed
review of magnetic Couette flow can be found in the book by Rüdiger et al. (2013).

In this chapter, we study the effect of an imposed axial magnetic field on a spherical
Couette setup with insulating boundaries. First we use a weak magnetic field as a diag-
nostic to detect inertial modes in the system, and compare the results with Kelley et al.
(2007). Thereafter, we investigate the effect of stronger magnetic fields on some of the
EA inertial modes found in our system.
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9.2 Non-dimensional parameters
To non-dimensionalise the equations for the evolution of velocity and magnetic field in
the spherical Couette system, we use the gap-width L = ro − ri as the length scale and
the viscous diffusion time, τν = L2/ν as the time scale. The magnetic field is scaled with
(ρµλΩo)1/2. Using these scalings, the non-dimensional equations governing the evolution
of velocity u and magnetic field B, can be written as (same as equations (4.1) - (4.3) )

E
(
∂u
∂t

+ u · ∇u
)

= −∇p − 2 ẑ × u +
1

Pm
(∇ × B) × B + E∇2u, (9.1)

∂B
∂t

= ∇ × (u × B) +
1

Pm
∇2B, (9.2)

∇ · u = 0 , ∇ · B = 0 (9.3)

where, E = ν/ΩoL2 is the Ekman number, and Pm is called the magnetic Prandtl number,
defined as

Pm =
ν

λ
, (9.4)

the ratio between the kinematic viscosity and the magnetic diffusivity. Another non-
dimensional quantity of interest is the Elsasser number, defined as

Λ =
B2

ρµλΩo
=

Lorentz
Coriolis

(9.5)

which is the ratio between the Lorentz and the Coriolis forces and is non-dimensional
measure of the magnetic energy in our scaling.

9.3 Magnetic field as a diagnostic
Like in the 60 cm experiment (Kelley et al. 2007), we impose an axial magnetic field on
the spherical Couette setup in our simulations with MagIC, as shown in figure 9.1. The
amplitude of the field is kept very low so that the Lorentz forces are too weak to influence
the fluid dynamics, but the induced field can be used as a diagnostic. The magnetic Prandtl
numbers were kept at low values such as Pm = 0.01 and Pm = 10−4 in order to let the
magnetic field diffuse quickly.

The evolution of the induced field is given by the induction equation:

∂b
∂t

= ∇ × (u × B) +
1

Pm
∇2b (9.6)

where, B is the applied field, b is the induced field and |b| � |B|. Thus, if B is known and
b is detected, one can can integrate (9.6) for the velocity structure. The inertial modes in
Kelley et al. (2007) were identified based on comparing induction patterns obtained from
experiments to those obtained from numerics. The structure of the induction pattern on
the surface of the spherical shell is given by the selection rules of Bullard and Gellman
(1954). An axial magnetic field B ẑ has an azimuthal wavenumber of m0 = 0 and a polar
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9 Magnetic Couette flow

Figure 9.1: The spherical Couette system with a uniform magnetic field B imposed along
the rotation axis.

wavenumber of l0 = 1. If the surface structure of the inertial mode and the induced field
resemble spherical harmonics Ylm and Ylmagmmag , respectively, then using the selection rules,
one gets:

• m + m0 + mmag = 0, implying that mmag = m.

• The magnitudes of l, l0 and lmag must be able to form sides of a triangle, which is
only possible when |l− lmag| = 1. This implies that u and b have opposite equatorial
symmetries.

• In addition, u and b have identical drift frequencies.

Figure 9.2 shows the induction patterns for some of the major inertial modes identified at
E = 10−4 and E = 10−5. One can see the that due to the selection rules, the equatorially
antisymmetric inertial modes have equatorially symmetric magnetic induction patterns
with the same azimuthal symmetry as the mode.

In the absence of any external sources (outside the outer boundary), the magnetic field
can be written in terms of a potential ψ satisfying the Laplace equation

∇2ψ = 0. (9.7)

ψ can be expanded as follows:

ψ(r, θ, φ, t) =
ro

µ0

lmax∑
l=1

l∑
m=0

(ro

r

)l+1
Pm

l (cos θ)(glm(t) cos mφ + hlm(t) sin mφ) (9.8)

where glm and hlm are known as the Gauss coefficients.
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9.3 Magnetic field as a diagnostic

(a) us :  (l, m) = (3, 2) (b) bs :  (lmag, mmag) = (2, 2)

(c) us :  (l, m) = (4, 1) (d) bs :  (lmag, mmag) = (3, 1)

(e) us :  (l, m) = (4, 3) (f) bs :  (lmag, mmag) = (3, 3)

(g) us :  (l, m) = (5, 2) (h) bs :  (lmag, mmag) = (4, 2)

Figure 9.2: The major inertial modes identified at E = 10−4 and E = 10−5 and their
magnetic induction patterns on a Hammer projection. Colours show cylindrical radial
velocity and magnetic field us and bs, respectively. Colours towards red indicate positive
(outward) while colours towards blue indicate negative (inwards). Compare with figure 7
of Kelley et al. (2007).
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Figure 9.3: Oscillation of Gauss Coefficients glm and hlm. (a) The oscillating coefficients
g22 and h22. (b) Fourier transform of the coefficients denoted by ∼ on the top. (c) Magnetic
energy vs spherical harmonic order - peak at m = 2 clearly visible. One recovers the drift
frequency of the inertial mode from the oscillations of these coefficients.

The drift frequency of an inertial mode can be recovered by an analysis of the oscil-
lations in the Gauss coefficients of the right azimuthal and equatorial symmetry (same m
and equatorially symmetric: l−m = even). This has been shown in figure 9.3. The Fourier
analysis of the coefficients g22 and h22 yields a dominant frequency the same as that of the
(3, 2) mode at E = 10−4 and Ro = −2. Panel (c) gives the energy in different m, showing
that the modes with m 6 3 are the most dominant ones as seen from the kinetic energy
spectrum in chapter 6, section 6.6.1.3.

9.4 Magneto-Coriolis modes
We increase the imposed field strength to explore its effect on the flow dynamics, in par-
ticular, on the EA inertial modes. The theoretical analysis proceeds in a similar manner as
in for magneto-Coriolis waves in section 8.3.2. Consider velocity and pressure perturba-
tions u and p in a fluid rotating in a container at a rate Ω in the presence of a background
magnetic field B = B ẑ. The velocity and pressure perturbations and the induced field b
obey

∂u
∂t

= −
1
ρ
∇p +

1
ρµ

(B · ∇)b − 2Ω × u, (9.9a)

∂b
∂t

= (B · ∇)u. (9.9b)
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9.4 Magneto-Coriolis modes

Using the wave ansatz in azimuth, (u, b, p) ∝ ei(mφ−ωt), we obtain the equations

−iωu = −
1
ρ
∇p +

1
ρµ

(B · ∇)b − 2Ω × u, (9.10a)

−iωb = (B · ∇)u. (9.10b)

Eliminating b from the two equations gives

− iωu +
1
ρ
∇p + 2Ω × u =

i
ω

1
ρµ

(B · ∇)2u. (9.11)

Using our usual non-dimensionalisation scalings for length and time and the strength B
of the magnetic field to scale the magnetic field, we can rewrite this in a non-dimensional
form as

− iωu + ∇p + 2 ẑ × u =
i
ω

Le2( ẑ · ∇)2u, (9.12)

where,

Le =
B

(ρµ)1/2ΩL
=

vA

ΩL
=

(
ΛE
Pm

)1/2

, (9.13)

is the Lehnert number which measures the ratio of the Alfvén speed vA to the speed of an
inertial wave. As can be inferred from the definition, Le determines the wave that would
play a major role in the dynamics of the fluid. For Le2 << 1, one can expand the velocity
and pressure perturbations as

u = u0 + Le2u1 + Le4u2 + . . . , (9.14a)

p = p0 + Le2 p1 + Le4u2 + . . . . (9.14b)

Comparing like order terms in Le2, leads to

−iωu0 + ∇p0 + 2 ẑ × u0 = 0, (9.15a)

−iωu1 + ∇p1 + 2 ẑ × u1 =
i
ω

( ẑ · ∇)2u1, (9.15b)

−iωui + ∇pi + 2 ẑ × ui = 0, for all i > 1, (9.15c)

where i is an integer. The equation for u0 and p0 and for all ui, i > 1 is the inertial mode
equation (2.44a). Thus the zero order perturbation to the velocity and pressure evolve
as inertial modes, which are slightly modified by the magnetic field, for higher orders
in Le2. Note that we would also come to a similar conclusion from the definition of Le
and the fact that the LHS of equation (9.12) looks the same as that of an inertial mode
equation with the RHS being slightly different from zero for low Le. Thus, the Lorentz
force contributes to the force balance, but the main balance is still decided by the pressure
gradient and the Coriolis force. In our simulations, the highest value attained by Le2 is
0.01.
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Figure 9.4: Effect of a magnetic field on the onset of an EA inertial mode. E = 10−4,
Ro = −1.33.

We perform our simulations at E = 10−4 where the (3, 2) mode comes in as the most
dominant EA inertial mode at Ro = −1.33. The Pm is kept fixed at 0.01. We initialise
our simulations from a flow solution at Ro = −1.3 where only the m = 1 Stewartson layer
instability (SI) is present as the dominant large scale structure. Figure 9.4 shows the effect
of the magnetic field on the growth of the (3, 2) inertial mode. Even with a small magnetic
field magnitude of Λ = 0.09, Le = 0.03, the growth rate increases by more than an order
of magnitude. Moreover, the final saturation energy of the (3, 2) mode surpasses that of
the m = 1 SI. This effect is seen for all the EA modes and their growth rates are roughly
the same. Thus, the magnetic field seems to promote the growth of the EA inertial modes.
The variation of growth rate of the (3, 2) mode and hence, the other major EA modes with
magnetic field strength (Le or Λ) is shown in figure 9.5a. The sudden increase in growth
rate when imposing a weak magnetic field can also be seen here. The growth rate seems
to increase at high field strengths. A similar exercise at Ro = −1.3 did not yield an onset
of any EA modes showing that the magnetic field does not cause a change in the critical
Ro necessary for the onset of EA inertial modes.

The frequencies of the different EA modes do not show a simple dependence on the
magnetic field strength, as shown in figure 9.5b. The frequency of the (3, 2) mode remains
nearly constant. The m = 1 EA mode frequency suddenly decreases between Le = 0.03
and Le = 0.035, but increases again between Le = 0.075 and Le = 0.08, changing its
frequency from one close to a (4, 1) to one close to a (6, 1) mode and back again. This
points towards transitions to different magnetically modified modes. 9.6 illustrates the
related structural changes. The m = 1 EA mode does not form a triad with the (3, 2) and
m = 1 SI beyond Le = 0.03. The case of the m = 3 is relatively simple. The (10, 3)
mode that forms a triad with the (3, 2) and m = 1 SI is detectable till Le = 0.03. From
Le = 0.035 onwards, the (4, 3) mode sets in as the dominant m = 3 EA mode and remains
so, without forming any identifiable triads. The mode energies in figure 9.7 show that the
(3, 2) mode remains dominant throughout and has a peak at Le = 0.05.
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Figure 9.5: Variation of (a) growth rate γ and (b) frequency of EA inertial modes with
magnetic field strength, measure by the Lehnert (Le) and Elsasser numbers (Λ).

Delayed imposition - EA mode quenching

The effect of the magnetic field trying to make the flow aligned with the rotation axis
can be seen when the field is imposed after the onset of the EA modes has taken place
in the purely hydrodynamic case. This is shown in figure 9.8, which shows the onset of
(3, 2) EA mode at E = 10−4, Ro = −1.33 and the time at which the magnetic field is
imposed is indicated by the vertical line. One can see that the (3, 2) mode survives at a
lower energy when the magnetic field strength is weak. However, with a small increase in
magnetic field strength, the mode exponentially decays. The decay is faster for a stronger
magnetic field. This can be understood in terms of magnetic tension trying to align the
flow with the rotation axis and thus, effectively filtering out any mode that is equatorially
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(a) Le = 0.03, Λ = 0.09 (b) Le = 0.035, Λ = 0.1225

(c) Le = 0.075, Λ = 0.5625 (d) Le = 0.08, Λ = 0.64

Figure 9.6: Change in the structure of the m = 1 EA mode with magnetic field strength.
Shown here are colormaps of pressure at the outer boundary - red is positive (outwards)
while blue is negative (inwards).
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Figure 9.7: Kinetic energies (spherical harmonic expansion l 6 10) of different EA modes.
The (3, 2) mode is always the dominant mode.

antisymmetric. The effect is stronger for a stronger magnetic field.

158



9.5 Flow and torque
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Figure 9.8: Quenching of EA modes by magnetic field. Shown on the y-axis is the squared
amplitude of the toroidal (2, 2) coefficient - an indication of the energy in the (3, 2) mode.
Le = 0.03, 0.035 and 0.06. The time when the magnetic field is imposed is indicated by
the vertical dashed line.
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Figure 9.9: z-averaged zonal velocity uφ profiles as a function of magnetic field strength.
They y-axis shows cylindrical radius s. Horizontal dotted line marks the position of the
tangent cylinder.

9.5 Flow and torque

Figure 9.9 shows the change in background flow profile as the magnetic field strength is
increased. The fluid outside the tangent cylinder remains in solid body rotation with the
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outer boundary. However, the fluid inside the tangent cylinder spins up as the magnetic
field strength is increased. This is possibly due to an electromagnetic coupling of the fluid
through the magnetic field lines, adding to the viscous coupling that exists in the absence
of the magnetic field. Such an increase in fluid rotation rate was also noted by Hollerbach
(1997) for the case of a finitely conducting inner sphere.

Figure 9.10 shows that as the magnetic field strength is increased, the torque on the
inner sphere goes down. This shows that even though the fluid inside the tangent cylinder
is spun up, the efficiency of angular momentum transport reduces. The spinning up of the
fluid inside the tangent cylinder leads to an increase in the kinetic energy of the fluid, as
illustrated in figure 9.10b. The increase in flow speeds has two effects - (i) it increases the
strength of the induced field through the induction term in the induction equation leading
to enhanced ohmic dissipation and (ii) it leads to an enhanced viscous dissipation. These
are shown in figure 9.10c. These results are similar to those found by Hollerbach (1997),
but for a conducting inner sphere.

10−13× 10−24× 10−2 6× 10−2

Le

2.2× 105

2.6× 105

2× 105

3× 105

G

Le−0.41

(a)

10−13× 10−2 4× 10−2 6× 10−2

Le

107

6× 106

2× 107

E
k
in

Le0.75

(b)

10−13× 10−2 4× 10−2 6× 10−2

Le

109

1010

|D
iss

.| Le1.01

Le0.76

Visc Diss
Ohmic Diss

(c)

Figure 9.10: (a) shows the variation of torque G on the inner sphere with Le, (b) shows
the variation of kinetic energy and (c) shows ohmic and viscous dissipation versus Le.
Black lines show straight line fits.
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9.6 Discussion

(a) Le = 0,
Λ = 0

(b) Le = 0.03,
Λ = 0.09

(c) Le = 0.035,
Λ = 0.12

(d) Le = 0.04,
Λ = 0.16

(e) Le = 0.05,
Λ = 0.25

(f) Le = 0.06,
Λ = 0.36

(g) Le = 0.07,
Λ = 0.49

(h) Le = 0.08,
Λ = 0.64

(i) Le = 0.09,
Λ = 0.81

(j) Le = 0.1,
Λ = 1

Figure 9.11: Change in axisymmetric flow structure. Colour shows azimuthal average
of zonal velocity uφ with blue indicating a retrograde flow and lines show meridional
circulation - dotted lines being anti-clockwise and solid lines clockwise.

Figure 9.11 shows azimuthally averaged zonal velocity and the meridional circulation
at different magnetic field strengths. Around Le = 0.05, secondary circulation cells start
to develop close to the rotation axis and stay as a dominant flow structure thereafter. A
tendency of the flow to get aligned with the rotation axis is seen at high field strengths.
The meridional circulation structure is very similar to that observed at high magnetic field
strengths by Tilgner (1999b) for a precessing flow under the influence of a magnetic field.

9.6 Discussion

We found new and intriguing effects of an externally imposed axial magnetic field on
inertial modes in a spherical Couette setup. We started initially with a weak field and
compared it with diagnostics from experiments of Kelley et al. (2007), finding excellent
agreements. Thereafter we increased the magnetic field magnitude to explore magnetic
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modifications of the inertial modes. It was seen that the growth rate of the fast EA inertial
modes increases by more than an order of magnitude even in the presence of a magnetic
field which is not very strong (Le = 0.03) and is achievable in experiments. Around
Le = 0.035, the EA modes with m = 1 and m = 3 were modified quite heavily both
in terms of frequency and structure while the (3, 2) mode was only slightly modified in
frequency and not modified at all in structure. The largest magnetic field that can be
achieved in the 3-metre experiments corresponds to Λ = 14.4 (table 1 in Zimmerman
et al. 2014). Taking typical experimental Ekman number E = 10−8 and Pm = 10−6 for
liquid sodium, one ends up with Le = 0.38. For the 60 cm experiment at Maryland,
USA, this would vary between Le = 0.01 and Le = 0.18 depending on the rotation
rate (using data from Kelley et al. 2007). Thus, frequency and structure of the inertial
modes observed in these experiments could be modified quite heavily by the magnetic
field, depending on the mode being identified. We also saw that whether the growth of
an EA mode would be promoted or suppressed by the magnetic field depends on when
the magnetic field is imposed. An EA mode which onsets purely hydrodynamically is
suppressed by an imposed axial magnetic field, while the growth and saturation for the
same mode is promoted when the mode onsets in the presence of the magnetic field.

The magnetic field also introduces other effects such as spinning up of the fluid and
newly formed circulation cells inside the tangent cylinder. This leads to an increase in
the flow kinetic energy as well as enhanced viscous dissipation. At high magnetic field
strengths (Le 6 0.1 in our simulations), the flow structures show a tendency to get aligned
with the rotation axis.

Though several interesting effects of a magnetic field were observed, their physical
explanations still remain to be answered. One could start by exploring force balances
in space and time of the various cases, in particular investigating the interactions of the
Lorentz and the Coriolis forces, and exploring similar effects at other parameters where
such fast EA inertial modes are observed.
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10 Conclusions and Outlook

“Wir müssen wissen - wir werden
wissen!”
(We must know - we will know!)

David Hilbert

Brief summary of results

In this study, we used direct numerical simulations (DNS) with an aim of studying a
several aspects of a differentially rotating fluid in a spherical shell. The motivation for
studying such a system was two fold. The first being the fact that the interiors of plan-
ets and stars consist of fluid layers in rotating spherical shells, and thus, an understand-
ing of the fluid dynamics of such a system would provide insights into the interiors of
these astrophysical objects. Secondly, there are experiments, both hydro- and magneto-
hydrodynamic, which use this setup with the aforementioned motivation, but with limited
diagnostics. Direct numerical simulations of the setup could help confirm experimental
observations and provide a better understanding of the fluid and MHD instabilities taking
place inside the experiments. This is especially true for liquid sodium experiments in
opaque containers where the fluid is not even visible. DNS have the advantage of having
access to specific modes of flow and magnetic fields as well as to values of all variables
and forces at each individual grid point. An insight of such depth is not possible with
experimental investigations.

We began by exploring the case when the outer boundary is stationary (chapter 5). As
the inner boundary rotation rate is increased, a radial jet starts to emerge after a certain
rotation rate. The width of this jet as well as the torque on the inner sphere was scaled
with the Reynolds number of the flow at the equator of the inner boundary (Rei). Both
scalings agreed well with past studies of a rotating sphere in an unbounded fluid as well
as with experiments of Sorokin et al. (1966) for a spherical Couette flow.

For the case of a rapidly rotating outer boundary, we ran simulations for both senses
of differential rotation, but with different objectives. For positive differential rotation, we
attempted to reproduce the the torque bistability observed in the water experiments of
Zimmerman (2010). For negative differential rotation, we performed a close comparison
of the transition into different hydrodynamic regimes with the experiments of Hoff et al.
(2016b), with the aim of answering the long standing open question of the onset of fast
equatorially antisymmetric (EA) inertial modes in the spherical Couette system (Kelley
et al. 2010, Rieutord et al. 2012).
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For positive differential rotation (chapter 5), we found some similarities with Zimmer-
man (2010) in the temporal spectra of the torque when comparing a transient high torque
state with a low torque state in steady state. The flow solutions showed that the low torque
state has a region of fast rotating fluid close to the tangent cylinder, as envisaged by Zim-
merman (2010) and that the zonal velocity profile looks more flat in the high torque state.
The question that we could not answer was how a cyclic disintegration and rebuilding of
such a flow might take place. Simulations at a faster outer boundary rotation rates might
be turbulent enough to achieve a torque bistability as observed in the experiments and
help bridge the gap in parameters.

Varying differential rotation in a negative sense (chapters 6 - 7), excellent agreements
were found between the hydrodynamic regimes and the fast EA inertial modes observed
in the simulations and those observed in the experiments of Hoff et al. (2016b). This
work was carried out in collaboration with Santiago Triana from the Royal Observatory
of Belgium and Michael Hoff from BTU C-S. The observed fast equatorially antisymmet-
ric (EA) modes also corresponded well with those from experiments at Maryland, USA
(Kelley et al. 2007, Triana 2011), especially for faster outer boundary rotation rates. Us-
ing an artificial excitation and numerical truncation experiments we were able to conclude
two key points. First, the background flow heavily modifies the inertial modes and can ex-
plain departures of their frequencies and structures from theoretical eigenmodes of a full
sphere or spherical shell. Second, the equatorially symmetric (ES) instabilities that set in
before the onset of the fast EA modes are not necessary for their onset, indicating that
the fast EA modes might onset due to an instability of the axisymmetric background flow.
However the ES instabilities play a role in selecting which modes onset in the system.
This study helped provide clues towards answering the question of onset of EA inertial
modes by differential rotation.

After increasing the differential rotation magnitude in a negative sense, the temporal
spectrum of the flow was seen to become broadband at a very sharp and well-defined
critical differential rotation rate. A study of this ‘turbulent regime’ was performed in
chapter 7 with two goals in mind - characterising the flow in this regime and investigating
the mechanism of transition to turbulence. In both the inertial mode regime as well as
this ‘turbulent’ regime, we found a sharp decay of the temporal spectrum beyond 2Ω

where Ω is the rotation rate of the outer boundary. The decay was better pronounced
in the turbulent regime. This decay has been seen in experiments as well (Triana 2011,
Hoff et al. 2016b) and indicates that the energy exchanges in the turbulent flow must
be occurring through interactions of inertial waves which can only have frequencies till
2Ω. The spatial energy spectra indicated that the inertial mode regime is in a state of
weak inertial-wave turbulence (Galtier 2003), which eventually transitions to a state of
homogeneous and isotropic turbulence with an energy spectrum given by Kolmogorov
(1941a,b) and Obukhov (1941). The transition takes place exactly when the time-average
of the mean squared value of the inertial term in our simulations matches that of the
Coriolis term, indicating that it is a competition between the eddy turnover time-scale and
the inertial wave time scale, similar to the concept of a Zeman scale in turbulence (Zeman
1994). What was thought to be a sharp transition to turbulence is in fact a transition from
rotation dominated turbulence to a more homogeneous and isotropic turbulence. Since,
periodic features remain in the flow even in the isotropic turbulent regime, the Landau
(1944b) mechanism of the transition to turbulence seems to be favoured as compared to
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the mechanism of Ruelle and Takens (1971). This is in contrast to what has been found
in the past for a Taylor-Couette flow (Gollub and Swinney 1975). This study provided a
lot of insights into the turbulent state of the spherical Couette system.

Chapter 8 introduced some fundamentals of magnetohydrodynamics which was nec-
essary to understand chapter 9 where I imposed an external axial magnetic field on the
spherical Couette setup with the aim of verifying the experimental diagnostics of Kelley
et al. (2007) as well as understanding the effect of a strong magnetic field on the EA iner-
tial modes. For a weak magnetic field, I found excellent agreements with the findings of
Kelley et al. (2007). For a strong field, however, I observed some intriguing results which
have never been reported before. I found that imposing a magnetic field during the onset
of an EA mode increased its growth rate by more than an order of magnitude. While for
some modes it had a very mild effect on the frequency and structure, for others it had
a more profound effect with one mode being replaced by another of the same azimuthal
and equatorial symmetry. In addition, I found that the fluid differential rotation increases
inside the tangent cylinder as the magnetic field strength is increased, accompanied with
a decrease in the torque on the inner sphere and an increase in the fluid kinetic energy and
ohmic and viscous dissipation. With a strong magnetic field, the background flow struc-
tures tended to align with the rotation axis. These results show that a magnetic field can
increase the growth rate of an EA inertial mode and might influence it heavily depending
on the type of mode excited.

Conclusions
We see that the spherical Couette system provides us with a plethora of intriguing fluid
dynamic and MHD phenomena. One curious aspect of the system is the formation of tri-
adic resonances of inertial modes. At all outer boundary rotation and differential rotation
rates we explored, pairs of fast EA modes formed a triadic resonance with the fundamen-
tal m = 1 instability. This was also shown to be true for the 3-metre experiment where
the flow was in a much more turbulent state. Nonlinear interaction with the background
flow and between different modes is the only pathway of exchange of energy available in
this system. This can be easily tested by turning off the nonlinear term in the simulations,
whence all modes decay away except for the axisymmetric background flow. Being the
only mechanism of energy exchange, the system chooses to be in a state where this mech-
anism acts most efficiently, leading to resonances. Even though we found in chapter 6 that
the equatorially symmetric modes are not necessary for the onset of an EA mode, their
role in mode selection comes from the criteria for triadic resonances. Once a dominant
EA mode has onset, only those inertial modes can onset which form a triadic resonance
with the dominant EA mode and the existing equatorially symmetric instability. Triadic
resonances between inertial waves are crucial for energy exchanges among various scales
in the turbulent regime, as was shown in chapter 7.

In the regime of homogeneous and isotropic turbulence, we found the onset of an
equatorially symmetric mode which could not be explained. Such columnar structures
have been predicted by studies in rotational turbulence (e.g. Davidson et al. 2006) under
the assumption that the influence of rotation on the flow is strong, which we showed
was not the case as the spatial spectra resembled the classical Kolmogorov spectrum for
homogeneous and isotropic turbulence. This has also been seen in the 3-metre experiment

165



10 Conclusions and Outlook

where a single strong signal corresponding to an inertial mode was observed in the most
turbulent state of the flow. This mode was not accompanied by any other modes and thus,
did not form triads. In chapter 9, we saw that in the presence of a magnetic field, the
inertial modes were amplified, modified and no longer formed triads.

Though inertial modes are classically thought to be excited due to external oscillatory
mechanisms (precession, libration, tidal excitation, Le Bars et al. 2015), we showed that
an instability of the background flow by differential rotation can also trigger them. The
magnitude of differential rotation required to trigger the onset of these modes decreases
with an increase in the outer boundary rotation. Thus, for real astrophysical objects,
where the Coriolis force plays a much larger role in the dynamics, the differential rotation
required for the onset of these modes would be a very small fraction of the outer boundary
rotation rate. The same can be said about the critical differential rotation required for the
transition to a homogeneous and isotropic turbulent regime. Inertial modes have been
observed in the Earth (Aldridge and Lumb 1987) as well as in stars as inertia-gravity
modes (e.g. Neiner et al. 2012, Pápics et al. 2012) and can be effective in transporting
angular momentum (e.g. Rogers et al. 2013). Especially in the presence of a magnetic
field, we found that the onset of an EA mode due to differential rotation was enhanced.
Thus, the presence of these modes is quite likely in astrophysical objects.

In figure 10.1, we plot all the available data from our simulations and experiments
at BTU C-S and try to scale the various hydrodynamic regimes to extreme parameters
of astrophysical objects. One of the objects chosen is a B-type main sequence star KIC
10526294 where part of the envelope is estimated to be counter rotating (Triana et al.
2015). The Earth where the core is supposed to be co-rotating (Song 2000, Tkalc̆ić et al.
2013), is also plotted on the same plot as our simulations and experiments for a perspec-
tive. One can think of it as plotting a terrestrial planet with the same rotation rate as the
Earth but where the inner core counter rotates at the same rate as the estimates for Earth.
Though such a linear extrapolation is a gross oversimplification, it tells us that the star
KIC 10526294 might be in a state of homogeneous and isotropic turbulence, while the
Earth-like planet might have a Stewartson layer instability.

Outlook
This study found new and intriguing results about the spherical Couette system while
opening up doors to new questions. For example, though we found that the fast EA
inertial modes can onset due to instabilities of the axisymmetric background flow, we do
not know what determines the growth rate of the EA modes, especially in the presence of
other instabilities. In addition, we found that the boundaries of the hydrodynamic regimes
depend on the outer boundary rotation rate. Performing simulations with several different
outer boundary rotation rates would provide a better answer towards how these regime
boundaries scale with the outer boundary rotation rate, thus enabling us to extrapolate our
findings to real astrophysical objects.

In our simulations, the regime of broadband turbulence was only investigated for one
outer boundary rotation rate. We saw that a criteria for transition from rotation dominated
turbulence to homogeneous and isotropic turbulence was an exact match between the eddy
turnover time-scale and the inertial wave time-scale. This criteria needs to be verified for
other outer boundary rotation rates to test if what we observed is a mere coincidence. The
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experiments of Hoff et al. (2016b) obtained a scaling law of Roc ∝ E1/5 for the critical
differential rotation rate for transition to the isotropic turbulent regime. However, this law
was obtained over a small range of outer boundary rotation rates. This law could be tested
with simulations at other rotation rates of the outer boundary as well. In addition, different
hydrodynamic regime boundaries may also exist in terms of outer boundary rotation and
not just differential rotation which is worth exploring if one wants to infer something
about real astrophysical objects.

The imposed magnetic field left us with several open questions. It is curious as to why
the magnetic field leads to such a drastic change in the growth rate of the EA modes when
one would expect it to try to align fluid motions along the axis. Even more intriguing is
the fact that the expected behaviour is found when the magnetic field is imposed after the
EA modes have set in, whereby it quenches the modes. This in turn gets us back to the
question that we do not understand the reason for the growth rates of these EA modes,
even in the purely hydrodynamic case. The change in mode frequency and structure due to
the magnetic field was also not understood. This are completely new results not reported
or explored before.

The possibilities of future work with this setup are endless. One could start by building
on the present study and trying to answer some of the open questions by further studies of
hydrodynamic regimes at different outer boundary rotation rates. The artificial excitation
of inertial modes used in this study can be further used to perform a detailed study of the
nonlinear interactions of background flow and an inertial mode, or nonlinear interactions
of different user-defined inertial modes. Another interesting aspect would be the effect
of an imposed axial magnetic field on EA inertial modes which has only been briefly
explored here and is a completely new territory. Other completely unexplored territories
are stable stratification of the fluid inside and taking into account fluid compressibility.
These could have direct applications to stars, especially with regards to magnetic field
interactions and angular momentum transport.

Ongoing and planned studies building on this work include a systematic study of
parameter variations outer and inner boundary rotation rates as well as imposed magnetic
field strengths. Though a lot of past work has been done in this regard, they have mostly
focussed on either a stationary outer boundary (Hollerbach and Skinner 2001) or a fixed
ratio of inner to outer boundary rotation (Gissinger et al. 2011). Another ongoing study is
on spherical Couette dynamos which could have possible applications to stellar radiative
zones. There have only been two such studies in this regard (Guervilly and Cardin 2010,
Cao et al. 2012) in a limited parameter space and an expanded parameter regime is waiting
to be explored.
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Appendix





A Orthogonality and eigenvalues of
Inertial modes

A.1 ω real and |ω| ≤ 2

Multiply the momentum equation (2.44a) with the complex conjugate Q† and integrate
over the whole volume W of the container. Doing so, we get

− iω
∫

W
Q† · QdV + 2

∫
W

Q† · ( ẑ × Q) dV = −

∫
W

Q† · ∇φdV. (A.1)

Consider the term on the RHS. Since ∇ · Q† = 0, one can write Q† · ∇φ = ∇ ·
(
Q†φ

)
and we would get

∫
W

Q† · ∇φdV =

∫
W
∇ ·

(
Q†φ

)
dV

=

∫
∂W
φ
(
Q† · n̂

)
dS

= 0,

(A.2)

where we have used the divergence theorem and the boundary condition that Q† · n̂ = 0
on the surface ∂W of the container. This term being zero, we get,

ω = −2i

∫
W

Q† · ( ẑ × Q) dV∫
W

Q† · QdV

= −2i

∫
W

ẑ ·
(
Q × Q†

)
dV∫

W
Q† · QdV

= 4

∫
W

ẑ · (QR × QI ) dV∫
W

(
QR2 + QI 2) dV

,

(A.3)

where, Q = QR + iQI . Equation (A.3) proves that ω is real. Taking a closer look at
the numerator,
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∫
W

ẑ · (QR × QI ) dV ≤
∫

W
|QR × QI |dV

≤

∫
W
|QR||QI |dV

≤
1
2

∫
W

(
QR2 + QI 2

)
dV,

(A.4)

where in the last step we have used the inequality: arithmetic mean ≥ geometric mean.
Substituting in equation (A.3), we obtain

|ω| ≤ 2, (A.5)

or, in the dimensional form,

|ω| ≤ 2Ω. (A.6)

A.2 Orthogonality
Consider two eigenmodes, Qm and Qn, associated with eigenvalues ωm and ωn, respec-
tively such that ωm , ωn. Doing a similar exercise as equation (A.1), but this time,
multiplying the equation for Qn with Q†m and vice-versa, one can write the following
equations

−iωnQ†m · Qn + 2Q†m · ẑ × Qn = −Q†m · ∇Φn, (A.7a)

iωmQn · Q†m + 2Qn · ẑ × Q†m = −Qn · ∇Φ†m. (A.7b)

If we add the two equations and integrate over the volume W of the container, we
would find, as before, that the terms on the RHS would vanish owing to the boundary
condition Q · n̂ = 0 on ∂W. In addition, since Q†m · ( ẑ × Qn) = −Qn ·

(
ẑ × Q†m

)
, the sum of

the second terms on the LHS also vanishes. Thus, we are left with

(ωm − ωn)
∫

W
Q†m · QndV = 0. (A.8)

Since, ωm − ωn , 0, we get ∫
W

Q†m · QndV = 0. (A.9)

Equation (A.9) shows that inertial modes are orthogonal.

194



B List of dimensionless numbers

Symbol Name Definition Note

E Ekman
number

E =
ν

ΩL
Represents importance of viscous dissipation
with respect to the influence by rotation in the
form of Coriolis force. Named after Ekman
et al. (1905) who showed that boundary layer
thickness in a rotating system scales as E1/2.

Rou flow
Rossby
number

Rou =
U
ΩL

Represents the importance of inertial advec-
tion with respect to the Coriolis force, and
hence is a measure of how much the flow
is influenced by rotation. Named after Carl-
Gustaf Rossby and is the traditional defini-
tion of Rossby number.

Ro Rossby
number

Ro =
∆Ω

Ω
Quantifies the amount of differential rotation
between the inner and outer sphere in a spher-
ical Couette flow. Used in this context by
Hollerbach (2003).

Re Reynolds
number

Re =
UL
ν

Represents the importance of inertial with re-
spect to viscous dissipation and is the criti-
cal quantity determining transition from lam-
inar to turbulent flow. Named after Reynolds
(1883) who popularised this idea of Stokes
(1851).

Pm Magnetic
Prandtl
number

Pm =
ν

λ
Ratio between viscous and ohmic dissipa-
tion in an MHD flow. Named after Ludwig
Prandtl.

Rm Magnetic
Reynolds
number

Rm =
UL
λ

Represents the importance of advection of
magnetic field with respect to diffusion.

Le Lehnert
number

Le =
B

ΩL
√
µρ

Ratio of the Alfvén speed to the speed of an
inertial wave
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