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Summary

Mean-field theory provides a useful description of magnetohydrodynamic processes lead-
ing to large-scale magnetic fields in various cosmic objects. In this study, dynamo pro-
cesses in a rotating spherical shell have been considered, and mean fields have been de-
fined by azimuthal averaging. In mean-field theory, the coefficients occurring in the ex-
pansion of the mean electromotive force in terms of the mean field and its derivatives are
used to analyse and to simulate dynamo action. In this work, dynamo processes present in
geodynamo simulations have been studied by computing corresponding mean-field coef-
ficients. Furthermore, their dynamo action in a mean-field simulation has been examined.
For this purpose, two methods to determine mean-field coefficients have been developed:

Approach (I) is based on the numerical computation of electromotive forces for a
number of imposed mean test fields. This requires one to solve the induction equation
for the non-axisymmetric, residual field numerically. Subsequently, the linear relation
between the mean electromotive forces and the test-fields is inverted to solve for the mean-
field coefficients.

Approach (II) aims at deriving quasi-analytical expressions for the mean electromo-
tive force and finally for the mean-field coefficients. Again, the residual magnetic field
for a given velocity field has to be known. Applying the second order correlation ap-
proximation, assuming stationarity, and neglecting the mean flow, the induction equation
for the residual field may be integrated analytically. This has been done by means of a
poloidal/toroidal decomposition of the velocity field and the magnetic field. A subsequent
expansion in spherical harmonics converts the angular derivatives to algebraic relations.
The remaining integration over the radial coordinate has been carried out with the help of
appropriate Green’s functions.

Both methods have been applied to a simulation of rotating magnetoconvection and a
simple quasi-stationary dynamo (hereafter referred to as benchmark example). They are
consistent with each other in a parameter regime in which the second order correlation ap-
proximation (SOCA) is justified. In general, however, mean-field coefficients determined
by means of SOCA exhibit overestimated amplitudes.

In both examples, the resulting tensorial mean-field coefficients are highly anisotropic
and demonstrate the existence of an α2-mechanism along with a strong γ-effect operating
outside the inner core tangent cylinder. The turbulent diffusivity exceeds the molecular
one by at least one order of magnitude in the benchmark example. However, the turbulent
diffusion may also be moderated by a δ × j-effect due to a turbulent conductivity with a
conductivity tensor which is no longer symmetric.

Moreover, the quenching of relevant mean-field coefficients, e.g. the α- and β-quen-
ching, resulting from the back reaction of the Lorentz force on the velocity field has been
examined in the magnetoconvection example. Both the α- and the β-components are
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Summary

quenched to low values if the strength of the mean magnetic field exceeds the equipartition
field strength by at least a factor of five.

Approach (I) has likewise been applied to two highly time-dependent dynamos, one
in the strongly columnar and the other in the fully developed regime. The resulting time-
averaged mean-field coefficients resemble those obtained in the magnetoconvection and
benchmark example, which indicates that similar dynamo processes take place.

The temporal fluctuations of mean-field coefficients occur on timescales of the con-
vective turnover time. They exhibit particularly large amplitudes for the dynamo in the
fully developed regime, in which the velocity field lacks any equatorial symmetry.

With the aim of comparing mean-field simulations with corresponding direct numeri-
cal simulations, a two-dimensional mean-field model involving all previously determined
mean-field coefficients has been constructed. Various tests with different sets of mean-
field coefficients reveal their action and significance. In the magnetoconvection and
benchmark example considered here, the match between direct numerical simulations
and mean-field simulations is best if at least 17 mean-field coefficients are kept. In the
magnetoconvection example, the azimuthally averaged magnetic field resulting from a
direct numerical simulation is in good agreement with a corresponding result given by
the mean-field model. However, this match is not satisfactory in the benchmark example.
Here, the traditional representation of the mean electromotive force including no higher
than first-order derivatives is no longer justified. The lack of a clear scale separation ren-
ders the applicability of the traditional mean-field approach inappropriate in this example.
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1 Introduction

“How could a rotating body such as the Sun become a magnet?”, asked Sir Joseph Larmor
in a famous article in 1919 (Larmor 1919). While the origin of the magnetic field of the
Sun was at that time a total mystery, the magnetic field of the Earth did not excite similar
inquiry because it was still believed that the Earth’s magnetic field could be explained in
terms of permanent magnetisation (Moffatt 1978). However, today it seems to be evident
that large-scale magnetic fields as the Earth’s as well as the solar or the galactic magnetic
field are maintained by hydromagnetic dynamos (Weiss 2002). In the case of the Earth,
the timescale of ohmic decay in the Earth’s core is of several thousand years, whereas
the field has been present for at least 3.5 Gyrs. In addition, it is now well known that the
temperature of the Earth’s interior is above the Curie temperature at which ferromagnetic
materials loose their permanent magnetisation. Further observations which contradict the
hypothesis of permanent magnetisation are the secular variation of the Earth’s magnetic
field and polarity reversals which occurred in the Earth’s history as proven by paleomag-
netic records (Fearn 1998, Roberts and Glatzmaier 2000).

Although Faraday had demonstrated that currents can be driven by the inductive ef-
fect of a disc rotating in the field of a permanent magnet and Siemens had succeeded in
constructing a self-exciting dynamo in 1866, Larmor’s proposal (1919) that ”it is possi-
ble for the [Sun’s] internal cyclic motion to act after the manner of the cycle of a self-
exciting dynamo” was controversial. In particular, Cowling (1933), who had shown that
an axisymmetric magnetic field could not be maintained by hydromagnetic dynamo ac-
tion, objected: ”The theory proposed by Sir Joseph Larmor, that the magnetic field of a
sunspot is maintained by the currents it induces in moving matter, is examined and shown
to be faulty: [...]”. The initial controversy about the existence of self-excited dynamos
driven by fluid motions originated from the complexity of the dynamo problem: It is in-
trinsically three-dimensional and nonlinear due to the back-reaction of the Lorentz force.
Meanwhile, the existence of dynamo action by fluid flow had been proven theoretically
and was demonstrated in the recent past through the laboratory dynamo experiments in
Riga and Karlsruhe (Müller and Stieglitz 2000, Gailitis et al. 2000).

Nevertheless, global computational dynamo models simulate only the geodynamo rea-
sonably well, while it remains difficult to tackle the stellar or galactic dynamo problem.
Despite the increasing computational power, a direct numerical treatment of the govern-
ing partial differential equations is not yet feasible in the latter cases, because of the huge
range of spatial and temporal scales needing to be resolved there (Tobias 2002, Weiss
and Tobias 2000, Shukurov 2002). First attempts of global MHD simulations have been
carried out by Gilman (Gilman and Miller 1981, Gilman 1983) adopting the Boussinesq
approximation and later by Glatzmaier (Glatzmaier 1984, 1985) using an anelastic model.
Both aimed to model the solar dynamo. Though cyclic dynamo solutions were obtained

7



1 Introduction

in some cases, the models exhibited a wrong poleward migration of the magnetic field
(Glatzmaier 1985). In a recent attempt, Brun et al. (2004) succeeded in simulating a
solar-like differential rotation but can not reproduce any features of the solar cycle yet.

An alternative approach is provided by mean-field electrodynamics (Steenbeck et al.
1966, Moffatt 1978, Krause and Rädler 1980), which is a statistical theory focussing only
on large scale, i.e. averaged fields. Highly complex small-scale or residual parts need
not to be known in detail, only the averaged cross product of the residual velocity and
magnetic field, in the following called the mean electromotive force, is relevant and ac-
counts for the evolution of the mean field. Advantageously, the difficulties in resolving the
small-scale structures can be avoided. Usually, the action of the small-scale velocity on
the mean magnetic field as expressed by the mean electromotive force, E , is parametrised,
and the parameters are known as mean-field coefficients. Most prominent among them
is the so-called α-tensor. It is closely related to a fundamental induction effect associ-
ated with cyclonic convection (Parker 1955, 1957) which is nowadays known as α-effect
for this reason. Other mean-field coefficients contribute to the advection and diffusion of
the mean magnetic-field. In other words, mean-field theory supplies theoretical insight as
well as formalised physical concepts in order to interpret and, in principle, also to quantify
dynamo action.

Despite their relative simplicity, mean-field models have reproduced basic features
of the solar cycle successfully (see e.g. Stix 2002, Ossendrijver 2003) and are moreover
unique in simulating many features of the magnetic field in spiral galaxies coherently
(Beck et al. 1996, Shukurov 2002). But, whether mean-field models show dynamo action
or not depends strongly on the set of chosen mean-field coefficients, which are in general
not known but determined in a reasonable, but nevertheless arbitrary way. Thus, mean-
field models are subject to the fundamental criticism that they just reproduce what was
stuck into them beforehand.

Concerning the geodynamo, the situation is very much different. Many features of the
Earth’s magnetic field have been successfully reproduced by nonlinear three-dimensional
simulations of the magnetohydrodynamics in the Earth’s core. Although some model pa-
rameters still do not reach realistic values, and in particular viscous effects and therefore
the size of viscous boundary layers are by orders of magnitude overestimated, the sim-
ulations exhibit an axial dipole dominated magnetic field at the Earth’s surface that is
maintained over several magnetic diffusion times (Glatzmaier and Roberts 1995b, Kuang
and Bloxham 1997, Christensen et al. 1998). In addition, the time-dependence of the
dipole moment, including secular variation, excursions and reversals, resembles the ob-
served Earth’s magnetic field (Glatzmaier and Roberts 1995a, Kutzner and Christensen
2002). The success in simulating the geodynamo can be attributed to the rather moder-
ate vigour of turbulence in the Earth’s outer core compared to the much more turbulent
dynamics in the solar convection zone. The difference is formally expressed in terms of
very different magnetic Reynolds numbers: While Fearn (1998) estimates Rm ∼ O(103)
for the Earth’s outer core a representative value of Rm at the base of the solar convection
zone is Rm ≈ 1010 (Ossendrijver 2003).

Even though present geodynamo models are fully self-consistent their interpretation
relies frequently in a heuristic manner on mean-field concepts (Glatzmaier and Roberts
1995b, Kageyama and Sato 1997, Olson et al. 1999). This indicates that the need for
fundamental physical concepts explaining dynamo processes makes mean-field theory
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1 Introduction

extremely useful and indispensable at the present time. However, the applicability of
mean-field concepts as tools for analysing dynamo processes in direct numerical sim-
ulations suffers again from the poor knowledge of mean-field coefficients and reliable
methods to derive them.

There are two seminal approaches which have been followed in order to determine
mean-field coefficients. The first one makes use of numerical modelling, in which the
mean electromotive force, E , as well as the mean-field, B, are determined numerically
as an output of an MHD-simulation. Further on, a linear relation between E and B is
assumed, which has to be inverted in order to solve for the unknown mean-field coeffi-
cients. However, a fundamental problem related to this approach arises since the number
of unknown variables is in general much higher than the number of equations resulting
from the linear relation between E and B. Therefore, all work presented so far refers
either to specific situations in which certain constraints reduce the number of mean-field
coefficients beforehand, or most of the mean-field coefficients are considered as small
and are simply neglected. Ziegler et al. (1996) calculated the α-tensor for the galactic
dynamo due to numerical simulations of supernova explosions and confirmed the results
given by Ferrière (Ferrière 1993a, see below) whereas further terms in the expansion of
E have been neglected. Following also the first approach described above, Ossendrijver
et al. (2001, 2002) used box simulations of magnetoconvection in the solar convection
zone to determine the local α-tensor in Cartesian geometry. Both, Ziegler et al. (1996)
and Ossendrijver et al. (2002) performed three numerical experiments with imposed mean
magnetic field in orthogonal directions and combined the results in order to close the sys-
tem of linear equations. In a further attempt to determine not only the local α-tensor but
the β-tensor as well, Brandenburg and Sokoloff (2002) applied numerical simulations of
turbulence in accretion disks. As one result, they obtained a negative coefficient of turbu-
lent diffusion, which was considered as unphysical by the authors. Their idea of how to
increase the number of defining linear equations has been to exploit the time dependence
of E and B, that is, they considered expansions of Ei correlated with components of B in
order to increase the number of linear equations.

With the aim to study the saturation of the turbulent α-effect in the nonlinear regime,
Cattaneo and Hughes (1996) determined a box-averaged α-scalar, which thus has lost
any spatial dependence. Anyhow, their paper attracted interest because they found α
remarkebly quenched far below the equipartition value of B and postulated therefore a
catastrophic α-quenching for highly turbulent flows.

The second approach aims at deriving a (quasi-)analytical expression for the mean
electromotive force which can be evaluated for mean-field coefficients afterwards (see
e.g. Moffatt 1978, Krause and Rädler 1980). This requires one to integrate the governing
equation for the residual magnetic field with the help of closure methods. Most commonly
used is the second order correlation approximation (SOCA) in which only statistical mo-
ments up to the second order are taken into account, while moments of higher order are
neglected. Following this approach, an early result for a scalar α is given by Steenbeck
and Krause (1969). Further calculations by Kichatinov and Rüdiger (1992), Rüdiger and
Kichatinov (1993) provide more α-coefficients but rely on specific symmetry assump-
tions and various additional approximations, valid in the high conductivity limit and for
high and low rotation rates, respectively. In the context of the galactic dynamo, Ferrière
(1992) used the SOCA-closure and the frozen flux approximation to conclude an analyti-
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cal expression for the mean electromotive force based on turbulence driven by supernova
and superbubble explosions. In a series of following papers, Ferrière (1993a,b) gave also
formulas for the nonvanishing components of the α- and β-tensor in cylindrical geometry.
By the same token, the dynamo action of idealised, spatially periodic flows, realised in
the Karlsruhe dynamo experiment for instance, has been intensively studied with means
of the SOCA-closure (Rädler et al. 2002, Tilgner 2004). In these cases, the velocity field
is given analytically and possesses a number of simplifying symmetries, which allows a
rather direct computation of mean-field coefficients.

Other closure methods, as the ‘Eddy-damped quasi-normal Markovian’ closure
(EDQNM) (Orszag 1970) and the related τ -approximation (Pouquet et al. 1976), have
been likewise applied. The quasi-normal approximation replaces fourth-order moments
by a sum of products of second-order moments, which is to some extent arbitrary. Never-
theless, this closure scheme seems to be consistent with a general description of turbu-
lence (Moffatt 1978) and is frequently used by, e.g., Kleeorin and Rogachevskii (2003)
to investigate the dependency of the α-tensor on rotation rate or to study the α-effect,
turbulent diffusion and the shear-current effect in the nonlinear regime (Rogachevskii and
Kleeorin 2000, 2004).

The idea of this thesis work is to take advantage of global, direct numerical simulations
as performed to simulate the geodynamo and to compare them with respective mean-field
calculations. This will lead to an estimation of the reliability of mean-field theory and its
often used approximations. On the other hand, such a comparison will help to improve the
conceptual understanding of dynamo mechanisms which are observed in direct numerical
simulations.

As already pointed out earlier, both aims are intimately associated with the derivation
of corresponding mean-field coefficients. Hence, emphasis is placed on the developement
of two methods which contribute to each of the principal approches mentioned above.
Both methods confirm each other and serve as powerful tools to determine a number
of relevant mean-field coefficients. While most of the quoted earlier work refers to a
cartesian-box geometry, global mean-field coefficients for the astrophysically more rele-
vant domain of a rotating sphere are presented here, and specific problems related to the
spherical geometry are discussed.

Besides their use in a mean-field model, the resulting mean-field coefficients are of
relevance because of their associated physical meaning. Thus, it will be interesting to
learn about their spatial and also temporal dependencies. Is it possible to derive some
constraints on their amplitude or morphology? How do the actual mean-field coefficients
deviate from those derived in the isotropic or second order correlation approximation?
To which extend are mean-field coefficients quenched due to nonlinear effects? So as to
tackle these questions, a sample of four very different models is examined. The simplest
one is not a self-excited dynamo but a simulation of rotating magnetoconvection at a rather
moderate magnetic Reynolds number, the most complicated a reversing dynamo in a very
different flow regime. These investigations are not meant to be a systematic parameter
study but rather a first glimpse to gain insight into how mean-field coefficients vary with
the character of the flow.

In order to carry out the intended comparison between mean-field theory and direct
numerical simulations, a two-dimensional mean-field model has been constructed, which
relies on the set of determined mean-field coefficients. It has been used to test important

10



1 Introduction

assumptions on which mean-field models are frequently based, e.g. the assumption of a
scale separation or the applicability of the second order correlation approximation.

All implemented coefficients in the mean-field model can be weighted giving the pos-
sibility to isolate and therefore identify certain dynamo processes. Which of the mean-
field coefficients have importance and what is their related action in a mean-field model,
which of them are negligible, are further questions which will be addressed within the
scope of this work.
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2 Numerical modelling of the
geodynamo

All self-consistent dynamo calculations presented here have been carried out with a nu-
merical model which was designed in its original form by Glatzmaier (1984). This version
of the code solved the anelastic magnetohydrodynamic equations in a spherical shell to
simulate stellar dynamos. Olson and Glatzmaier (1995) later applied a modified version
of the numerical model to run siumulations of magnetoconvection in a rotating spheri-
cal shell adopting the Boussinesq approximation. Further changes by Christensen et al.
(1999) result in an explicit treatment of the Coriolis force and in a modified time-step
control. Meanwhile, the code has been validated by benchmarking it with other three-
dimensional models (Christensen et al. 2001). In the following, a short description of the
model equations in dimensionless form and the used numerical techniques to solve them
is given. For a more detailed discussion I refer to the quoted literature.

2.1 Model equations

A spherical shell of electrically conducting fluid is considered in which the fluid velocity
V , the magnetic field B and the temperature T are governed by

E

(
∂V

∂t
+ V · ∇V −∇2V

)
+ 2ẑ × V + ∇P = Ra

r

ro

T +
1

Pm
(∇× B) × B (2.1)

∇ · V = 0 (2.2)

∂T

∂t
+ V · ∇T =

1

Pr
∇2T (2.3)

∂B

∂t
= ∇× (V × B) +

1

Pm
∇2B (2.4)

∇ · B = 0 (2.5)

The fluid dynamic equations have to be understood as Boussinesq approximation. The
motion is measured relative to the uniform rotation of the shell with angular velocity Ωẑ at
which ẑ is a unit vector in the direction of the rotation axis. The governing dimensionless
parameters of the model are the Ekman number E = ν/ΩD2, the (modified) Rayleigh
number Ra = αT g0ΔTD/νΩ, the Prandtl number Pr = ν/κ and the magnetic Prandtl
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2 Numerical modelling of the geodynamo

number Pm = ν/η. In these expressions, ν denotes the kinematic viscosity, D the shell
width, αT the thermal expansion coefficient, g0 is the gravitational acceleration at the
outer boundary r = ro, ΔT means the temperature difference between the inner and outer
spherical boundaries, κ is the thermal and η = 1/μσ the magnetic diffusivity with the
magnetic permeability μ and the electrical conductivity σ. This choice of dimensionless
parameters implies that D, D2/ν, and (�μηΩ)1/2, in which � is the density, serve as the
length scale, time scale and scale for the magnetic field, respectively. The ratio of outer
to inner radius of the shell is ro/ri = 0.35, and thus D = 0.65 ro for all simulations
considered here. For the velocity V , no-slip boundary conditions are adopted:

V = 0 at r = ri, r = ro (2.6)

Moreover, all surroundings of the spherical shell are assumed as electrically non-conduc-
ting, so the magnetic field B continues as a potential field in both parts exterior to the
fluid shell. However, for the simulation of magnetoconvection, an imposed toroidal field
is assumed, resulting from electric currents due to sources or sinks on the boundaries, and
the magnetic boundary conditions are changed accordingly. The temperature is assumed
to be constant on the boundaries, so that

T = 1 at r = ri, T = 0 at r = ro (2.7)

The initial conditions are not thought to be of essential importance since the sim-
ulations usually reach a statistical equilibrium after a transient period in the sense that
appropriate time averages of the magnetic or the kinetic energy density, for instance, be-
come steady. For practical reasons it is of course reasonable to start calculations with
adjacent solutions in parameter space.

In order to characterise the results of the simulations, the magnetic Reynolds number
Rm = vD/η with v interpreted as r.m.s. velocity and the Elsasser number Λ = B2/�μηΩ
with B interpreted as the r.m.s. value of the magnetic field inside the shell are used.

2.2 Numerical techniques

Since velocity and magnetic field are assumed to be solenoidal, both can be represented
as a sum of toroidal and poloidal vectors in the form

V = ∇× (zr̂) + ∇×∇× (wr̂) (2.8)

B = ∇× (jr̂) + ∇×∇× (br̂) (2.9)

with the defining scalars z, w and j, b, respectively; r̂ denotes a unit vector in radial direc-
tion. Thus, together with the temperature, there are five variables which are determined
by solving the radial component of the momentum equation (2.1), the radial component of
the curl of the momentum equation, the radial component of the induction equation (2.2),
the radial component of the curl of the induction equation, and the temperature equation
(2.3). A complementing equation to determine the pressure is given by taking the diver-
gence of the momentum equation. All variables are expanded in spherical harmonics to
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2.2 Numerical techniques

resolve their horizontal structure and in Chebyshev polynomials to resolve their radial
dependence. While spatial derivatives are most conveniently taken in spectral space, all
nonlinear products are calculated in grid space. The discretisation in time is performed by
an implicit Crank-Nicholson scheme and by an explicit Adams-Bashforth scheme for the
treatment of the nonlinear terms and the Coriolis force. The resulting equations are finally
solved by a Chebyshev collocation method, that is, the equations are forced to be satisfied
at all Chebyshev radial grid-points, except for the two representing the boundaries. The
radial grid points are non-equidistant with

rn =
ro + ri

2
+ xn, n = 0, · · · , N (2.10)

at which the Chebyshev grid-points xn are defined as

xn = cos
(nπ

N

)
(2.11)

As a rule of thumb, the spectral maximum to cut-off ratio of the kinetic and magnetic
energy is required to be 102 for well-resolved dynamo models (Christensen et al. 1999).
However, this requirement is not fulfilled for the most chaotic dynamo investigated here.
In this case, I follow Kutzner and Christensen (2002) who have shown that the principal
structure of the flow and the magnetic field at larger length scales does not sensitively
depend on the truncation of the spectrum at the harmonic degree lmax = 85.
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3 Mean-field theory

In the following brief introduction to the mean-field concept, emphasis is placed on the
discussion of assumptions and approximations, which allow a rather simple and very ele-
gant treatment of the dynamo problem. Therefore, it is no surprise that they are frequently
applied, and it is one aim of this work to test their validity and applicability. In the fol-
lowing, I refer to a spherical coordinate system (r, ϑ, ϕ) with its polar axis coinciding
with the rotation axis of the shell if not otherwise identified. Difficulties due to the use of
spherical coordinates and implications resulting from the underlying symmetry properties
are pointed out in Section 3.2 and Section 3.4, respectively.

3.1 The mean-field concept

Mean-field theory is a statistical theory. Relevant vector fields, such as the velocity or the
magnetic field, are therefore subject to an averaging. Though mean fields are a matter of
definition, the choice of an averaging is not totally arbitrary. In order to follow the well
established line of mean-field dynamo theory (Krause and Rädler 1980, Rädler 1980,
Moffatt 1978), the averaging procedure must satisfy the Reynolds rules:

F + H = F + H, F H = F H (3.1)

with arbitrary functions F = F (r, t), H = H(r, t), and an overbar refering to mean
quantities. Also, the averaging operator should commute with the differentiation and
integration in space and time.

Within the scope of this work, the mean-field concept is applied to the induction equa-
tion (2.4) only. Subjecting it to a local averaging, which is assumed to fulfil the Reynolds
rules (e.g. an ensemble averaging, space or time averaging), yields

∂B

∂t
= ∇× (V × B) + ∇× E +

1

Pm
∇2B (3.2)

with the crucial electromotive force

E = v × b (3.3)

already mentioned. Here, v and b are defined by

B = B + b V = V + v (3.4)
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3 Mean-field theory

If V is given, the calculation of E requires the knowledge of the residual magnetic field
b, which is governed by

∂b

∂t
= ∇× (V × b) + ∇× (v × B) + ∇× G +

1

Pm
∇2b (3.5)

with G = v × b− v × b. According to (3.3) and (3.5), E is a functional of v,V , and B,
which is linear in B. Consequently, the following representation for E with some integral
kernel K has to apply

Ei = E (0)
i +

∫ ∫
Kij(x,x′, t, t′) Bj(x

′, t′) d3x′ dt′ (3.6)

in which I refer to Cartesian coordinates for the moment. With the additional assumption
that b vanishes if B does so, which of course has to be tested, one may conclude that E
is also homogeneous in B, i.e. E(0) ≡ 0. In principle, one could continue now deter-
mining K and using relation (3.6) to integrate the dynamo equation (3.2). However, this
is usually not done, and mean-field dynamo theory would loose lots of its simplicity and
attractiveness proceeding this way. Instead, E is assumed to depend instantaneously and
nearly locally on B. Therefore, B in (3.6) may be replaced by its Taylor series expansion
at x

Bj(x
′, t) = Bj(x, t) + (x′

k − xk)
∂Bj(x, t)

∂xk

+ · · · (3.7)

and taken out of the integral:

Ei = aijBj + bijk
∂Bj

∂xk

+ · · · (3.8)

with

aij =

∫ ∫
Kij(x,x′, t, t′) d3x′dt′ (3.9)

bijk =

∫ ∫
Kij(x,x′, t, t′)(x′

k − xk) d3x′dt′ (3.10)

· · ·
It is this Taylor series expansion in which the assumption of a scale separation comes into
play: K is assumed to be markedly different from zero for small |x′ − x| and |t′ − t|
only. Hence, the expansion in (3.8) is expected to converge rapidly, and it is argued that
only spatial derivatives up to the first order need to be taken into account – sometimes the
expansion in (3.8) is even truncated after the first term. This is an important simplification,
which accounts a lot for the applicability of mean-field theory. However, it is not obvious
whether the expansion in (3.8) converges at all.

Slightly different from the traditional approach described above, a non-local average
is adopted in this work. In order to define a mean vector field, its components with respect
to the spherical coordinate system are averaged over all values of the azimuthal coordinate
ϕ, e.g. B = Brer + Bϑeϑ + Bϕeϕ. As a consequence, all mean fields are axisymmetric
about the rotation axis from now on. Note that with the definition of mean fields used
here, the Reynolds averaging rules apply exactly.
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3.2 Mean-field coefficients in spherical geometry

Due to the non-local ϕ−average, some modifications of (3.6-3.10) occur: Instead of
(3.6), we have now

Eκ =

∫ ∫
Kκλ(r, ϑ, r′, ϑ′, t, t′) Bλ(r

′, ϑ′, t′) r′ sin ϑ′ dr′dϑ′ dt′ (3.11)

at which E(0) has been already ignored. Inserting the Taylor series expansion

Bλ(r
′, ϑ′, t′) = Bλ(r, ϑ, t) + (r′ − r)

∂Bλ(r, ϑ, t)

∂r
+ (ϑ′ − ϑ)

∂Bλ(r, ϑ, t)

r∂ϑ
+ · · · (3.12)

we finally arrive at

Eκ = ãκλBλ + b̃κλr
∂Bλ

∂r
+ b̃κλϑ

1

r

∂Bλ

∂ϑ
+ · · · (3.13)

with

ãκλ =

∫
Kκλ(r, ϑ, r′, ϑ′, t, t′) r′ sin ϑ′ dr′ dt′ (3.14)

b̃κλr =

∫
Kκλ(r, ϑ, r′, ϑ′, t, t′) (r′ − r) r′ sin ϑ′ dr′dϑ′ dt′ (3.15)

b̃κλϑ =

∫
Kκλ(r, ϑ, r′, ϑ′, t, t′) (ϑ′ − ϑ) r′ sin ϑ′ dr′dϑ′ dt′ (3.16)

Let us assume that only up to first order derivatives are considered in (3.13). Inserting
relation (3.13) into (3.2) then keeps the character of the dynamo equation unchanged. It
remains a linear parabolic partial differential equation, but now with 27 unknown param-
eters ãκλ, b̃κλr and b̃κλϑ. These so called mean-field coefficients are thought to be decisive
for dynamo action, and it is an outstanding task and one aim of this project to determine
them properly.

An important tool to derive simple results for a reduced number of mean-field coef-
ficients has been the second order correlation approximation which results in neglecting
the term ∇ × G in (3.5). But before I outline these well known results, it is necessary
to discuss specific problems which come along with the use of non-Cartesian coordinates
adjusted to the spherical geometry.

3.2 Mean-field coefficients in spherical geometry

The expansion of E referring to partial derivatives as given in (3.13) is not covariant,
that is, the mean-field coefficients ãκλ, b̃κλr, b̃κλϑ should not be interpreted as tensor com-
ponents. However, it is of course indispensable to establish a coordinate-independent
connection between the vectors E and B in order to relate the mean-field coefficients to
physical dynamo-effects. Following this aim, (3.13) has to be rewritten with the partial
derivatives replaced by the covariant derivative:

Eκ = âκ
λB

λ
+ b̂κ μ

λ B
λ

; μ (3.17)
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3 Mean-field theory

in which

B
λ

; μ =
∂B

λ

∂xμ
+ Γλ

μνB
ν

(3.18)

and the Christoffel symbols Γλ
μν are defined as

Γλ
μν =

1

2
gλξ

(
∂gξμ

∂xν
+

∂gξν

∂xμ
+

∂gνμ

∂xξ

)
(3.19)

Here, gμν denotes the metric tensor, and xμ, μ = 1, · · · , 3, stands for r, ϑ, and ϕ, respec-
tively; some caution has to be taken since (3.17-3.18) refer to a non-normalised basis.
Any coordinate transformation applied to (3.17) yields

E ′i =
∂x′i

∂xκ

(
âκ

λB
λ

+ b̂κ μ
λ B

λ

; μ

)
=

∂x′i

∂xκ
âκ

λ

∂xλ

∂x′j
∂x′j

∂xμ
B

μ

+
∂x′i

∂xξ

∂xρ

∂x′j
∂x′k

∂xσ
b̂ ξ σ

ρ

∂xτ

∂x′k
∂x′l

∂xρ
B

τ

; ρ

= â′i
jB

′j
+ b̂′i k

j B
′j
; k (3.20)

which proves the actual covariance of (3.17). For spherical coordinates, axisymmetric B,
and for a normalised basis, relation (3.17) reads

Eκ = aκrBr + aκϑBϑ + aκϕBϕ

+bκrr∂rBr + bκrϑ(1/r)(∂ϑBr − Bϑ) − bκrϕ(1/r)Bϕ

+bκϑr∂rBϑ + bκϑϑ(1/r)(∂ϑBϑ + Br) − bκϑϕ(cot ϑ/r)Bϕ

+bκϕr∂rBϕ + bκϕϑ(1/r)∂ϑBϕ + bκϕϕ(1/r)(Br + cot ϑBϑ) (3.21)

On the other hand, (3.17) may be likewise written coordinate-independent as1

E = aB + b∇B (3.22)

Such as every tensor, a can be separated in its symmetric and antisymmetric parts

a = a(sy) + a(as) (3.23)

at which the symmetric part is traditionally linked to the α-tensor,

ακλ = −a
(sy)
κλ = −1

2
(aκλ + aλκ) (3.24)

while the antisymmetric part is adequately represented by a vector γ

a
(as)
κλ = εκλμγμ (3.25)

1The tensors a and b are now defined for a non-local ϕ-average and have to be distinguished from
those given in (3.9-3.10). However, the notation shall suggest that they all are coefficients in a covariant
expansion of E .
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3.2 Mean-field coefficients in spherical geometry

By the same token, the second-rank gradient tensor ∇B may be split in its symmetric and
antisymmetric parts

b∇B = −c(∇× B) − κ(∇B)(sy) (3.26)

and hereafter equally the second-rank tensor c, so that we finally arrive at

b∇B = −β(∇× B) − δ × (∇× B) − κ(∇B)(sy) (3.27)

Altogether, we obtain the well established expression for the mean-electromotive force

E = −αB − γ × B − β(∇× B) − δ × (∇× B) − κ(∇B)(sy) (3.28)

in which α and β are symmetric tensors of second rank, and κ is a third-rank tensor
(Rädler 1995). While α describes the classical α-effect, the γ-term contributes to the
transport of mean magnetic flux in addition to that by a mean motion. Therefore, the
action of the γ-term is often called turbulent or magnetic pumping (e.g. Ossendrijver
et al. 2002). The symmetric β-tensor gives rise to an anisotropic turbulent diffusion and
dominates the molecular one in most cases. Finally, there is a further inductive dynamo
effect related to the δ-term as first noticed by Rädler (1969a,b), the δ × j-effect, which
is also known as shear-current effect (e.g. Gubbins 1974, Stix 1976, Rogachevskii and
Kleeorin 2003, 2004). It results in an electromotive force parallel to δ × (∇×B) caused
by an anisotropic turbulent conductivity with a conductivity tensor which is no longer
symmetric and resembles the Hall effect in some respect. The δ × j-effect is of particular
interest in the context of the closure of the dynamo cycle: Together with a differential
rotation, a closed dynamo cycle may be envisaged as has been demonstrated by Rädler
(1969b). But, its astrophysical significance has not been proven yet. All additional terms
in the expansion of E , e.g. the κ-terms, are more difficult to interpret.

The tensors a and b occurring in (3.21) are related to the tensors α, γ, β, δ and κ in
(3.28) by

ακλ = −1/2 (aκλ + aλκ) (3.29)

γκ = 1/2 εκλμ aλμ (3.30)

βκλ = 1/4 (εκμν bλμν + ελμν bκμν) (3.31)

δκ = −1/4 (bλκλ − bλλκ) (3.32)

κκλμ = −1/2 (bκλμ + bκμλ) . (3.33)

But how are the covariant tensor components in (3.21) or (3.28) linked to the mean-field
coefficients appearing in the non-covariant expansion of the mean electromotive force in
(3.13)? From a comparison of (3.21) with an expansion of E due to partial derivatives

Eκ = ãκrBr + ακϑBϑ + ãκϕBϕ

+b̃κrr∂rBr + b̃κrϑ(1/r) ∂ϑBr

+b̃κϑr∂rBϑ + b̃κϑϑ(1/r) ∂ϑBϑ

+b̃κϕr∂rBϕ + b̃κϕϑ(1/r) ∂ϑBϕ (3.34)
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3 Mean-field theory

it is straight forward to conclude

aκr + bκϕϕ/r = ãκr − b̃κϑϑ/r (3.35)

aκϑ + cot ϑ bκϕϕ/r = ãκϑ + b̃κrϑ/r (3.36)

aκϕ − (bκrϕ + cot ϑ bκϑϕ)/r = ãκϕ (3.37)

bκλr = b̃κλr (3.38)

bκλϑ = b̃κλϑ (3.39)

Here, we encounter a principal problem. Due to (3.35-3.39), the components of the ten-
sors a and b are not well-defined. In contrast, only the terms aκr+bκϕϕ, aκϑ+cot ϑ bκϕϕ/r
and aκϕ−(bκrϕ+cot ϑ bκϑϕ)/r are unique and thus independent quantities. This ambiguity
is a consequence of the azimuthal symmetry, which reduces the number of mean-field co-
efficients in (3.34) since all partial derivatives with respect to the coordinate ϕ vanish and
the coefficients b̃κλϕ remain undetermined. However, setting b̃κλϕ = 0 equally compels
bκλϕ = 0. This seems to be the most natural choice and leads to a unique solution of (3.35-
3.39). On account of (3.29-3.33), we may derive relations between ακλ, γκ, · · · , κκλμ and
ãκ,λ, b̃κλμ which are listed in Appendix A.

3.3 The second order correlation approximation

Most of the well-known results about mean-field coefficients rely on the second order
correlation approximation (SOCA) which is likewise called first order smoothing approx-
imation (FOSA). Let us recall that equation (3.5) has to be solved in order to determine
E . This requires the application of a closure method, and the simplest one is to neglect
the term ∇× G in (3.5), which implies to consider only up to second-order correlations
of fluctuating quantities.

An order-of-magnitude estimation reveals two circumstances when this neglect, i.e.
SOCA, would appear to be justified (Krause and Rädler 1980, Moffatt 1978, Stix 2002).
The first one can be summarised by the condition Rm � 1, which ensures that ∇ ×
G is small compared to the diffusion term. The second one is characterised by St =
uτ/l � 1 at which u is a typical magnitude of V , and l and τ are typical scales of the
variation of V and b in space and time. The dimensonless number St is sometimes called
Strouhal number (Krause and Rädler 1980). If St � 1 holds, then ∇×G is negligible in
comparison to ∂b/∂t.

Unfortunately, neither of the two conditions seems to be satisfied in most astrophysical
applications. Therefore, it will be important to learn in which respect the actual mean-
field coefficients deviate from those derived in the SOCA-approximation and in which
way this difference affects corresponding dynamo calculations.

Besides the SOCA-approximation, further simplifications are necessary to end up with
simple expressions for α and β. The mean flow in (3.6), for instance, is usually also
neglected, and, maybe even more dramatic, v is frequently assumed to be statistically ho-
mogeneous and isotropic2 in order to reduce the number of non-vanishing tensor compo-
nents. Then, the most commonly adopted result for the α-tensor in the high-conductivity

2A vector field is statistically homogeneous and isotropic if all averages derived from it are invariant
under translation and rotation.
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3.4 Symmetry properties of mean-field coefficients

limit reads α = αIδλκ, with

αI = −1

3
v · (∇× v) τc (3.40)

and τc being the correlation time defined by∫ ∞

0

v(r, t) · (∇× v(r, t − τ)) dτ = v(r, t) · (∇× v(r, t)) τc (3.41)

In the same way, it follows β = βIδλκ, with

βI =
1

3
v2τc (3.42)

Note, that in addition to all simplifications already mentioned above, (3.40) and (3.42)
apply at best, if q := λ2

c/τcη → ∞, in which λc denotes a typical length scale of the
velocity field. Here, the dimensionless parameter q can be interpreted as the ratio of the
timescales related to variations in the magnetic field and velocity field, respectively. If on
the other hand q becomes very small in the low conductivity limit, relations (3.40) and
(3.42) have to be replaced by

αI = −1

3
Pm a · (∇× a) (3.43)

and

βI =
1

3
Pm a2 (3.44)

in which the vector potential a is defined by v = ∇×a and ∇·a = 0, supposing that v is
solenoidal (Krause and Rädler 1980). Although relations (3.40-3.44) are very appealing
because of their simplicity, they are crude simplifications and their validity is severely
limited as will be shown in this work.

3.4 Symmetry properties of mean-field coefficients

The symmetry properties of a self-gravitating rotating sphere as well as those of the full
set of MHD equations have a major effect on the mean-field coefficients and therefore
on the possible dynamo solutions. The spherical symmetry of a gravitating sphere, or
likewise a spherical shell, is broken due to the spinning about its polar axis, which has
only axial symmetry. Following Gubbins and Zhang (1993), the remaining symmetry
transformations, i.e. transformations which take the rotating sphere into itself, are a re-
flection in the equatorial plane, E, a rotation about the polar axis by an angle 2π/M ,
PM , where M is an integer, and finally a combination of both, OM = E ◦ PM , and
the identical transformation, I. Altogether, these symmetry transformations form a Lie
group, LS = {I, E,OM , PM / M ∈ N}. The symmetry group LS constrains the sym-
metry properties of a convection driven flow. In particular, except for PM , LS does not
include any further rotations nor any translations. Therefore, one has to assume that the
velocity-dependent α-tensor in its most general representation, considered inside a rotat-
ing spherical shell at radius r, will depend on at least two axis, r̂ and p̂. Here, r̂ denotes
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3 Mean-field theory

a unit vector in radial direction while p̂ is parallel to the rotation axis. A corresponding
representation for a tensor of second rank is derived in Appendix B and can be written as
aij = Sij + Aij with its symmetric and antisymmetric parts

Sij = a1δij + a2r̂ir̂j + a3p̂ip̂j + a4(r̂ip̂j + r̂j p̂i)

+a5[r̂i(p̂ × r̂)j + r̂j(p̂ × r̂)i] + a6[p̂i(p̂ × r̂)j + p̂j(p̂ × r̂)i] (3.45)

Aij = a7εijkr̂k + a8εijkp̂k + a9εijk(p̂ × r̂)k (3.46)

Choosing a spherical basis and the spherical coordinates (r, ϑ, ϕ), we have r̂ = (1, 0, 0)
and p̂ = (cos ϑ,− sin ϑ, 0), which leads to the matrix representations

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 + a2 + a3 cos2 ϑ −a3 cos ϑ sin ϑ a5 sin ϑ
+2a4 cos ϑ −a4 sin ϑ +a6 cos ϑ sin ϑ

−a3 cos ϑ sin ϑ − a4 sin ϑ a1 + a3 sin2 ϑ −a6 sin2 ϑ

a5 sin ϑ + a6 cos ϑ sin ϑ −a6 sin2 ϑ a1

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.47)

and

A =

⎛
⎜⎜⎜⎜⎝

0 −a9 sin ϑ a8 sin ϑ

−a9 sin ϑ 0 a7 + a8 cos ϑ

−a8 sin ϑ −a7 − a8 cos ϑ 0

⎞
⎟⎟⎟⎟⎠ (3.48)

The ai, i = 1, · · · 9, may be any functions of r and cos ϑ. Somewhat disappointing, none
of the tensor components vanishes beforehand because of the underlying symmetry prop-
erties. However, it is instructive to note that the azimuthal invariance causes αϕϕ to rep-
resent the isotropic part of the tensor.

The importance of symmetries for the dynamo problem can be immediately realised
if in contrast to (3.45) and (3.46) the representation of the α-tensor is allowed to depend
only on one preferred direction ẑ. This condition is fulfilled for the Roberts flow (Roberts
1972), which is often applied to investigate α2-dynamos (Rädler et al. 2002, Tilgner 1997,
2004). The Roberts flow is a spatially periodic, helical flow in an infinite domain and stays
invariant under affine transformations in the (x, y)-plane (Rädler et al. 2002, Feudel et al.
2003). This ensures that the tensor aij is a linear combination of δij, ẑiẑj and εijkẑk only,

aij = a1δij + a2ẑiẑj + γεijkẑk (3.49)

Here the coefficients a1, a2, γ are simply constants and a comparison between (3.49) and
(3.45-3.46) reveals to which extent the representation of a second-rank tensor has already
simplified. Therefore, results derived for the Roberts flow cannot be generalised without
some caution.

Further constraints are given by the symmetry properties of the MHD equations.
It is well known that the induction equation allows for solutions which separate in an
equatorial-symmetric, ES , and an equatorial-antisymmetric family, EA. While ES vec-
tors transform under reflection at the equatorial plane as

[Sr, Sϑ, Sϕ](r, ϑ, ϕ) = [Sr,−Sϑ, Sϕ](r, π − ϑ, ϕ) (3.50)
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3.4 Symmetry properties of mean-field coefficients

for an EA vector the transformation rule

[Sr, Sϑ, Sϕ](r, ϑ, ϕ) = [−Sr, Sϑ,−Sϕ](r, π − ϑ, ϕ) (3.51)

applies. Any vector B may be decomposed into both parts, ES and EA. This can easily
be seen: Let B′ denote the result of reflecting B in the equatorial plane. The quantities
BS = 1/2(B + B′) and BA = 1/2(B − B′) are of ES and EA type, respectively, and
B = BS+BA. The linear terms in the induction equation, ∂B/∂t and η∇2B, transform
in the same way as B. Therefore, it depends on the nonlinear term ∇ × (V × B) and
in particular on the nature of V whether solutions of the induction equation are separable
due to their reflectional symmetry-properties. Let V be of ES type. Since the vector
operators ∇× and × are both antisymmetric on reflection, their effect on the reflectional
symmetry cancels out and the term ∇× (V × B) is finally of same symmetry as B. On
the other hand, a velocity of EA type causes the nonlinear term ∇×(V ×B) to be always
of opposite symmetry as B. As a consequence, separable and even independent solutions
of the induction equation with respect to the symmetry families ES and EA exist as long
as the velocity field is equatorial symmetric. Thus, given V of ES type and starting with
B of EA symmetry, a solution of the induction equation will always be of pure EA type
and vice versa for an initial field of ES symmetry.

Note that it is important to distinguish between independent and separable solutions.
Independent solutions are typical features of linear equations and can exist without influ-
encing each other. Though the full set of MHD equations allows separable solutions, they
are in general not independent (Gubbins and Zhang 1993). Mixing both types of solutions
leads to EA terms in the momentum equation which are induced by the nonlinear Lorentz
force (JS + JA) × (BS + BA). At the same time, these terms must be balanced by EA

velocities and EA temperatures, which finally also couple ES and EA solutions of B in
the induction equation.

Besides the reflectional symmetry, the MHD equations are invariant under field rever-
sal i : B → −B. In order to prove this it is sufficient to note that the Lorentz force in
the momentum equation is quadratic in B and the induction equation is homogeneous in
B. Both solutions exist in the case of the geodynamo, and it is still an outstanding task to
understand the physical mechanism which triggers a polarity transition. Since some pale-
omagnetic data suggest that the polarity-transition phase is dominated by the equatorial-
symmetric family (Merrill et al. 1998) while the endpoints of the transition belong to the
family of EA solutions, reversals can possibly be understood as symmetry-breaks of an
EA solution by an ES one.

A further symmetry should be mentioned: Both, the set of MHD-equations and the ro-
tating sphere are unchanged under an arbitrary rotation about the polar axis. Although an
axisymmetric dynamo solution is thus consistent with the given symmetry constraints, the
existence of a steady axisymmetric solution is ruled out by the famous Cowling theorem.

How are the reflectional symmetry-properties of the velocity field and the induction
equation linked to the symmetries of the mean-field coefficients? Similarly to the in-
duction equation, solutions of the mean-field dynamo equation separate in equatorial-
symmetric and antisymmetric fields if the velocity is of ES type. In this case, the addi-
tional term, ∇×E = ∇×v × b, is always of same symmetry as B. As a result, replacing

25
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SYMMETRY MEAN-FIELD COEFFICIENTS

equatorial symmetric ãrϑ, ãϑr, ãϑϕ, ãϕϑ,

b̃rrϑ, b̃rϑr, b̃ϑrr, b̃ϕrϑ, b̃ϕϑr, b̃rϕθ, b̃ϑϑϑ, b̃ϑϕr, b̃ϕϕϑ

equatorial antisymmetric ãrr, ãrϕ, ãϑϑ, ãϕr, ãϕϕ,

b̃rrr, b̃ϑrϑ, b̃ϑϑr, b̃ϕrr, b̃rϑϑ, b̃rϕr, b̃ϑϕϑ, b̃ϕϑϑ, b̃ϕϕr

Table 3.1: Mean-field coefficients sorted with respect to their equatorial symmetry in the
case of an equatorial-symmetric velocity field

E by an expansion of the form

Eκ = ãκλBλ + b̃κλr
∂Bλ

∂r
+ b̃κλθ

1

r

∂Bλ

∂θ

leads to well defined symmetry predictions for the mean-field coefficients ãκλ and b̃κλμ

which are listed in table 3.1.
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4 How to derive mean-field coefficients

4.1 Approach (I): mean-field coefficients based on numer-
ically determined electromotive forces

The principal idea of this approach is to solve the induction equation for the fluctuating
field (3.5) in its general form for a given velocity field numerically in order to calculate
E = v × b. Subsequently, the linear relation (3.13) between E and B is inverted to deter-
mine the mean-field coefficients ãκλ, b̃κλμ, · · ·. However, a principal difficulty arises from
the number of variables, which exceeds the number of three linear equations provided
by the expansion of E . Hence, equation (3.5) is repeatedly solved for various prescribed
mean test fields, BT , but always for the same velocity field, which is held constant. Be-
cause mean-field coefficients depend on the considered velocity and magnetic diffusivity
only, they must not change according to the choice of BT . Thus, different electromotive
forces corresponding to different test fields BT may be combined in order to close the
system of linear equations.

In which way this approach is used to determine ãij and b̃ijk is explained in more
detail for stationary velocity fields in Section 4.1.1. Extensions of this method to non-
stationary velocity fields and likewise to the derivation of further mean-field coefficients
due to higher order derivatives in the expansion of E are discussed hereafter. For the latter,
the choice of the test fields is essential, and Section 4.1.2 is dedicated to this question.

4.1.1 The method

First of all, let us consider a stationary velocity field which may be an output of a self-
consistent dynamo calculation. Henceforth, a kinematic viewpoint is taken and the veloc-
ity field is held constant.

In order to determine E , the induction equation for the fluctuating field

∂b

∂t
−∇× (V × b) −∇× G − Pm−1∇2b = ∇× (v × BT ) (4.1)

with

G = v × b − v × b

has to be solved. Here, BT denotes a test field, which appears as a free parameter and
has to be chosen. In other words: E is ’measured’ due to the action of a velocity field on
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a prescribed mean test field BT . Note that

(
V × (BT + b)

)′
= V × (BT + b) − V × (BT + b)

= v × BT + G + V × b (4.2)

Hence, equation (4.1) can be equally written as

∂b

∂t
= ∇× (V × (BT + b)

)′
+ Pm−1∇2b (4.3)

A comparison of (4.3) with the induction equation (2.4) shows that the existing dynamo
code (see Chapter 2) can be easily adapted to solve (4.3): Only an additional inhomogene-
ity BT needs to be added during the calculations of the nonlinear products, which are car-
ried out in grid space. At the same time, the axisymmetric parts of B and V × (BT + b)
are set to zero. As soon as the diffusive losses equilibrate the imposed inhomogeneity,
(4.3) becomes stationary and the mean electromotive force E is calculated subsequently
in the meridional plane.

Now the expansion of E including derivatives of B up to the first order leads to a
system of only three linear equations, but with 27 unknowns ãκλ, b̃κλμ. In order to cope

with this problem, (4.3) is solved for nine different field configurations BT
(i)

, i = 1, · · · 9,
and E is calculated for each of them. The composed system of linear equations can then
be expressed symbolically as

E (i)
κ =

(
B

(i)

Tλ,
∂B

(i)

Tλ

∂xμ

)(
ãκλ

b̃κλμ

)
, i = 1, · · · , 9 (4.4)

Here the coefficient matrix can be advantageously arranged as a diagonal block matrix
with three equal blocks for each component of E . Therefore, instead of a 27 × 27, rather
a 9 × 9-system has to be considered, which is solved by LR-decomposition.

How can the above described approach be extended to tackle time-dependent veloc-
ity fields? Is there actually the need for a time-dependent solution of (4.3) in order to
determine time-dependent mean-field coefficients? On the contrary, one might think of
applying the whole procedure explained above iteratively to a time series of snapshots
of a given velocity field. For sure, the resulting mean-field coefficients will characterise
the dynamo action of the flow at a given time, if it was held constant. But as indicated
by the distinction of the high- and low-conductivity limit in Section 3.3, this might not
account for the complete time dependency. In fact, the dimensionless parameter q defined
in Section 3.3 will always tend to zero in consequence of this approach because the cor-
relation time of the velocity field is assumed to be infinite. Thus, we stick indistinctively
to the low conductivity limit, and the resulting mean-field coefficients will be spoiled in
this respect.

A general, time-dependent treatment requires to solve equation (4.3) together with
(2.1-2.5). Now, the velocity field in (4.3) is updated after every time step leading to a time
dependent solution b = b(t). Again, it is assumed that the dependency on the initial value
of b is broken up as soon as b and thus E reach a statistical equilibrium. Having once
obtained time-dependent electromotive forces for the various test-fields we proceed as in
the stationary case and solve (4.4) for given points in time.
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4.1 Approach (I)

RUN 1 2 3 4 5 6 7 8 9

BTr 1 0 0 r 0 0 ϑ 0 0
BTϑ 0 1 0 0 r 0 0 ϑ 0
BTϕ 0 0 1 0 0 r 0 0 ϑ

Table 4.1: Canonic set of test fields used to compute a series of electromotive forces for
the determination of ãκλ and b̃κλμ.

4.1.2 The choice of test fields

There are some constraints on the choice of the test fields. First of all, they have to be
linear independent, such that the coefficient matrix in (4.4) does not become singular.
Secondly, the test fields must not allow for higher order derivatives unequal zero than
considered in the expansion of E , i.e., for the determination of ãκλ and b̃κλμ, only constant
test fields or test fields linear in r and ϑ are allowed. A third requirement is of course that
all test fields have to be axisymmetric. A canonical set of test fields which fulfils all these
demands is given in Table 4.1. Emphasis is placed on the fact that BT does not need to be
physical. For example, most of the test fields in Table 4.1 are neither divergence free nor
fulfil the boundary conditions. But since the mean-field coefficients must not depend on
the choice of test fields anyway, they are in particular not affected by the test fields being
divergence free or not. However, there is another defect which might cause trouble. The
vector fields listed in Table 4.1 do not vanish on the polar axis, and thus ∇ × (v × BT )
could become singular if the axis was included in the grid and v was different from zero
there.

Following the aim to consider up to second order derivatives in the expansion of E ,
additional 27 mean-field coefficients, c̃κλrr, c̃κλrϑ, and c̃κλϑϑ must be taken into account.
This requires 9 more test fields, which may be combined with those listed in Table 4.1:

BT
(10)

= (r2, 0, 0) (4.5)

BT
(11)

= (0, r2, 0) (4.6)

BT
(12)

= (0, 0, r2) (4.7)

BT
(13)

= (rϑ, 0, 0) (4.8)

BT
(14)

= (0, rϑ, 0) (4.9)

BT
(15)

= (0, 0, rϑ) (4.10)

BT
(16)

= (ϑ2, 0, 0) (4.11)

BT
(17)

= (0, ϑ2, 0) (4.12)

BT
(18)

= (0, 0, ϑ2) (4.13)

The constraints on proper test fields mentioned above are quite determinative, and alter-
natives for those given in Table 4.1 are rare. However, as an experiment, test fields linear
in ϑ have been replaced by fields periodic in ϑ; see Table 4.2 for an example. Even though
their partial derivatives with respect to ϑ do not vanish, they do not exceed unity at least.
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4 How to derive mean-field coefficients

RUN 1 2 3 4 5 6 7 8 9

BTr 1 0 0 r 0 0 cos ϑ sin ϑ 0
BTϑ 0 1 0 0 r 0 − sin ϑ cos ϑ 0
BTϕ 0 0 cos ϑ 0 0 r 0 0 sin ϑ

Table 4.2: Alternative set of test fields used to compute a series of electromotive forces
for the determination of ãκλ and b̃κλμ.

The resulting mean-field coefficients have been found to equal those obtained by impos-
ing the test fields given in 4.1. This experiment was done in order to confirm that in fact
the resulting mean-field coefficients do not depend on the actual choice of the test fields.

In previous attempts, mean fields were imposed via inhomogeneous magnetic bound-
ary conditions, and the induction equation was solved instead of 4.1. A subsequent sepa-
ration of mean and fluctuating parts enabled then likewise the calculation of E . But for all
that, severe difficulties were encountered: The rather uncontrolled evolution of the mean
field led to singular coefficient matrices in (4.4) at numerous grid points and to higher
order derivatives of B. These difficulties also occur if a mean field is prescribed as an
initial field (Ziegler et al. 1996, Ossendrijver et al. 2002). In contrast, the approach pre-
sented here overcomes these problems since it allows for total control over the imposed
test fields.

4.2 Approach (II): analytical determination of mean-field
coefficients applying SOCA

While the first procedure described in the previous section is based on a numerical so-
lution of equation (4.1), a second approach, explained in the following, aims at deriving
as far as possible analytical expressions for the components ãκλ. This compels to apply
a number of approximations and to rely on specific assumptions, which necessarily con-
strain the general applicability of this second approach. In particular, SOCA is applied.
But still, it serves as an important tool to confirm results obtained with approach (I) and
provides some insight into the mathematical structure of mean-field coefficients derived
in the low conductivity limit.

Here, we consider again a conducting incompressible fluid in a spherical shell with
magnetic diffusivity η and electrically insulating boundaries. Further on, we assume that
velocity and magnetic field are steady and that there is no mean flow. Then, the induction
equation in the second order correlation approximation reads

η∇2b = −∇× (v × B) (4.14)

Since b is solenoidal, it can be represented as a sum of a poloidal and a toroidal vector in
the form

b = −∇× (r ×∇S) − r ×∇T

=

(
−1

r
ΩS,

∂Ŝ

∂ϑ
+

1

sin ϑ

∂T

∂ϕ
,

1

sin ϑ

∂Ŝ

∂ϕ
− ∂T

∂ϑ

)
, (4.15)
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with

Ωf =
1

sin ϑ

∂

∂ϑ

(
sin ϑ

∂f

∂ϑ

)
+

1

sin2 ϑ

∂2f

∂ϕ2
, f̂ =

1

r

∂

∂r
(rf) . (4.16)

The same holds for v with S and T replaced by φ and ψ. In addition, the poloidal and
toroidal field potentials are expanded in spherical harmonics

(
S, T
)

=
∑

l ; m�=0

(
Sm

l (r), Tm
l (r)

)
Y m

l (ϑ, ϕ),

Sm∗
l = S−m

l , Tm∗
l = T−m

l , Y m
l (ϑ, ϕ) = P

|m|
l (cos ϑ) exp(imϕ) , (4.17)

with corresponding relations for φ and ψ.
Then, E = v × b can be expressed as a function of the φm

l , ψm
l , Sm

l and Tm
l and a

straightforward calculation gives

Er = −2
∑

l,l′ ; m>0

[
Re(φ̂m∗

l′ Tm
l − ψm∗

l′ Ŝm
l ) Rm

l′l

+m Im(φ̂m∗
l′ Ŝm

l + ψm∗
l′ Tm

l ) (Qm
l′l + Qm

ll′)/ sin ϑ
]

(4.18)

Eϑ = +
2

r

∑
l,l′ ; m>0

[
l′(l′ + 1)Re(φm∗

l′ Tm
l ) Qm

l′l − l(l + 1)Re(ψm∗
l′ Sm

l ) Qm
ll′

+m
(
l(l + 1)Im(φ̂m∗

l′ Sm
l ) + l′(l′ + 1)Im(φm∗

l′ Ŝm
l )
)
Pm

l′l / sin ϑ
]

(4.19)

Eϕ = −2

r

∑
l,l′ ; m>0

[
l(l + 1)Re(φ̂m∗

l′ Sm
l ) Qm

ll′ − l′(l′ + 1)Re(φm∗
l′ Ŝm

l ) Qm
l′l

+m
(
l′(l′ + 1)Im(φm∗

l′ Tm
l ) + l(l + 1)Im(ψm∗

l′ Sm
l )
)
Pm

l′l / sin ϑ
]

(4.20)

Here, E depends on r via φ, ψ, S, T, · · ·, and on ϑ via Pm
l′l , Q

m
l′l and Rm

l′l, which are defined
by

Pm
l′l = P

|m|
l′ (cos ϑ)P

|m|
l (cos ϑ) (4.21)

Qm
l′l = P

|m|
l′ (cos ϑ)

dP
|m|
l (cos ϑ)

dϑ
(4.22)

Rm
l′l =

dP
|m|
l′ (cos ϑ)

dϑ

dP
|m|
l (cos ϑ)

dϑ
+

m2

sin2 ϑ
P

|m|
l′ (cos ϑ)P

|m|
l (cos ϑ) (4.23)

The Sm
l and Tm

l in expressions (4.18-4.20) have to be determined by an integration
of equation (4.14) in order to express E as a function of the scalar velocity potentials
φ, ψ, · · · , and B alone.

By means of the poloidal/toroidal decomposition (4.15), the expansion in spherical
harmonics (4.17), and a subsequent integration by parts, the radial component of equation
(4.14) and the radial component of the curl of (4.14) can be written as

1

r

d2

dr2

(
rSm

l

)− l(l + 1)

r2
Sm

l = Fm
l , (4.24)

1

r

d2

dr2

(
rTm

l

)− l(l + 1)

r2
Tm

l = Gm
l , ri < r < ro, (4.25)
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4 How to derive mean-field coefficients

where m �= 0, with

Fm
l =

(2l + 1)(l − |m|)!
4πηl(l + 1)(l + |m|)!

∫
(v × B) · (r ×∇Y m∗

l ) dΩ (4.26)

Gm
l =

(2l + 1)(l − |m|)!
4πηl(l + 1)(l + |m|)!

∫
(∇× (v × B)) · (r ×∇Y m∗

l ) dΩ (4.27)

As usual, dΩ means sin ϑ dϑ dϕ and the integration is over all ϑ and ϕ of the solid angle.
The continuation of b as a potential field in outer space requires

dSm
l

dr
− l

r
Sm

l = Tm
l = 0 at r = ri and (4.28)

dSm
l

dr
+

l + 1

r
Sm

l = Tm
l = 0 at r = ro (4.29)

A solution of (4.24-4.25) and (4.28-4.29) is then given by

Sm
l = −

∫ ro

ri

fl(r, r
′)Fm

l (r′)r′2dr′ (4.30)

Tm
l = −

∫ ro

ri

gl(r, r
′)Gm

l (r′)r′2dr′ (4.31)

with Green’s functions fl and gl as defined in Appendix C. Inserting now the representa-
tion of v in terms of φm

l and ψm
l into relation (4.26) and then the result for Fm

l into the
expression for Sm

l given by (4.30) we arrive at

Sm
l (r) =

(2l + 1)(l − |m|)!
4πηl(l + 1)(l + |m|)!∑
l′

∫
fl(r, r

′)
{[

φ̂m
l′ (r

′)Rm
l′l(ϑ

′)

−imψm
l′ (r′)(Qm

l′l(ϑ
′) + Qm

ll′(ϑ
′))/ sin ϑ′]Br(r

′, ϑ′)

− l′(l′ + 1)

r′
φm

l′ (r
′)Qm

l′l(ϑ
′)Bϑ(r′, ϑ′)

+im
l′(l′ + 1)

r′
φm

l′ (r
′)(Pm

l′l (ϑ
′)/ sin ϑ′)Bϕ(r′, ϑ′)

}
dv′ , (4.32)

in which the integration is over the whole fluid shell. When proceeding analogously with
relation (4.27), the result for Gm

l contains at first derivatives of Br, Bϑ, and Bϕ with
respect to r and ϑ. We may remove them by means of integration by parts. In this way
we find Tm

l in the form

Tm
l (r) =

(2l + 1)(l − |m|)!
4πηl(l + 1)(l + |m|)!

∑
l′

∫ {(
g̃l(r, r

′)

×(imφ̂m
l′ (r

′)(Qm
l′l(ϑ

′) + Qm
ll′(ϑ

′))/ sin ϑ′ − ψm
l′ (r′)Rm

l′l(ϑ
′)
)
Br(r

′, ϑ′)

− 1

r′
[
l(l + 1)gl(r, r

′)(imφ̂m
l′ (r

′)Pm
l′l (ϑ

′)/ sin ϑ′ − ψm
l′ (r′)Qm

ll′(ϑ
′))

+iml′(l′ + 1)g̃l(r, r
′) φm

l′ (r
′)Pm

l′l (ϑ
′)/ sin ϑ′]Bϑ(r′, ϑ′)

+
1

r′
[
l(l + 1)gl(r, r

′)(φ̂m
l′ (r

′)Qm
ll′(ϑ

′) + imψm
l′ (r′)Pm

ll′ (ϑ
′)/ sin ϑ′)

−l′(l′ + 1)g̃l(r, r
′) φm

l′ (r
′)Qm

l′l(ϑ
′)
]
Bϕ(r′, ϑ′)

}
dv′ (4.33)
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with

g̃l(r, r
′) =

1

r′
∂

∂r′
(
r′gl(r, r

′)
)

(4.34)

Now, we may write

Eκ(r, ϑ) =

∫
Kκλ(r, ϑ; r′, ϑ′)Bλ(r

′, ϑ′)dv′, (4.35)

with some kernel Kκλ. Here indices like κ or λ are used for r, ϑ or ϕ, and the summation
convention is adopted. The integration is again over the whole fluid shell. The Kκλ can
then be concluded from relations (4.18-4.20), (4.32) and (4.33).

As an example, we have

Krr(r, ϑ; r′, ϑ′) =
1

2πη

∑
l,l′,l′′ ; m>0

(2l + 1)(l − |m|)!
l(l + 1)(l + |m|)!

×{[f̂l(r, r
′) Im(ψm∗

l′ (r)ψm
l′′ (r

′)) + g̃l(r, r
′) Im(φ̂m∗

l′ (r)φ̂m
l′′(r

′))
]

×m Rm
l′l(ϑ) (Qm

l′′l(ϑ
′) + Qm

ll′′(ϑ
′))/ sin ϑ′

+
[
f̂l(r, r

′) Re(φ̂m∗
l′ (r)ψm

l′′ (r
′)) − g̃l(r, r

′) Re(ψm∗
l′ (r)φ̂m

l′′(r
′))
]

×m2 ((Qm
l′l(ϑ) + Qm

ll′(ϑ))/ sin ϑ) (Qm
l′′l(ϑ

′) + Qm
ll′′(ϑ

′))/ sin ϑ′

+
[
f̂l(r, r

′) Re(ψm∗
l′ (r)φ̂m

l′′(r
′)) + g̃l(r, r

′) Re(φ̂m∗
l′ (r)ψm

l′′ (r
′))
]

×Rm
l′l(ϑ) Rm

l′′l(ϑ
′)

−[f̂l(r, r
′) Im(φ̂m∗

l′ (r)φ̂m
l′′(r

′) − g̃l(r, r
′) Im(ψm∗

l′ (r)ψm
l′′ (r

′))
]

×m ((Qm
l′l(ϑ) + Qm

ll′(ϑ))/ sin ϑ) Rm
l′′l(ϑ

′)
}

(4.36)

in which f̂l(r, r
′) = 1/r ∂

(
rfl(r, r

′)
)
/∂r.

The component ãrr in the sense of Eκ = ãκλBλ + b̃κλr∂Bλ/∂r + · · · is then given by

ãrr(r, ϑ) =

∫
Krr(r, ϑ; r′, ϑ′)dv′ (4.37)

again with the integration over the fluid shell (see also Section 3.1). Making use of the
orthogonality relations in Appendix C, we finally obtain

ãrr(r, ϑ) =
2

η

∑
l,l′ ; m>0

{∫ R

0

(
f̂l(r, r

′) Re
(
ψm∗

l′ (r)φ̂m
l (r′)

)

+g̃l(r, r
′) Re

(
φ̂m∗

l′ (r)ψm
l (r′)

))
r′2dr′ Rm

l′l(ϑ)

−
∫ R

0

(
f̂l(r, r

′) Im
(
φ̂m∗

l′ (r)φ̂m
l (r′)

)− g̃l(r, r
′) Im

(
ψm∗

l′ (r)ψm
l (r′)

))
r′2dr′

×m
(
Qm

l′l(ϑ) + Qm
ll′(ϑ)

)
/ sin ϑ

}
(4.38)

Relation (4.38) provides the ãrr component for a given velocity field represented by φ and
ψ. All the other components are derived similarly and are given in Appendix D.
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5 Mean-field coefficients: results

The methods derived in the previous chapter have been applied to four different velocity
fields which originate from a simulation of rotating magnetoconvection, from the mod-
elling of a simple (quasi-)stationary dynamo, and from two time dependent dynamos of
which one exhibits polarity reversals. According to their actual features, the examples ex-
amined here will be used to investigate the α-quenching in consequence of the presence of
a mean-field (Section 5.1.4), the deviations from the isotropic and SOCA-approximation
(Section 5.1.3 and Section 5.2.4) as well as the time variability of mean-field coefficients
(Section 5.3 and Section 5.4).

5.1 Simulation of rotating magnetoconvection

5.1.1 Velocity and magnetic field

The first example considered here is adopted from Olson et al. (1999) with the governing
parameters E = 3 × 10−4, Ra = 94 (= 1.5Rac), and Pr = Pm = 1. Moreover, an
axisymmetric toroidal magnetic field is imposed via inhomogeneous toroidal boundary
conditions of the form

Bϕ = Λo sin(2ϑ) at r = ri, r = ro (5.1)

in which Λo is the Elsasser number based on the amplitude Bo of the imposed field

Λo =
B2

o

�μηΩ
(5.2)

Figure 5.1 shows the radial velocity field for Λo = 1 at r = 0.59 ro. Here, upflows
are coloured red while downflows are blue and a typical columnar convection pattern is
revealed. Superposed on the columnar convection is a secondary flow parallel or antipar-
allel to the polar axis. Altogether, this flow pattern produces a helicity distribution as
presented in Figure 5.2 in which negative helicity in the northern and positive helicity
in the southern hemisphere appears to be a basic property of columnar convection in a
rotating spherical shell. The resulting magnetic Reynolds number is about 12 and far too
low for the onset of self-sustaining dynamo action. Nevertheless, fundamental dynamo
processes related to this convection pattern are present and can be analysed by means of
mean-field theory; so for example the generation of poloidal out of toroidal field, which
results in a radial component of the magnetic field as displayed in Figure 5.3.

Except for a steady azimuthal drift of the convection columns with a drift frequency
ω = −5.46 ν/D2, the flow and thus the kinetic and also the magnetic energy are steady.

35



5 Mean-field coefficients: results

Figure 5.1: The radial velocity in the magnetoconvection example with Λo = 1 and
assumed 6-fold azimuthal symmetry at r = 0.59 ro, normalised by its absolute maximum
given by Vr = 16.98 ν/D. In the colour coding, dark blue and dark red correspond to −1
and +1, respectively, and the contour stepping to ±0.1. All following contour plots will
be presented in the same style.

However, this time dependency can be removed by a transformation to a corotating frame
of reference. This has been done by prescribing a mean velocity V ϕ = ω r sin ϑ at the
inner and outer boundary in difference from the no-slip boundary conditions originally
assumed. The related toroidal velocity potential is then determined by

−1

r

∂z

∂ϑ
= ω r sin ϑ at r = ri, r = ro (5.3)

Meridional Velocityz-Vorticity Helicity

Figure 5.2: Meridional slices at a certain longitude. The primary columnar flow with
positive z-vorticity together with a secondary meridional flow with a negative axial com-
ponent in the northern and a positive in the southern hemisphere give rise to negative
helicity in the northern and positive in the southern hemisphere.
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5.1 Simulation of rotating magnetoconvection

Figure 5.3: The radial magnetic field in the magnetoconvection example at r = 0.59 ro.
Its maximum is given by Br = 0.64 (�μηΩ)1/2, and the contour levels are chosen as in
Figure 5.1.

which is easily integrated to yield

z = cos ϑ ω r2 =

√
4π

3
Y 0

1 ω r2 at r = ri, r = ro (5.4)

Note that except for terms of order |Ω × r| /c Maxwell’s equations remain invariant
under a transformation to a rotating frame of reference with angular velocity Ω. Thus,
|Ω × r| /c � 1, in addition to |v| /c � 1, has been already presumed for equation
(2.4) to hold. By the same token, |(Ω + ω) × r| /c � 1 may be assumed, and still the
induction equation remains unchanged.

5.1.2 Non-covariant and covariant mean-field coefficients

Non-covariant and covariant1 mean-field coefficients corresponding to the example of
magnetoconvection are presented in Figure 5.4 and Figure 5.5, respectively. A compari-
son between both reveals only minor differences in the amplitudes of some components
ãκλ and aκλ. This reduces the necessity to distinguish between them, and statements about
their principal properties apply equally to both.

The results for the ãκλ obtained by the two methods explained in the previous chapter,
(I) and (II), do not completely coincide. This was to be expected, because approach (II)
is based on the second order correlation approximation. In the steady case considered
here, it is justified for Rm � 1, and consequently, both results come into agreement, if
Rm is scaled down (see also Appendix E). This test provides insight into the scope of
SOCA and at the same time confirms the reliability of approach (I), which has been used
to derive the mean-field coefficients presented in this chapter.

All mean-field coefficients are closely related to the columnar convection, which takes
place outside the inner core tangent cylinder. In consequence of the symmetry properties

1Linguistic convention: covariant mean-field coefficients are mean-field coefficients which originate
from an expansion of E which is form-invariant under coordinate transformations.
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5 Mean-field coefficients: results

Figure 5.4: Non-covariant mean-field coefficients in the meridional plane in the magne-
toconvection example, determined by method (I) in units of ν/D. For each component,
the colour coding is separately adjusted to its maximum or, having a larger modulus, to
its minimum.

of the velocity field and of the induction equation all components of a are either sym-
metric or antisymmetric with respect to the equator, as predicted in Section 3.4. None of
the mean-field coefficients vanishes. For their interpretation it is instructive to regard the
expansion of E for a diagonal/non-diagonal decomposition of the tensor a:

E = aB + b∇B

= α̂B + γD × Bpol + γMT × Btor + γMP × Bpol + b∇B (5.5)

Here, all higher than first order derivatives of B have been omitted and the following
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Figure 5.5: Components of the tensor a in the meridional plane in the magnetoconvection
example, determined by method (I) in units of ν/D. The components aκλ exhibit only
minor differences in comparison to the corresponding set of non-covariant mean-field
coefficients, see Figure 5.4

notations have been used:

α̂ =

⎛
⎜⎜⎜⎜⎝

arr (arϑ + aϑr)/2 0

(aϑr + arϑ)/2 aϑϑ 0

0 0 aϕϕ

⎞
⎟⎟⎟⎟⎠ , (5.6)

γD =

⎛
⎝ 0

0
(aϑr − arϑ)/2

⎞
⎠ , γMT =

⎛
⎝ −aϑϕ

arϕ

0

⎞
⎠ , γMP =

⎛
⎝ aϕϑ

−aϕr

0

⎞
⎠ (5.7)
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5 Mean-field coefficients: results

Furthermore, B is separated in its poloidal and toroidal parts

Bpol =

⎛
⎝ Br

Bϑ

0

⎞
⎠ , Btor =

⎛
⎝ 0

0
Bϕ

⎞
⎠ (5.8)

All components contributing to the symmetric matrix α̂ act as inductive terms. This
applies in particular to the diagonal components of a among which aϕϕ dominates, indi-
cating that the generation of poloidal field out of toroidal is much more effective than vice
versa. But, due to the non-vanishing components arr and aϑϑ, generation of toroidal field
by an α-effect also takes place.

Except for the term (aϑr +arϑ)/2, the non-diagonal components contribute only to the
vectors γD,γMT , and γMP . While the vector γ, introduced in (3.25), can be interpreted
as an advective velocity which acts equally on all components of B, the representation
(5.5) aims to distinguish the action of the non-diagonal components on the poloidal and
toroidal mean field. Following this line, γMT and γMP are interpreted formally as a
contribution to the mean meridional flow advecting the mean toroidal and poloidal field,
respectively. Moreover, γD can be added to a mean toroidal velocity and therefore influ-
ences the generation of toroidal field by differential rotation.

For the sake of completeness, it should be noted, that unlike in ideal MHD, it is not
possible to define a moving surface in which flux is conserved. But still, it is possible to
define a velocity that optimises flux-conservation for each divergence-free part of the field
(Kichatinov 1991, Ossendrijver et al. 2002). Whenever referring to advection processes
in this work, advection has to be understood in this sense.

By far most dominant among the non-diagonal components are arϕ and aϑϕ constitut-
ing γMT . A vector plot of γMT is drawn in Figure 5.6. It indicates that the mean toroidal
field is advected towards the equatorial plane in upwellings near the outer boundary while
it is advected towards higher latitudes in downflows in deeper layers. Following Olson
et al. (1999), this characteristic can be attributed to the columnar convection and the spher-
ical boundaries. A material line of fluid that is transported in an upwelling towards the
outer boundary has to shorten, and this causes a convergent flow towards the equatorial
plane which is independent of the secondary, helicity-producing flow component. The
opposite is true for the downwellings. We will see in the following that the dominating
non-diagonal components arϕ and aϑϕ have a major effect on the resulting field topology.

In Figure 5.7, the diffusion tensor is shown. It is given by

Dκλ = Pm−1δκλ + βκλ (5.9)

at which the molecular diffusion has been taken into account. Although the molecular
diffusivity is rather high (Pm = 1), and the vigour of the convection is rather low (Ra =
1.5 Racrit), the turbulent diffusion dominates already over the molecular one in the region
where convection takes place. In this example, the diffusion tensor proves to be positive
definite everywhere in the meridional plane. In order to show this, it is sufficient to note
that all diagonal components of D are positive, and each sub-determinant is positive as
well. The physical meaning of β being positive definite is best illustrated considering the

40



5.1 Simulation of rotating magnetoconvection

Figure 5.6: Vector plot of γMT in the meridional plane. The vector γMT is interpreted as
mean meridional velocity advecting the mean toroidal field towards the equatorial plane
near the outer boundary while the field is advected towards the inner core tangent cylinder
and towards higher latitudes in deeper layers.

energy balance
d

dt

∫
∞

B
2

2
dv = −

∫
V

j · E dv (5.10)

with E being the mean electrical field, j the mean current density and V the volume of
the considered fluid shell. Furthermore, we assume

j = Pm(E + V × B + E) (5.11)

and

E = −αB − γ × B − β(∇× B) − δ × (∇× B) − κ(∇B)(sy) + E (>1) (5.12)

in which the additional term E(>1) represents parts of E proportional to higher than first
order derivatives of B. Then, it follows

j · E = (Pm−1δκλ + βκλ)jκjλ + ακλjκBλ

+(V − γ) · (j × B) + j · (κ(∇B)(sy)
)− j · E (>1) (5.13)

If Pm−1δκλ+βκλ is positive definite, the mean magnetic field can not grow in the absence
of an inductive action of α, V , γ, κ, and E(>1). On the other hand, the tensor Pm−1δκλ +
βκλ could initiate an energy supply to the mean magnetic field, if it were not positive
definite and not balanced by further terms. Note that the term δ × (∇ × B) in (5.12)
does not contribute to the integral

∫
V j · E dv. In consequence, it is not possible to drive

a dynamo by the δ × j-effect alone.
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5 Mean-field coefficients: results

Figure 5.7: The symmetric diffusion tensor in the magnetoconvection example in the
meridional plane, determined by method (I) in units of ν. The turbulent diffusion exceeds
the molecular one in regions where convection takes place.

5.1.3 Isotropic approximation

A scalar approximation for α related to the example considered here, αI , is given by re-
lation (3.43). In Figure 5.8, αI is plotted in comparison with −αϕϕ derived by method
(I) and (II). The components displayed are quite similar in shape, and their amplitudes
show differences of less than 20%. Although αϕϕ represents the isotropic part of the α-
tensor, as has been demostrated in Section 3.4, it does not coincide exactly with αI . This
is not surprising because several approximations required to derive (3.43) are not com-
pletely justified, e.g the assumption of v being statistically isotropic and homogeneous,
or the neglect of the mean flow. There are also differences between αϕϕ, obtained by ap-
proach (I), and αϕϕ in the second order correlation approximation, as given by approach
(II). Even though these coefficients agree perfectly in shape, the second order correlation
approximation leads typically to overestimated amplitudes.

5.1.4 α- and β-quenching

There is a debate going on whether the α-tensor is catastrophically quenched due to the
back reaction of the Lorentz force. Vainshtein and Cattaneo (1992), Cattaneo and Hughes
(1996), and in a series of papers Gruzinov and Diamond (1994, 1995, 1996) argue that the
amplitudes of the α-components are quenched to a very small value before the magnetic
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5.1 Simulation of rotating magnetoconvection

Figure 5.8: From left to right: α due to the isotropic approximation (3.43), −αϕϕ in the
second order correlation approximation derived by approach (II) and −αϕϕ determined
by method (I). Maxima and minima are given in scales of ν/D.

field reaches its equipartition value, B2
eq = μ�V 2

rms. They suggest a scaling law

α =
α0

1 + Rm B
2
/B2

eq

(5.14)

while traditionally

α =
α0

1 + B
2
/B2

eq

(5.15)

has been assumed (Rüdiger 1973) to scale the kinematic value of α, here denoted α0,
in the nonlinear regime. More specific scaling laws which account for the quenching
properties of each diagonal component of the α-tensor separately are given by Rüdiger
and Kichatinov (1993). In consequence of (5.14), typically flows with large Rm prevalent
in most astrophysical circumstances would be incapable of generating sizable magnetic
fields by slow dynamo action.

In the context of the dynamo simulations considered here, relation (5.14) could not be
verified. This had to be expected because most simulations for the geodynamo operate
in the strong field regime with the magnetic energy density exceeding the kinetic energy
density in most examples (Christensen et al. 1999). The applicability of (5.14) has been
tested carrying out a number of simulations with Λ0 in (5.1) varying in a range between
0 and 2. Subsequently, for each of them mean-field coefficients have been determined.
Figure 5.9 shows the r.m.s. value of αϕϕ normalised by Vrms in dependence of Λ. In ad-
dition, the non-axisymmetric kinetic energy density (dashed line) and the axisymmetric
kinetic energy density (dotted line) are displayed. Both have been rescaled by a factor
of 300 for presentation reasons. Contrary to (5.14) and (5.15), (αϕϕ)rms grows at first in
presence of a magnetic field. It reaches its maximum value at Λ = 0.3 corresponding
to (B)rms ≈ 2.8Beq. This is consistent with the incline of the non-axisymmetric kinetic
energy density, i.e. with the increasing vigour of convection. Although strong magnetic
fields are usually known to inhibit convection because additional work has to be done
against the Lorentz force, the presence of a magnetic field may also stimulate convection
as demonstrated in the example under consideration. This is explained taking the inhibit-
ing effect due to rotation into account: Convection in a sphere must be z-dependent, which

43



5 Mean-field coefficients: results

Figure 5.9: Solid line: r.m.s. value of αϕϕ measured in scales of Vrms in dependence of
the Elsasser number Λ, dashed line: non-axisymmetric kinetic energy density,
dotted line : axisymmetric kinetic energy density; both energy densities are given in
scales of 1/300 �ν2/D2. Coincidently with the non-axisymmetric kinetic energy den-
sity, (αϕϕ)rms/Vrms experiences an increase at low field strengths while it is effectively
quenched for Λ > 0.8.

conflicts the Proudman-Taylor theorem. However, the presence of a magnetic field relaxes
the geostrophic constraint and thus leads to a decrease of the critical Rayleigh number at
low field strengths (Fearn 1998). For higher values of Λ, (αϕϕ)rms is indeed quenched
and drops rapidly until the decrease flattens again at Λ > 0.8. At the same time, the ax-
isymmetric kinetic energy density increases and a strong azimuthal flow develops, while
convection is more and more suppressed. During the phase of rapid decay, the r.m.s value
of αϕϕ in units of Vrms scales relative to its maximum value αmax = 0.55 at B̂max = 2.6
according to

(αϕϕ)rms =
αmax

1 + k(B̂ − B̂max)p
(5.16)

in which B̂ means the r.m.s. value of the mean field normalised with the equipartition
value, and the parameters k and p are found to be k ≈ 1.4, p ≈ 2.8.
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5.1 Simulation of rotating magnetoconvection

Figure 5.10: Diagonal components of the β-tensor normalised by Vrms, in units of the
shell width D, against the Elsasser number Λ. The quenching curves resemble those of
the α-quenching, compare Figure 5.9.

Figure 5.11: Mean-field coefficients are quenched in different ways. Displayed is the ratio
of (αrϕ)rms to (αϕϕ)rms in dependence of Λ

.
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5 Mean-field coefficients: results

Figure 5.12: Mean azimuthal field for Λ0 = 1 (left) and Λ0 = 2 (right). While magnetic
flux is expelled from the dynamo region in the first example, the imposed field remains
rather undisturbed in the right chart.

The radial magnetic field for Λ = 1.2 is displayed in Figure 5.13. Although the cor-
responding α-components are already markedly quenched, the resulting maximum field
strength has only decreased by less than 20% or rather less than 40%, if only the axisym-
metric part of the poloidal field is considered. This comparatively large field strength
is interpreted partly as a consequence of the β-quenching, which likewise reduces the
turbulent diffusivity. The r.m.s. values of the diagonal components of the β-tensor in
dependence of Λ are shown in Figure 5.10.

Apart from their similar field strengths, the simulation runs for Λ0 = 1 and Λ0 = 2
differ in their power spectra of the magnetic energy density as can already be inferred by
a comparison between Figures 5.3 and 5.13. In the latter example, the power of the axial
dipole mode has fallen below the non-axisymmetric contributions with harmonic degree
l = 7 and l = 8, which lead to pronounced flux patches at mid and low latitudes. Because
non-axisymmetric portions of the magnetic field are not directly linked to the mean-field
coefficients presented here, there is no straightforward explanation for the concentration
of the radial field at low latitudes in Figure 5.13. However, there is an axisymmetric par-
allel: While the imposed azimuthal field is diffused and swept out of the dynamo region
in the example with Λ0 = 1, it remains nearly undisturbed for Λ0 = 2. In order to explain
this change of the toroidal field configuration, it is of interest to consider the variation of
γMT with increasing Λ. Figure 5.11 displays the ratio (αrϕ)rms/(αϕϕ)rms in dependence
of Λ demonstrating that both components are quenched differently. While αrϕ dominates
roughly by a factor 3/2 at Λ = 0, this relation drops to less than 1/2 for higher values
of Λ. Let’s recall that αrϕ in γMT is related to the conflicting combination of columnar
convection and spherical boundaries, which compels a meridional flow convergent to the
equatorial plane in upflows near the outer boundary. This effect is moderated for growing
Λ because convection becomes less columnar, while the initially stimulated convection
leads to an increase of αϕϕ at the same time. As a result, (αrϕ)rms/(αϕϕ)rms decreases
with the steepest descent in the range of Λ < 0.2. Consequently, this quenching of αrϕ

above average allows for the magnetic flux to remain in the dynamo region at mid latitudes
and radii. It will be proven in Chapter 7 that advection due to γMT is indeed responsible
for the specific pattern of the diffused azimuthal field visible in Figure 5.12.
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5.2 A simple quasi-stationary dynamo

Figure 5.13: The radial magnetic field in the magnetoconvection example at r = 0.59 ro

for Λ0 = 2.0. Its maximum field strength is given by Br = 0.53 (�μηΩ)1/2 and thus
only slightly decreased compared to the simulation run with Λ0 = 1, see also Figure
5.3. However, the spectrum of the magnetic energy density changed markedly: The axial
dipole field has decreased relatively to the radial flux patches at mid and low latitudes.

5.2 A simple quasi-stationary dynamo

5.2.1 Characteristics of the dynamo and supplements to approach (I)

A very simple dynamo is examined in a further example. In Figure 5.14, the radial ve-
locity field at r = 0.61 ro is shown, revealing the columnar structure of the convection
pattern. The governing parameters have been chosen to be E = 10−3, Ra = 100 (=
1.79Rac), Pr = 1, and Pm = 5. The intensity of the fluid motion can be characterised
by Rm ≈ 40, and the magnetic energy density exceeds the kinetic one by a factor of
20. Again, except for a ϕ-drift of the convection columns, the velocity field is stationary.
This example has been used before as a numerical dynamo benchmark and is taken from
Christensen et al. (2001). In the following, it is denoted as benchmark example.

Note that in a kinematic treatment, the example under consideration turns into a
slightly subcritical dynamo, and the magnetic energy density decreases exponentially. It
is the ϕ-drift of the non-axisymmetric magnetic field b due to a constant mean azimuthal
flow in the dynamo region, which leads to an altered, reduced electromotive force, if the
velocity field is held constant. But, this deficit can be compensated by a transformation
to the corotating frame of reference. Again, inhomogeneous boundary conditions for the
toroidal velocity potential according to (5.4) have been adopted with a drift frequency
ω = −3.17ν/D2. For this transformed velocity field, the benchmark example indeed
proves to be a stationary dynamo, even in a kinematic treatment.

Alternatively, the benchmark example has been treated as a time dependent dynamo,
making use of the generalisation of approach (I) to time dependent velocity fields. The
resulting mean-field coefficients equal those obtained for a stationary velocity field in the
corotating frame of reference. Various tests suggest that the time-dependent solutions of
(4.3) become in fact independent of their initial values as soon as a statistical equilibrium
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5 Mean-field coefficients: results

Figure 5.14: The radial velocity in the example of a simple (quasi-)stationary dynamo
(benchmark example) at r = 0.61ro. The convection pattern exhibits a natural 4-fold
longitudinal symmetry and the absolute maximum is given by Vr = 16.99ν/D.

is reached.

5.2.2 Mean-field coefficients

Six independent components of the symmetric α-tensor and the 3 components of the γ-
vector are shown in Figure 5.15. Among the α-components, αϕϕ dominates, indicating
a very efficient generation of poloidal out of toroidal magnetic field. Somewhat lower in
amplitude are the components αrr and αϑϑ which complete the α2-dynamo mechanism.
This imbalance in the amplitudes of the diagonal components is reflected in the larger
strength of the axisymmetric poloidal field compared to the axisymmetric toroidal field.
Since the influence of differential rotation on the generation of toroidal field is negligible,
as will be shown in Chapter 7, the benchmark example can be classified as an α2-dynamo.

Among the non-diagonal components, as before in the example of magnetoconvec-
tion, arϕ and aϑϕ are the most dominant coefficients. They govern the γ-vector which
acts to expel flux from the dynamo region where convection takes place. Further mean-
field coefficients, the β- and κ-tensors as well as the δ-vector, are given in Appendix F.

5.2.3 Beyond ã and b̃: the expansion of E including derivatives of B

up to the second order

The expansion of E has been extended considering also derivatives of second order by
means of the 9 additional test fields (4.5-4.13). I abstain here from displaying the 27
mean-field coefficients related to the second order derivatives ∂2Bλ/∂r2, ∂2Bλ/∂r∂ϑ
and ∂2Bλ/∂ϑ2. However, two points should be reported:

• The electromotive forces related to the second order test fields (4.5-4.13) show only
minor deviations from parametrisations including derivatives up to the first order
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5.2 A simple quasi-stationary dynamo

Figure 5.15: Six independent components of the symmetric α-tensor and the γ-vector in
the benchmark example in units of ν/D.

only,

E (1)
κ = ãκλ(BT )λ + b̃κλr

∂(BT )λ

∂r
+ b̃κλϑ

1

r

∂(BT )λ

∂ϑ
(5.17)

with prior determined coefficients ãκλ, b̃κλμ and second order test fields BT . Thus,
the new coefficients c̃κλrr, c̃κλrϑ, and c̃κλϑϑ are small in amplitude compared to ãκλ

and b̃κλμ, that is, contributions to E from second order derivatives are negligible,
provided that ∂μ∂νBλ ∼ O(Bλ). Note that this decline in amplitude is consistent
with the idea of a rapidly converging series expansion of E .

• All components c̃κλμν possess well defined symmetries with respect to the equator
in accordance with the symmetry considerations in Section 3.4. This is not evident
at the first place but confirms again approach (I), since the test fields and thus the
related electromotive forces do not possess such symmetries.
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5 Mean-field coefficients: results

Figure 5.16: The quantity (αϕϕ)rms in the benchmark example in units of ν/D, with αϕϕ

determined by method (I) and (II) (solid and dashed line, respectively) in dependence of
Rm.

5.2.4 Shortcomings due to SOCA

Most mean-field models rely on mean-field coefficients derived in the second order corre-
lation approximation although this might not be justified by the properties of the underly-
ing flow. Therefore, it is of interest to point out in which way mean-field coefficients are
spoiled by the application of SOCA for a stationary flow with Rm � 1, for instance. For
the examples considered here, mean-field coefficients determined by approach (I) and ap-
proach (II) show an almost perfect congruence of their profiles in a meridional plane. On
the other hand, mean-field coefficients determined by means of SOCA exhibit typically
overestimated amplitudes for Rm � 1.

In Figure 5.16, (αϕϕ)rms is plotted against Rm, which is again varied by varying
Pm. For small Rm, both results merge and follow the linear dependence on Pm as
prescribed by (D.9). But, for Rm ≈ 10, the slope of (αϕϕ)rms determined by approach (I)
flattens. Thus, αϕϕ derived without applying SOCA leads to amplitudes which are about
30% smaller compared to the respective SOCA-calculations for Rm ≈ 40. The resultant
consequences for the dynamo action in a mean-field model will be studied in Chapter 7.

Before completing this Section, two warnings are given concerning the apparent linear
dependence of αϕϕ on Rm in the SOCA-limit:

• All mean field-coefficients determined by approach (II) scale with v2/η in which v
is meant to be a typical velocity scale, as can be inferred from (D.2-D.9). A rescal-
ing of V instead of the diffusivity will therefore result in a quadratic dependence of
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5.3 A highly time-dependent dynamo in the strongly columnar regime

Figure 5.17: Snapshot of the radial velocity field in the example of a strongly columnar
but highly time-dependent dynamo at r = 0.58 ro. The absolute maximum is given by
Vr = 99.33 ν/D. The velocity field is symmetric about the equatorial plane although no
symmetry conditions have been imposed.

(αϕϕ)rms on Rm.

• The reciprocal linear dependence of (D.2-D.9) on the magnetic diffusivity is due
to the presumed stationarity of b. This is best illustrated by a comparison between
(3.40) and (3.43). While αI depends linearly on Pm in the low conductivity limit,
there is no dependence on Pm at all in the high conductivity limit. Both results are
limiting cases and do not reflect the general situation. However, a generalisation of
approach (II) for time-dependent velocity fields is possible and will be discussed in
Chapter 8.

5.3 A highly time-dependent dynamo in the strongly colum-
nar regime

5.3.1 Characteristics of the dynamo and mean-field coefficients

The next example is again a strongly columnar dynamo resembling the benchmark exam-
ple in many respects. The governing parameters are given by E = 10−4, Ra = 334 (=
4.8Rac), Pr = 1 and Pm = 2, see also Olson et al. (1999). The magnetic energy ex-
ceeds the kinetic energy roughly by a factor of three, and the magnetic field has a large
axial dipole contribution. The magnetic Reynolds number has doubled compared to the
benchmark dynamo and is about Rm ≈ 88. A snapshot of the radial velocity field is plot-
ted in Figure 5.17. Although convection is highly time-dependent, the velocity field is
still symmetric about the equatorial plane. This equally implies well defined symmetries
for the mean-field coefficients for any time. The time-averaged α-tensor and γ-vector
presented in Figure 5.19 are very similar to the coefficients for the benchmark example
shown in Figure 5.15, thus suggesting similar dynamo processes. Differences occur in the
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Figure 5.18: A time series of the spatially averaged mean-field coefficients αϕϕ and αϑϑ

together with the corresponding running averages (dashed lines). Here, the running av-
erage at time t = t1 is taken over the time intervall [0, t1]. The time series consists in a
number of 60 α-tensors separated by time steps Δt = 1.5× 10−2. Smaller time steppings
have been adopted as an experiment in order to rule out fluctuations on much smaller time
scales.

αϑϑ-component, which is markedly reduced in amplitude compared to αrr. Moreover, the
convection columns and so the mean-field coefficients appear to be more elongated due to
a smaller Ekman number. However, as in the benchmark example, the dynamo under con-
sideration seems to operate again by an α2-mechanism with dominant αϕϕ-component, in
agreement with the interpretation given already by Olson et al. (1999). In addition, a
strong γ-effect influences the magnetic field as has been discussed earlier.

5.3.2 Time-variability of mean-field coefficients

The mean-field coefficients vary typically on a time scale of τ = 1.5×10−2D2/ν, which is
of the same order as the convective turnover time estimated roughly through D/|Vr|max.
In Figure 5.18, a time series of the spatially averaged components αϑϑ and αϕϕ is pre-
sented. The running time averages converge rapidly and become nearly constant within
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5.3 A highly time-dependent dynamo in the strongly columnar regime

Figure 5.19: Six independent components of the symmetric α-tensor and the γ-vector
in the example of a highly time-dependent dynamo in units of ν/D. The mean-field
coefficients displayed here have been averaged in time over a time period of τ = 0.9D2/ν.

a time period of τ = 0.9D2/ν. Nevertheless, there are fluctuations around the running
average with amplitudes exceeding it by up to 80%. A more detailed view is provided by
Figure 5.20 displaying the corresponding local standard deviations for the α-tensor and
γ-vector in the meridional plane. It reveals clear differences in the relative strength of the
fluctuations in time among the α- and γ-components. While the dominating coefficients
αϕϕ, αϑϕ and γr fluctuate moderately with standard deviations of less then 50%, the more
insignificant coefficients αϑϑ, αrϑ and γϕ show standard deviations being at least twice as
high.

Since all fluctuations in time obey the symmetry rules given in Table 3.1, the stan-
dard deviations exhibit strict equatorial symmetries as visible in Figure 5.20. Therefore,
variations in the northern and southern hemisphere can not be taken as independent, and
the contour plots in Figure 5.20 indicate also typical length scales on which fluctuations
occur. For most components considered here, these are comparable in size with the di-
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Figure 5.20: Standard deviations for fluctuations of α- and γ-components in time. The
maximum standard deviations written next to each contour plot are normalised by the
absolute maximum of each component.

ameter of the shell, that is, fluctuating mean-field coefficients in time vary on the same
spatial scales as time-averaged coefficients.
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5.4 A highly time-dependent dynamo in the fully developed regime

Figure 5.21: Snapshot of the radial velocity field at r = 0.55 ro in the example of a more
chaotic dynamo, which is less columnar and not symmetric about the equatorial plane.
The absolute maximum is given by Vr = 1224 ν/D.

5.4 A highly time-dependent dynamo in the fully devel-
oped regime

5.4.1 Characteristics of the dynamo, adaption of approach (I), and
resulting mean-field coefficients

The fourth example considered here is again a very time-dependent dynamo which is
no longer strongly columnar (see Figure 5.21). It is among the dynamos with reversing
dipole field presented by Kutzner and Christensen (2002). The governing parameters
read E = 3 × 10−4, Ra = 990(= 16Rac), Pr = 1/3 and Pm = 1. In this example,
convection takes place also inside the inner core tangent cylinder, and the velocity field
has lost its equatorial symmetry. Olson et al. (1999) refer to this regime as the fully
developed regime. The magnetic Reynolds number, characterising the vigour of the fluid
motion, is given by Rm = 350 and thus much higher than in the previous examples.
But, this dynamo is much less effective: The averaged kinetic energy density exceeds
the averaged magnetic energy density roughly by a factor of 50, and typically less than
10% of the magnetic energy is contributed by the axisymmetric field. Therefore, it may
seem doubtful whether mean-field coefficients based on an axisymmetric mean reveal
anything significant about the dynamo processes taking place. On the other hand, the
dynamo changes its character abruptly if the axisymmetric portion of the magnetic field is
permanently eliminated, see Figure 5.22. In this experiment, the magnetic energy density
decays within a time period of τ = 0.4 D2/ν by approximately one order of magnitude.
But, the dynamo does not die out completely, and there is a small mean electromotive
force even with zero mean field. In the expansion of E , this has to be considered by an
extra term E0 which is independent of B, and (3.22) has to be replaced by

E − E0 = aB + b∇B + · · · (5.18)
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Figure 5.22: Decay of the magnetic energy density based on the non-axisymmetric field
only. The particular induced axisymmetric portion of the field has been set to zero in each
time step.

Consequently, the trivial test-field configuration BT ≡ 0 must be added to the set of
test fields given in Table 4.1 in order to determine mean-field coefficients by means of
approach (I). Resulting components ãκλ obtained by an subsequent time-averaging are
shown in Figure 5.23. Different from previous examples, the velocity field does not van-
ish close to the polar axis, which causes problems if ∇ × (v × BT ) in equation (4.1)
approaches a singularity there. Hence, regions close to the polar axis have been omitted,
and the following discussion is based on the assumption that the induced electromotive
forces inside and outside the inner core tangent cylinder are not strongly correlated.

The qualitative consistency of the time-averaged mean-field coefficients ãκλ in Figure
5.23 with previous examples strongly supports this assumption. Although mean-field co-
efficients given at any point in time vary on much smaller spatial scales and do not exhibit
equatorial symmetries, see for instance Figure 5.28, the time averages in Figure 5.23 show
characteristics which have been seen already before in the three previous examples: There
are rather antisymmtric diagonal components which are positive in the northern and nega-
tive in the southern hemisphere, and the non-diagonal components ãrϕ and ãϑϕ contribute
to a γ-effect as discussed in Section 5.1.2. But, since the coefficients b̃κλμ could not
be equally well resolved, the corresponding covariant tensor components look partly less
consistent, e.g. αϑϑ in Figure 5.25. For the time period of τ = 0.25 D2/ν considered here,
there is no clear dominance of any time-averaged coefficient in difference from previous
examples. The high maximum amplitudes of ãrr are only due to spatially very confined
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5.4 A highly time-dependent dynamo in the fully developed regime

Figure 5.23: Time-averaged mean-field coefficients in the example of a highly time de-
pendent dynamo in the fully developed regime. The time averaging has been carried out
over a time period of τ = 0.25D2/ν and is based on 300 single data sets of mean-field
coefficients varying in time. The maximum and minimum amplitudes are given in units
of ν/D.
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5 Mean-field coefficients: results

Figure 5.24: Standard deviations for the fluctuations of the components ãκλ around their
time averages. The maximum standard deviations written next to each plot are normalised
with the absolute maximum of each component.
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5.4 A highly time-dependent dynamo in the fully developed regime

Figure 5.25: Time-averaged diagonal components of the α-tensor together with their stan-
dard deviations (second row). Whereas αrr and αϕϕ are antisymmetric about the equator
and predominantly negative in the northern and positive in the southern hemisphere, as
expected, αϑϑ is dominated by contributions from b̃ϑrϑ and requires further averaging.
The maxima of the α-components are given in units of ν/D, and the maximum standard
deviations are normalised by the absolute maximum of each component.

maxima, otherwise the component is rather equilibrated to ãϕϕ. In contrast, ãϑϑ seems to
be of less importance.

5.4.2 Time variability of mean-field coefficients and reversals

Figure 5.26 displays variations of (αϕϕ)rms in time together with a running time average.
Again, the running average at time t = t1 is taken over a time intervall [0, t1]. Figure 5.26
reveals chaotic fluctuations of (αϕϕ)rms on a time scale of the order 10−3 D2/ν, which
corresponds to a typical convective turnover time. In addition, (αϕϕ)rms changes on a
larger time scale of the order 10−1 D2/ν, and so, the running average could not be equi-
librated for the rather small time period considered here. In contrast, a running average
based on the absolute maxima of αϕϕ (dashed line) converges more rapidly, indicating that
the time averaged αϕϕ-component will probably not change markedly if the time interval
is extended. This second variation on a larger time scale, which undergo all mean-field
coefficients simultaneously, coincides with variations in the total and the axisymmetric
magnetic energy density. A continuation of these calculations covering a larger time in-
terval will be of future interest.

The huge standard deviations in Figure 5.24 and Figure 5.25 demonstrate the chaotic
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5 Mean-field coefficients: results

Figure 5.26: The spatially averaged component αϕϕ in dependence of time together with
its running time average in the example of a dynamo in the fully developed regime.
The dashed line represents a running average of the maximum norm applied to αϕϕ,
Max (|αϕϕ|), which converges more rapidly.

time dependence of all mean-field coefficients. The standard deviation related to the αϕϕ-
component, for instance, exceeds five times its average in some regions of the meridional
plane. Thus, the relative amplitudes of αϕϕ-fluctuations in time are about one order of
magnitude larger than the comparatively moderate fluctuations shown in Figure 5.20, re-
ferring to the example of a time dependent dynamo in the columnar regime.

A strongly fluctuating α-coefficient is needed in a mean-field dynamo model presented
by Hoyng et al. (2001) in order to reproduce certain characteristics of the variability of the
axial dipole component of the geomagnetic field. According to their model, the amplitude
of the fundamental dipole mode varies like the position of a stochastically driven particle
in a bistable potential in which the minima represent reversed polarity states. Hoyng
et al. (2001) succeed in predicting an observationally confirmed relation between secular
variation and reversal rate as well as an amplitude distribution as given by the Sint-800
record. However, the justification of the underlying assumption that the amplitudes of
stochastic fluctuations in α exceed its average value by at least a factor of 2 was left as an
unresolved issue. The calculations carried out here demonstrate that fluctuations of this
strength indeed occur, thus supporting the model by Hoyng et al. (2001).
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Figure 5.27: Tilt angle of the dipole-field axis in radian measure against time. The red
crosses indicate points at which the snapshots of αϕϕ were taken shown in Figure 5.28
below.

Figure 5.28: Three snapshots of αϕϕ for t(1) = 0.02 D2/ν, t(2) = 0.07 D2/ν, and t(3) =
0.09 D2/ν. Maxima and minima are given in units of ν/D.
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5 Mean-field coefficients: results

In a natural way, high amplitude fluctuations come along with the break of the equato-
rial symmetry in the velocity field. Without any symmetry constraints, the former purely
antisymmetric component αϕϕ may likewise exhibit a symmetric part of either sign, see
Figure 5.28 for instance. Whereas a time averaging leads to a cancellation of the sym-
metric contributions and results finally in a cleared antisymmetric component, variance
and standard deviation are enhanced at the same time. Figure 5.27 shows the tilt of the
dipole-field axis at the core-mantle boundary varying with time. The red crosses therein
mark states which undergo a reversal and for which mean-field coefficients have been de-
termined, shown in Figure 5.28. In order to distinguish reversals from erratic fluctuations
it has been made sure that the actual dipole-field strength has been rebuilt at the end of
each polarity transition. Excluding oscillatory solutions, temporary markedly symmetric
components of the diagonal α-components seem to be a favourable or maybe even nec-
essary condition for axial dipole reversals to occur. While mean-field coefficients which
strictly obey the symmetry rules given in Table 3.1 would preserve the parity of any ini-
tial magnetic field, irregular α-components as presented in 5.28 allow for parity and in
consequence also for polarity changes.
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6 Two-dimensional mean-field model

A two-dimensional axisymmetric mean-field model involving all 27 mean-field coeffi-
cients ãκλ and b̃κλμ has been constructed in order to carry out the intended comparison
between direct numerical simulations and mean-field theory. In addition, the model will
help to better isolate certain dynamo processes. The model equations and the numerical
techniques are briefly discussed in Section 6.1 and Section 6.2, respectively. A verification
of the implemented dicretisation scheme has been performed by a comparison between
analytically and numerically determined free-decay modes (see Section 6.3).

6.1 Model equations

By means of a decomposition of B in its poloidal and toroidal parts,

B = Bpol + Btor (6.1)

with
Bpol = ∇× Aeϕ, Btor = Beϕ (6.2)

the dynamo equation (3.2) may be rewritten as

∂A/∂t = (V pol × (∇× Aeϕ))ϕ + Eϕ − Pm−1 (∇×∇× Aeϕ)ϕ (6.3)

∂B/∂t = (∇× (V pol × Beϕ + V tor × (∇× Aeϕ)))ϕ

+ (∇× Epol)ϕ − Pm−1 (∇×∇× Beϕ)ϕ (6.4)

Here, the notations Epol = (Er, Eϑ, 0), V pol = (V r, V ϑ, 0), and V tor = (0, 0, V ϕ) have
been used. With the substitutions a = Ar sin ϑ, b = B r sin ϑ, and V ϕ = r sin ϑ ω,
equations (6.3-6.4) may be rewritten as

∂a/∂t = −V r ∂a/∂r − V θ/r (∂a/∂θ) + r sin θ Eϕ

+Pm−1
(
∂2a/∂r2 + 1/r2 (∂2a/∂θ2) − 1/r2 cot θ ∂a/∂θ

)
(6.5)

∂b/∂t = −b ∂V r/∂r − V r ∂b/∂r − b/r (∂V θ/∂θ) − V θ/r (∂b/∂θ)

+b/r cot θ V θ + sin θ ((∂ω/∂r)(∂a/∂θ) − (∂ω/∂θ)(∂a/∂r))

+ sin θ (r∂Eθ/∂r + Eθ − ∂Er/∂θ)

+Pm−1
(
∂2b/∂r2 + 1/r2 (∂2b/∂θ2) − 1/r2 cot θ ∂b/∂θ

)
(6.6)
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6 Two-dimensional mean-field model

The components of E and their derivatives in (6.5-6.6) still depend on B. Consequently,
this dependency has to be extracted by an expansion of E according to

Eκ = 1/(r sin ϑ)
[
(ãκϕ − b̃κϕr/r − b̃κϕϑ cot ϑ/r) b

+b̃κϕr ∂b/∂r

+b̃κϕϑ/r ∂b/∂ϑ

+(b̃κϑr/r + b̃κϑϑ cot ϑ/r − ãκϑ) ∂a/∂r

+(ãκr/r − 2b̃κrr/r
2 − b̃κrϑ cot ϑ/r2) ∂a/∂ϑ

+(b̃κrr/r − b̃κϑϑ/r) ∂2a/∂r∂ϑ

−b̃κϑr ∂2a/∂r2

+b̃κrϑ/r
2 ∂2a/∂ϑ2

]
(6.7)

in which only derivatives of B up to the first order have been considered.
Equations (6.5-6.6) are solved in a spherical shell with electrically insulating inner and

outer surroundings. Thus, the magnetic field has to match a potential field B̂, determined
by

B̂tor = B̂ = 0 (6.8)

and

∇× B̂pol = −(∇2 − 1

r2 sin2 ϑ
)Â = 0 (6.9)

in both parts outside of the shell. By means of the substitutions Â = â/(r sin ϑ) and
B̂ = b̂/(r sin ϑ), both equations determine likewise a and b in the exterior of the shell. A
general solution of (6.9) rewritten in terms of â reads

â =
∞∑
l=1

âl r
l+1 sin ϑ P 1

l (cos ϑ) (6.10)

for r ≤ ri, and

â =
∞∑
l=1

âl

rl
sin ϑ P 1

l (cos ϑ) (6.11)

for r ≥ ro, respectively. The P 1
l are the associated Legendre polynomials, and the âl are

arbitrary coefficients. Thus, the boundary condition

B = B̂ at r = ri, r = ro (6.12)

which is equivalent to(
1

r2 sin ϑ

∂a

∂ϑ
,− 1

r sin ϑ

∂a

∂r
,

b

r sin ϑ

)
=

(
1

r2 sin ϑ

∂â

∂ϑ
,− 1

r sin ϑ

∂â

∂r
, 0

)
(6.13)

at r = ri, r = ro, can be equally expressed in terms of a and b through

a = â, ∂a/∂r = ∂â/∂r, and b = 0 at r = ri, r = ro (6.14)

Note that for the example of magnetoconvection, the boundary conditions for the toroidal
field have been changed according to (5.1).
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6.2 Numerical techniques

6.2 Numerical techniques

The coupled partial differential equations (6.5-6.6) are solved by means of a finite differ-
ence method. In order to keep the difference formulas manageable, an equidistant grid in
radial and latitudinal direction has been chosen. Imported variables, such as mean-field
coefficients and velocity fields, evaluated on the non-equidistant radial grid points (2.1),
need to be adjusted accordingly, which is done by means of a Chebyshev approximation.

An alternating direction implicit scheme for parabolic equations with mixed deriva-
tives according to McKee et al. (1996) has been set up to discretise (6.5-6.6). This enables
an efficient implicit treatment of advection and diffusion terms, while mixed and higher
order derivatives are treated explicitly. In difference from McKee et al. (1996), centred
difference formulas have been used whenever possible, leading to a higher accuracy. Stan-
dard difference formulas, which have been applied, are provided by Abramovich and Ste-
gun (1965), for instance. Finally, the discretisation scheme has been found to be stable
for a time step of Δt = 10−4D2/ν.

Note that both potentials, A and B, as well as ∂A/∂r are forced to vanish on the polar
axis, which is here included in the grid. At the same time, this compels a, ∂a/∂r, ∂a/∂ϑ,
and b to vanish there.

Some attention has to be drawn to the treatment of the nonlocal boundary conditions
(6.14). Let us consider at first the outer boundary at r = ro. Moreover, a grid with Nr

radial and Nt latitudinal grid points in increasing order is assumed. Then, aNr
j , denoting

a at the grid point r = ro, ϑ = ϑj , is approximately given by

aNr
j =

Nt−2∑
l=1

âl

rl
o

sin ϑj P 1
l (cos ϑj) (6.15)

as prescribed by the first condition in (6.14). Adopting the summation convention, the
above equation may be likewise written as

aNr
j = Mjl âl (6.16)

with the quadratic coefficient matrix

Mjl =
P 1

l (cos ϑj)

rl
o

sin ϑj (6.17)

and j = 2, · · · , Nt − 1, l = 1, · · · , Nt − 2. In addition, ∂a/∂r has to be continuous at
r = ro, which requires

∂a

∂r
|r=ro ≈ 3aNr

j − 4aNr−1
j + aNr−2

j

2Δr
=

Nt−2∑
l=1

−l
P 1

l (cos ϑj)

rl+1
o

sin ϑj âl (6.18)

Again, (6.18) is rewritten in matrix form to yield

aNr
j = M̃jl âl + bj (6.19)

with

M̃jl = −2

3
Δr

l P 1
l (cos ϑj) sin ϑj

rl+1
o

, bj =
4

3
aNr−1

j − 1

3
aNr−2

j (6.20)
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6 Two-dimensional mean-field model

and j = 2, · · · , Nt − 1, l = 1, · · · , Nt − 2. Combining (6.16) and (6.19) finally results in

aNr
j = M̃jl · M̃−1

jl aNr
j + bj, j = 2, · · · , Nt − 1 (6.21)

which is equivalent to

aNr
j =

(
1 − M̃jlM

−1
jl

)−1

bj, j = 2, · · · , Nt − 1 (6.22)

For a given point in time, aNr
j is determined by its values at adjacent points, aNr−1

j and
aNr−2

j . However, for the implicit treatment of radial derivatives, the following difficulty
occurs: aNr

j at the new point in time already needs to be known to determine aNr−1
j and

aNr−2
j . This circular dependency is resolved by an iteration method, i.e., aNr

j is repeatedly
assumed, and aNr−1

j and aNr−2
j are determined subsequently, until reasonable consistency

with (6.22) is reached.
The inner boundary condition is treated in the same manner. Starting this time from

a1
j =

Nt−2∑
l=1

âl r
l+1 sin ϑj P 1

l (cos ϑj) (6.23)

we find a1
j given by a relation corresponding to (6.22), but with

Mjl = P 1
l (cos ϑj) rl+1

i sin ϑj (6.24)

and

M̃jl = −2

3
Δr(l + 1) P 1

l (cos ϑj) sin ϑj rl
i, bj =

4

3
aNr−1

j − 1

3
aNr−2

j (6.25)

instead of (6.17) and (6.20).

6.3 Free-decay mode test

The implementation of the discretisation scheme has been tested by a comparison between
numerically and analytically determined free decay modes. The analytical derivation of
the exponentially decaying field potentials A and B in the absence of any fluid motion is
provided in the following paragraph.

The free decay of the magnetic field in the absence of any fluid motion is governed by

∂A/∂t = Pm−1

(
∇2 − 1

r2 sin2 ϑ

)
A (6.26)

∂B/∂t = Pm−1

(
∇2 − 1

r2 sin2 ϑ

)
B (6.27)

Let us focus on the poloidal decay modes first. Inserting the ansatz

A =
∑

l

gln(r) P 1
l (cos ϑ) e−k2

lnt (6.28)
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in (6.26) and setting Pm = 1, results in a Bessel equation for gln[
d

dr2
+

2

r

d

dr
+ k2

ln − l(l + 1)

r2

]
gln(r) = 0 (6.29)

which possesses the general solution

gln(r) = Alnjl(klnr) + Blnyl(klnr) (6.30)

Here, jl(klnr) and yl(klnr) are the spherical Bessel function of first and second kind. The
coefficients Aln and Bln have to be determined by the boundary conditions. The continua-
tion of the poloidal field as a potential field in the exterior of the fluid shell requires A and
∂A/∂r to be continuous at the inner and outer boundary. This results in the conditions

Alnjl(klnri) + Blnyl(klnri) = âln rl
i (6.31)

Alnj
′
l(klnri) + Blny

′
l(klnri) =

l

kln

âln rl−1
i (6.32)

at the inner boundary, and

Alnjl(klnro) + Blnyl(klnro) = ǎln r−(l+1)
o (6.33)

Alnj
′
l(klnro) + Blny

′
l(klnro) = −(l + 1)

kln

ǎln r−(l+2)
o (6.34)

at the outer boundary. Here, the prime means differentiation with respect to the argument.
Altogether, conditions (6.31-6.34) provide a system of four linear equations for the four
unknowns Aln, Bln, âln, and ǎln. It has a nontrivial solution if, and only if

∣∣∣∣∣∣∣∣
jl(kln ri) yl(kln ri) −rl

i 0
j′l(kln ri) y′

l(kln ri) −(l/kln) rl−1
i 0

jl(kln ro) yl(kln ro) 0 −r
−(l+1)
o

j′l(kln ro) y′
l(kln ro) 0 (l + 1)/kln r

−(l+2)
o

∣∣∣∣∣∣∣∣
= 0 (6.35)

By means of well known recurrence relations1, (6.35) turns out to be equivalent to

jl+1(kln ri) yl−1(kln ro) − jl−1(kln ro) yl+1(kln ri) = 0 (6.36)

which serves to determine kln (n = 1, 2, · · · ) at fixed l. Moreover, for fixed l, n, and thus
kln, we may assume Aln = 1 without loss of generality and finally arrive at

Bln =
ri (kln/l) j′l(kln ri) − jl(kln ri)

yl(kln ri) − y′
l(klnri) ri (kln/l)

(6.37)

The toroidal decay modes have been determined in a similar way. Adopting the ansatz
(6.28),

B =
∑

l

fln(r) P 1
l (cos ϑ) e−k̃2

lnt (6.38)

1jl−1(x) + jl+1(x) = (2l + 1)x−1jl(x), (l + 1)/x jl(x) + j′l(x) = jl−1(x) and equally for yl
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Figure 6.1: Mean magnetic energy density for the poloidal (red/black) and toroidal (blue
dotted/orange) free decay modes with l = n = 1. The decay rates are given by k11 = 2.06
and k̃11 = 3.45. The numerically (red/orange) and analytically (black/blue) determined
curves are nearly in perfect agreement to each other.

and assuming homogeneous boundary conditions, an equation to determine k̃ln (n =
1, 2 · · · ) for fixed l is given by

jl(k̃ln ro) yl(k̃ln ri) − jl(k̃ln ri) yl(k̃ln ro) = 0 (6.39)

For fixed l and k̃ln, it is likewise possible to determine fln in (6.38),

fln(r) = jln(k̃ln r) − jln(k̃ln ri)

yln(k̃ln ri)
yln(k̃ln r) (6.40)

As an example, the exponential decay of the mean magnetic energy density of the
poloidal and toroidal free decay modes with l = n = 1 is displayed in Figure 6.1. The
numerically (red/orange) and analytically (black/blue dotted) determined curves are in
almost perfect agreement, thus verifying the implementation of the used discretisation
scheme for the diffusion operator.
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7 Comparison between direct
numerical simulations and
mean-field calculations

How well do the results given by mean-field models match with the corresponding azi-
muthally averaged fields determined by direct numerical simulations? If there is some
match, in which way do the application of the second order correlation approximation
or the assumption of isotropic ’turbulence’, resulting in isotropic mean-field coefficients,
effect this consistency? On the other hand, what might be plausible reasons for disagree-
ments? These questions are tackled in Section 7.1 considering the simulation of rotating
magnetoconvection (Section 5.1) and the benchmark dynamo (Section 5.2) as examples.

In Section 7.2, the action and significance of all mean-field coefficients applied is
tested. At the same time, this will help to isolate and thus to identify certain dynamo
processes, which constitute the axisymmetric field in these examples.

7.1 Success of mean-field models and their limits

The first example under consideration is the simulation of rotating magnetoconvection.
Figure 7.1 presents a comparison between direct numerical simulations and mean-field
calculations. In the first row, the azimuthally averaged magnetic field components re-
sulting from a direct numerical simulation are shown. They correspond in great detail
to results of our mean-field model (second row), in which all 27 mean-field coefficients
have been used. The poloidal field is dipolar with inverse flux spots near the equatorial
plane, and the applied azimuthal field is strongly diffused in the region occupied by the
convection columns.

A mean-field simulation relying on mean-field coefficients derived in the second or-
der correlation approximation (third row in Figure 7.1) fits equally well. This reflects
that mean-field coefficients as given by SOCA, overestimated by a few per cent in their
amplitudes though, still lead to a reliable parametrisation of the mean electromotive force
in this parameter regime. Moreover, amplitude deviations simultaneous in α and β might
not strongly influence the efficiency of the dynamo action, as suggested by a simple
scaling-analysis argument: In the mean-field description, the efficiency of dynamo action
can be expressed by the magnitude of the dimensionless dynamo number, which reads
Da2 = α2

0 D2/β2
0 for a presumed α2-dynamo. Here, α0 and β0 mean typical scales for the

α-effect and the turbulent diffusivity, respectively, and D stands for a typical length scale,
e.g. the width of the spherical shell. Since α and β are likewise overestimated in their
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Figure 7.1: Comparison between direct numerical simulation and mean-field calculations
in the example of magnetoconvection: azimuthally averaged magnetic field components
resulting from a direct numerical simulation (first row), results given by the mean-field
model based on a set of 27 mean-field coefficients (second row), mean-field calculation
with mean-field coefficients derived applying SOCA (third row), and mean-field calcu-
lation with isotropic mean-field coefficients according to (3.43) and (3.44) (last row).
Maxima and minima of the field components are given in units of (�μηΩ)1/2.
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absolute amplitudes this factor cancels out and has no influence on the dynamo number.
As a consequence, the resulting field resembles the mean field displayed in the second
row, even though the applied mean-field coefficients had larger amplitudes.

The mean-field components shown in the last row of Figure 7.1 have been determined
applying the isotropic approximations according to (3.43) and (3.44) instead of taking
full tensors into account. Now, there are deviations of about 50% in the amplitudes of the
poloidal field, and the toroidal field differs also in its profile; it is much less diffused at
midlatitudes and mid radii where convection takes place. This difference can be clearly
attributed to a missing γ-effect and in particular to the absence of arϕ and aϑϕ constituting
γMT as defined in (5.7). Already in the simple example considered here, the isotropic
approximation fails to reproduce the axisymmetric field in satisfactory agreement with
corresponding direct numerical simulations. This indicates that in general much more
mean-field coefficients must be taken into account in order to grasp all relevant dynamo
effects.

As a second example, the benchmark dynamo discussed in Section 5.2 has been con-
sidered. Again, in Figure 7.2, the azimuthally averaged field components resulting from
a direct numerical simulation are shown in comparison with results given by mean-field
modelling. Figure 7.2 is organised in the same way as Figure 7.1 before. That is, az-
imuthally averaged field components resulting from a direct numerical simulation have
been plotted in the first row, the second row shows results obtained by corresponding
mean-field calculations, the third row contributes results obtained by mean-field mod-
elling at which the mean-field coefficients have been determined in the second order cor-
relation approximation, while for the results presented in the last row, just the isotropic
approximations (3.43) and (3.44) have been applied. Note that only the direct numerical
simulation results in a steady dynamo at its critical point. All mean-field models shown
in comparison are subcritical and decay according to B = B0 exp(λt), at which B0 de-
notes a field configuration reached after an initial transition phase, and λ is negative in
these examples. Therefore, rather decay rates than amplitudes are compared.

As in the previous example, both mean-field models relying on a set of 27 mean-field
coefficients (second and third row in Figure 7.2) correspond best to the direct numerical
simulation and succeed in reproducing all principal features of the axisymmetric field
given in the first row. However, their agreement is not completely satisfactory. Both
mean-field models are slightly subcritical with λ = −0.7 and λ = −1.3, which comes
along with major topological differences in Bϕ: The inverse flux bundle at low latitudes
near the outer boundary is diffused too much in the mean-field models. Responsible for
the high diffusivity in this region is the strong γ-effect, which leads to advection of mean
toroidal field of opposite sign towards the equator, resulting in large gradients and thus in
a very efficient diffusion.

Although the SOCA approximation is strictly speaking not justified anymore (see
Section 5.2.4), the resulting mean field components in the third row are remarkable similar
to those obtained by mean-field modelling without applying SOCA (second row). For an
explanation, I refer here again to the scaling-analysis argument given above in the context
of the magnetoconvection example. It is instructive to note that less reliable mean-field
coefficients due to the second order correlation approximation do not effect the resulting
mean-field models dramatically in these examples.

In contrast, mean-field coefficients in the isotropic approximation implemented in a
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Figure 7.2: Comparison between direct numerical simulations and mean-field calcula-
tions in the example of the benchmark dynamo: azimuthally averaged magnetic field
components resulting from a direct numerical simulation (first row), results as given by
mean-field modelling (second row), mean-field calculation with mean-field coefficients
in the second order correlation approximation (third row), or with isotropic mean-field
coefficients (last row). Different from the direct numerical calculation which has become
stationary, all mean-field solutions missed the critical point and decay exponentially with
decay rates λ = −0.7 (second row), λ = −1.3 (third row), and λ < −15 (last row); all
decay rates are given in scales of ν/D2.
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Figure 7.3: Comparison between electromotive forces in the magnetoconvection example.
Left column: EDNS

r , EDNS
ϑ , EDNS

ϕ , right column: E (1)
r , E (1)

ϑ , and E (1)
ϕ . Maxima and minima

are given in units of magnetic field times velocity scaling, [ν/D (�μηΩ)1/2].

mean-field model do not lead to reliable results anymore, see the last row in Figure 7.2.
There are not only apparent differences in the field distribution, but also the decay rate,
λ ≈ −15, is drastically high.

The difficulties of mean-field models in accurately reproducing mean magnetic fields
as determined by direct numerical simulations, which arise already in the example of
the benchmark dynamo, are due to a failing parametrisation of E . Figure 7.3 compares
EDNS, which refers to E extracted immediately from the direct numerical simulation, with
E (1)

λ = ãκλBλ + b̃κλr ∂Bλ/∂r + 1/r b̃κλϑ ∂Bλ/∂ϑ, in the example of magnetoconvection;
for the computation of E(1), B and its gradients have been also taken from the direct
numerical simulation. Both quantities are in rather good agreement with δE (1) ≈ 0.28, at
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7 Comparison between direct numerical simulations and mean-field calculations

Figure 7.4: Comparison between electromotive forces in the example of the benchmark
dynamo. Left column: EDNS

r , EDNS
ϑ , EDNS

ϕ , right column: E (0)
r , E (0)

ϑ , and E (0)
ϕ . Maxima

and minima are given in units of [ν/D (�μηΩ)1/2].

which δE (1) is defined by

δE (1) =
< |EDNS − E (1)| >

< |EDNS| >
(7.1)

and < · · · > means spatial averaging. Therefore, a parametrisation of E considering no
higher than first-order derivatives of B seems to be adequate in this example.

In contrast, this is not true in the example of the benchmark dynamo anymore. In this
example, δE (1) > 4 has been found, indicating that a parametrisation according to (6.7) no
longer describes the actual E reasonably. The assumption of a scale separation, which is
needed to truncate the series expansion of E in (3.13), breaks down. In fact, higher order
derivatives of B become large and spoil the parametrisation of E in a rather uncontrolled
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7.2 Action and significance of mean-field coefficients

manner. This finding is consistent with the following observations:

• The radially averaged power spectrum of the axisymmetric magnetic field in the
example of the benchmark dynamo exhibits a peak at l = 4 containing 15% of
the total power. In contrast, the corresponding spectrum in the magnetoconvection
example does not possess markedly contributions for l > 2, suggesting that the
mean-field is indeed somewhat smoother in this example.

• The magnetoconvection simulation has been repeated with more complicated im-
posed axisymmetric fields at the boundaries in order to trigger steeper gradients in
the mean field. In this way, it is indeed possible to destroy the close match between
EDNS and E (1) visible in Figure 7.3.

In the benchmark example, also coefficients c̃κλμν related to second derivatives of B
in the expansion of E have been taken into account, and

E (2)
λ = ãκλBλ + b̃κλr

∂Bλ

∂r
+

1

r
b̃κλϑ

∂Bλ

∂ϑ

+c̃κλrr
∂2Bλ

∂r2
+ c̃κλrϑ

1

r

∂2Bλ

∂r∂ϑ
+ c̃κλϑϑ

1

r2

∂2Bλ

∂ϑ2
(7.2)

has been considered. However, the second derivatives possess much larger absolute max-
ima than ∂Bλ/∂r, ∂Bλ/∂ϑ, and E (2) does not coincide superiorly with EDNS.

In Figure 7.4, E (0) = ãB is displayed in comparison with EDNS. Even though the am-
plitudes differ markedly, the profiles provide striking similarities. This strongly suggests
that despite the non-convergence of (3.13) the coefficients ãκλ in the benchmark example
are meaningful.

7.2 Action and significance of mean-field coefficients

In order to investigate the dynamo action of certain groups of mean field coefficients, a
number of test calculations has been carried out involving the following sets of mean-field
coefficients:

Set I: all 27 coefficients: ãκλ, b̃κλr, b̃κλϑ, Pm = 5

Set II: only the diagonal components ãrr, ãϑϑ, ãϕϕ, Pm = 1

Set III: ãϕϕ and mean flow V , Pm = 1

Set IV: all ãκλ, Pm = 1

Set V: all ãκλ, except ãrϕ, ãϑϕ, Pm = 1

Set VI: all ãκλ and the coefficients b̃rϕϑ, b̃ϑϕr, b̃ϕϑr, b̃ϕrϑ which provide the diagonal
components of the β-tensor, Pm = 5

Set VII: all ãκλ and certain b̃κλμ which contribute to β and δ, Pm = 5
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7 Comparison between direct numerical simulations and mean-field calculations

BENCHMARK DYNAMO

SET λA λS

I -0.9 -8.1
II +4.8 +3.3
III -9.0 -16.0
IV -2.2 -8.9
V -0.4 2.3
VI -3.1 -12.0
VII -0.6 -5.7

Table 7.1: Exponential decay or growth rates in units of ν/D2 for equatorial symmetric
(λA) and antisymmetric (λS) mean-field solutions involving various sets of mean-field
coefficients.

Set I includes all 27 coefficients ãκλ, b̃κλμ, i.e. α, γ, β, δ, and κ. Therefore, mean-field
calculations involving Set I serve as a reference state. Set II and III have been chosen
in order to test the dynamo action of the diagonal components of the α-tensor, whereas
Set IV and V tend to demonstrate the influence of certain non-diagonal components, in
particular the action of the γ-effect. The last two Sets, VI and VII, have been chosen in
order to reveal the importance of further coefficients b̃κλμ which provide the β-tensor and
the δ-vector.

In the example of the benchmark dynamo, all mean-field solutions based on the above
defined sets are either exponentially growing or decaying after an initial transition period.
Table 7.1 gives the decay or growth rates. Because ES and EA solutions are indepen-
dent of each other, it is justified to determine their growth rates separately by prescribing
equatorial symmetry conditions.

The benchmark dynamo operates through an α2-mechanism. Mean-field calculations
involving Set II result in similar growth rates λA = 4.8 and λS = 3.3 for the EA and ES

Figure 7.5: Mean azimuthal field in the magnetoconvection example as given by mean-
field modelling, involving all mean-field coefficients (right chart) and without ãrϕ, ãϑϕ

(left chart).
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7.2 Action and significance of mean-field coefficients

Figure 7.6: Br (left contour plot) and Bϕ (right contour plot) as given by mean-field
calculations for the benchmark dynamo involving Set V.

solution, respectively. Since the differential rotation is negligible, an attempt to close the
dynamo cycle by an ω-effect fails, see Set III in Table 7.1.

Besides the diagonal components, ãrϕ and ãϑϕ are most important. They provide a
strong γ-effect, which acts to expel flux from the central dynamo region. This effect is
clearly visible in Figure 7.5, which refers to the magnetoconvection example. Moreover,
again in the benchmark example, the absence of ãrϕ, and ãϑϕ in Set V allows for a su-
percritical ES solution (λS = 2.3) while an equatorial symmetric azimuthal field decays
rapidly if these non-diagonal components are involved (Set IV, λS = −8.9). Figure 7.6
shows Br and Bϕ given by mean-field calculations which rely on mean-field coefficients
combined in Set V, i.e. without ãrϕ and ãϑϕ. Both components show strong flux concen-
trations around the equatorial plane at mid radii, and it is plausible that these solutions
become unfavourable under the influence of a strong γ-effect. Together with the turbulent
diffusion, which is also concentrated in the region covered by the convection columns
(see e.g. Figure 5.7), the γ-effect leads to a clear preference of EA solutions.

With the diagonal components of the β-tensor taken into account (Set VI), diffusion
is significantly enhanced, and the resulting dynamo solutions are markedly subcritical.
However, not all components of b̃ are conducive to the turbulent diffusion. If in addition
all coefficients b̃κλμ which contribute to the δ-vector are considered (Set VII), the decay
rates increase, and the corresponding EA-solution gets close to the critical point. This
is consistent with the idea of a constructive δ × j-effect due to an anisotropic turbulent
conductivity (see e.g. Rädler 1980).

Altogether, the test calculations suggest a minimum set of 17 mean-field coefficients
which should be considered in a mean-field model in order to achieve reasonable agree-
ment between mean-field simulations and direct numerical simulations. These are: the
diagonal components ãrr, ãϑϑ, ãϕϕ, the dominating non-diagonal components ãrϕ, ãϑϕ,
and all components b̃κλμ except for b̃κrr and b̃κϑϑ. They contribute to the α-effect, the
γ-effect, the turbulent diffusion, and the δ × j-effect, which thus can be identified as the
relevant dynamo mechanisms in the benchmark example.
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8 Conclusions and outlook

The knowledge of relevant mean-field coefficients is decisive in order to analyse and to
model dynamo action in many astrophysical circumstances. In this work, two approaches
to determine mean-field coefficients have been developed. Approach (I) is based on a nu-
merical determination of electromotive forces, or more precisely, on numerical solutions
of the induction equation for the residual field. But otherwise, it is completely general.
Thus, it can be easily applied to a variety of dynamo simulations. Approach (II) requires
certain simplifications, namely the assumption of the velocity field being solenoidal and
steady, the second order correlation approximation, and the neglect of the mean flow. On
the other hand, it reproduces the mean-field coefficients for an azimuthal average in the
low-conductivity limit if solely an appropriate velocity field is provided.

Approach (I) has been applied to four examples: a simulation of rotating magnetocon-
vection, a quasi-stationary dynamo, and two highly time dependent dynamos, at which
one of them shows dipole reversals. Despite their differences in the vigour of convection
or in the magnetic diffusivity, the resulting (time-averaged) mean-field coefficients pro-
vide striking similarities. This implies that in all four examples similar dynamo processes
take place, which appear to be typical features of columnar convection inside a sphere or
a spherical shell. These are: the generation of poloidal and toroidal magnetic field by an
α-effect, flux expulsion from the dynamo region due to a γ-effect, and a strong turbulent
diffusion, which might be moderated by a δ × j-effect.

Furthermore, the calculation of mean-field coefficients provides some insight into the
reliability of frequently applied approximations in the framework of mean-field theory.
Most dubious among them is the reduction of the α-tensor to an isotropic tensor, which
leaves dominating non-diagonal components unconsidered. A further, important simpli-
fication is the second order correlation approximation. It typically leads to overestimated
amplidudes of mean-field coefficients, whereas their profiles are rather unaffected.

The mean-field picture of geodynamo models is completed by the simulation of ax-
isymmetric fields by means of a mean-field model, involving all mean-field coefficients
determined. Various test calculations with different sets of mean-field coefficients con-
firm their relation to the above mentioned dynamo processes. In addition, a comparison
with azimuthally averaged fields resulting from direct numerical simulations reveals their
significance. In the magnetoconvection and the benchmark example considered here, the
match between direct numerical simulations and mean-field simulations is best if at least
a number of 17 mean-field coefficients are involved which contribute to α, γ, β, and
δ. The application of corresponding mean-field coefficients derived in the second order
correlation approximation leads to very similar results.

The reliability of mean-field models relies on a proper parametrisation of E in terms of
the mean magnetic field. In the simple magnetoconvection example, the traditional repre-
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sentation of the mean electromotive force considering no higher than first order derivatives
of the mean magnetic field is valid. However, already in the benchmark example, it seems
to be no longer justified. The regard of second order derivatives in addition does not
improve the parametrisation indicating that the assumption of scale separation is not ful-
filled. This defect severely limits the applicability of mean-field theory. Nonetheless, the
axisymmetric field obtained by mean-field modelling in the benchmark example matches
the corresponding direct numerical simulation surprisingly well.

Here, only steady mean-field coefficients have been used in mean-field models. In a
future project, it will be interesting to carry out mean-field calculations which involve
also time-dependent mean-field coefficients. This may provide some insight into in-
teresting time-dependent characteristics of geodynamo models, such as dipole reversals
and excursions. Do mean-field models exhibit reversals if heavily fluctuating mean-field
coefficients are involved? Are diagonal components of α which possess an equatorial
symmetric part, as presented in Figure 5.28, conducive to reversals? In order to tackle
these questions, a massive computation of time sequences of mean-field coefficients is
required, which can be subsequently used in mean-field models. Alternatively, one could
rely on time-averaged mean-field coefficients and parametrise the time fluctuations. The
parametrisation should involve the standard deviation as well as spatial and temporal
scales on which fluctuations occur. First steps following this line have been performed
in Sections 5.3 and 5.4, in which the time variability of mean-field coefficients has been
analysed in two examples.

In order to extrapolate results for mean-field coefficients and to apply them to dynamo
simulations in different astrophysical contexts, scaling laws for mean-field coefficients
are needed. How does the α-tensor, for instance, depend on the vigour of convection or
on the rotation rate? In which way are α-components quenched due to the presence of a
mean field? Starting with an extensive, systematic parameter study, it may be possible to
derive scaling laws, which reveal the dependence of some mean-field coefficients on key
parameters as the magnetic Reynolds number, the Rossby number or the Elsasser num-
ber. Therefore, calculations as performed in Section 5.1.4, giving (αϕϕ)rms in dependence
of Rm, or in Section 5.2.4, giving (αϕϕ)rms in dependence of Λ have to be extended to
a wider parameter space. The numerical survey can be assisted by a generalisation of
approach (II) to the case of non-steady motions, which will lead to useful constraints:
the scaling laws have to be consistent with resulting analytical expressions in parameter
regimes in which SOCA is justified. However, a generalisation of approach (II) is alge-
braically involved and computationally expensive. In the non-steady case, the expressions
for Sm

l and Tm
l in (4.30-4.31) have to be replaced by solutions of

DlS
m
l = Fm

l , DlT
m
l = Gm

l , ri < r < ra (8.1)

at which Dl is defined as

Dlf =
1

r

∂2

∂r2
(rf) − l(l + 1)

r2
f − 1

η

∂f

∂t
(8.2)

and all other notations as well as the boundary conditions are the same as in Section 4.2.
Again, the solutions of (8.1) can be given with the help of certain Green’s functions gl
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and hl. But, these are now time dependent, and an additional time integration is needed,

Sm
l (r, t) = −

∫ t

t0

∫ ro

ri

gl(r, r
′, t − t′)Fm

l (r′, t′)dr′dt′

+

∫ ro

ri

gl(r, r
′, t − t0)S

m
l (r′, t0)dr′ (8.3)

Tm
l (r, t) = −

∫ t

t0

∫ ro

ri

hl(r, r
′, t − t′)Gm

l (r′, t′)dr′dt′

+

∫ ro

ri

hl(r, r
′, t − t0)T

m
l (r′, t0)dr′ (8.4)

In the above equations, t0 means the initial time. The single integrals over r′ contributing
to Sm

l and Tm
l are just solutions of the homogeneous equations (8.1), while the double

integrations are solutions of the inhomogeneous equations vanishing at t = t0. With (8.3-
8.4) instead of (4.30-4.31), all relations in Section 4.2 which are based on (4.30-4.31)
have to be changed accordingly.

Approach (I) developed in this work serves equally well to determine mean-field co-
efficients for any hydromagnetic flow. Besides the parameter study suggested above, it
will be interesting to apply approach (I) to global anelastic dynamo simulations, dedicated
to simulate stellar dynamos (e.g. Brun et al. 2004), or to fully compressible box simula-
tions, which are performed to simulate turbulence in local sections of the solar convection
zone (e.g. Brandenburg et al. 1996, Ossendrijver et al. 2002), in the galactic disc (e.g.
Ziegler et al. 1996), or in accretion discs (Brandenburg et al. 1995, Hawley et al. 1996).
This analysis will highlight specific properties of mean-field coefficients due to a density
stratification and a changed geometry of the flow domain.
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A Relations between covariant and
non-covariant mean-field
coefficients

A set of covariant mean-field coefficients specified for b̃κλϕ = 0 reads:

αrr = −(ãrr − b̃rϑϑ/r) (A.1)

αrϑ = αϑr = −1/2 (ãrϑ + b̃rrϑ/r + ãϑr − b̃ϑϑϑ/r) (A.2)

αrϕ = αϕr = −1/2 (ãrϕ + ãϕr − b̃ϕϑϑ/r) (A.3)

αϑϑ = −(ãϑϑ + b̃ϑrϑ/r) (A.4)

αϑϕ = αϕϑ = −1/2 (ãϑϕ + ãϕϑ + b̃ϕrϑ) (A.5)

αϕϕ = ãϕϕ (A.6)

βrr = −1/2 b̃rϕϑ (A.7)

βrϑ = βϑr = 1/4 (b̃rϕr − b̃ϑϕϑ) (A.8)

βrϕ = βϕr = 1/4 (b̃rrϑ − b̃ϕϕϑ − b̃rϑr) (A.9)

βϑϑ = 1/2 b̃ϑϕr (A.10)

βϑϕ = βϕϑ = 1/4 (b̃ϑrϑ + b̃ϕϕr − b̃ϑϑr) (A.11)

βϕϕ = 1/2 (b̃ϕrϑ − b̃ϕϑr) (A.12)

γr = 1/2 (ãϑϕ − ãϕϑ − b̃ϕrϑ/r) (A.13)

γϑ = 1/2 (ãφr − b̃ϕϑϑ/r − ãrϕ) (A.14)

γϕ = 1/2 (ãrϑ + b̃rrϑ/r − ãϑr + b̃ϑϑϑ/r) (A.15)

δr = 1/4 (b̃ϑϑr − b̃ϑrϑ + b̃ϕϕr) (A.16)

δϑ = 1/4 (b̃rrϑ − b̃rϑr + b̃ϕϕr) (A.17)

δϕ = −1/4 (b̃rϕr + b̃ϑϕϑ) (A.18)
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A Relations between covariant and non-covariant mean-field coefficients

κλrr = −b̃λrr (A.19)

κλrϑ = κλϑr = −1/2 (b̃λrϑ + b̃λϑr) (A.20)

κλrϕ = = κλϕr = −1/2 b̃λϕr (A.21)

κλϑϑ = −b̃λϑϑ (A.22)

κλϑϕ = κλϕϑ = −1/2 b̃λϕϑ (A.23)

κλϕϕ = 0 (A.24)
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B Representation of a second rank
tensor which depends on two
directions

Consider a second-rank tensor aij depending on two unit vectors p̂ and r̂. A multiplication
with two auxiliary vectors v and w determines aijviwj as a function of v,w, p̂ and r̂

vT aw = aijviwj = f(v,w, p̂, r̂) (B.1)

Because aijviwj is a scalar quantity, f(v,w, p̂, r̂) has to be inferred from independent
scalar combinations (i.e. irreducible invariants) of v,w, p̂ and r̂. As a further restriction,
all relevant invariants have to be bilinear in v and w. All irreducible invariants are given
then by

viwi, εijkviwj r̂k, εijkviwj p̂k, εijkviwj(p̂ × r̂)k

vi r̂i wj r̂j, viwj(p̂ir̂j + p̂j r̂i), vip̂i wj p̂j (B.2)

viwj[r̂i(p̂ × r̂)j + r̂j(p̂ × r̂)i], viwj[p̂i(p̂ × r̂)j + p̂j(p̂ × r̂)i]

Note that the product of εijkvir̂j p̂k and εijkwir̂j p̂k need not be taken into account, because
it is found to be reducible:

εijkvir̂j p̂k εlmnwlr̂mp̂n = δijk
lmnviwlr̂j r̂mp̂kp̂n = viwi + viwj(r̂ip̂j + r̂j p̂i)p̂kr̂k

−vir̂iwj r̂j − vip̂iwj p̂j − viwi(p̂j r̂j)
2

at which the symbol δijk
lmn is defined as

δijk
lmn = δilδjmδkn + δimδjnδkl + δinδjlδkm − δimδjlδkn − δilδjnδkm − δinδjmδkl

Thus, (B.1) can be represented as a linear combination of all terms listed in (B.2):

aijviwj = a1viwjδij + a2viwj r̂ir̂j + a3viwj p̂ip̂j + a4viwj(r̂ip̂j + r̂j p̂i)

+a5viwj[r̂i(p̂ × r̂)j + r̂j(p̂ × r̂)i]

+a6viwj[p̂i(p̂ × r̂)j + p̂j(p̂ × r̂)i] + a7εijkviwj r̂k

+a8εijkviwj p̂k + a9εijkviwj(p̂ × r̂)k (B.3)

All coefficients a1, · · · , a9 may be any functions of those invariants which are independent
of v and w, that is ai = ai(p̂r̂), i = 1, · · · , 9, for the example considered here. Because
(B.3) holds for any vectors v and w, the general representations (3.45) and (3.46) are
conclusive.
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C Green’s functions and orthogonality
relations

The Green’s functions in (4.30-4.31) are given by

fl(r, r
′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
(2l + 1)r

(
r′
r

)l

, r′ ≤ r

1
(2l + 1)r

(
r
r′
)l+1

, r′ ≥ r′
(C.1)

and

gl(r, r
′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 −
(

ri

ro

)2l+1
)−1 [

fl(r, r
′) −

(
r
ro

)l

fl(ro, r
′)

− (ri
r
)l+1

fl(ri, r
′) +

rlrl+1
i

r2l+1
o

fl(ri, r
′)
]

, r′ ≤ r

(
1 −
(

r

ro

)2l+1
)−1 [

fl(r, r
′) −

(
r
ro

)l

fl(ro, r
′)

− (ri
r
)l+1

fl(ri, r
′) +

r2l+1
i

rl+1rl
o

fl(ro, r
′)
]

, r′ ≥ r

(C.2)

We note that
∂fl(r, r

′)
∂r

− l

r
fl(r, r

′) = gl(r, r
′) = 0 at r = ri

and
∂fl(r, r

′)
∂r

+
l + 1

r
fl(r, r

′) = gl(r, r
′) = 0 at r = ro

The orthogonality relations used to evaluate (4.37) are given by∫ π

0

Pm
l′l (ϑ) sin ϑdϑ =

2(l + |m|)!
(2l + 1)(l − |m|)!δl′l (C.3)∫ π

0

(
Qm

l′l(ϑ) + Qm
ll′(ϑ)

)
dϑ = 0 (C.4)∫ π

0

Rm
l′l(ϑ) sin ϑdϑ =

2l(l + 1)(l + |m|)!
(2l + 1)(l − |m|)! δl′l (C.5)
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D Components of ã in the second
order correlation approximation

In the following, all coefficients of ã determined by means of approach (II) are given. For
ãϑλ and ãϕλ an additional numerical integration over ϑ′ is needed because the orthogo-
nality relations (C.3-C.5) can not be applied in a similar way. A rather high resolution of
lmax = 85 and 65 grid points in radial direction requires a parallelisation of the computa-
tion.

ãrr(r, ϑ) =
2

η

∑
l,l′ ; m>0

{∫ R

0

(
f̂l(r, r

′) Re
(
ψm∗

l′ (r)φ̂m
l (r′)

)

+g̃l(r, r
′) Re

(
φ̂m∗

l′ (r)ψm
l (r′)

))
r′2dr′ Rm

l′l(ϑ)

−
∫ R

0

(
f̂l(r, r

′) Im
(
φ̂m∗

l′ (r)φ̂m
l (r′)

)− g̃l(r, r
′) Im

(
ψm∗

l′ (r)ψm
l (r′)

))
r′2dr′

×m
(
Qm

l′l(ϑ) + Qm
ll′(ϑ)

)
/ sin ϑ

}
(D.1)

ãϑr(r, ϑ) =
2

ηr

∑
l,l′ ; m>0

{
− l′(l′ + 1)

∫ R

0

g̃l(r, r
′)Re
(
φm∗

l′ (r)ψm
l (r′)

)
r′2dr′ Qm

l′l(ϑ)

− l(l + 1)

∫ R

0

fl(r, r
′)Re
(
ψm∗

l′ (r)φ̂m
l (r′)

)
r′2dr′ Qm

ll′(ϑ)

+ m

∫ R

0

[
l′(l′ + 1)f̂l(r, r

′)Im
(
φm∗

l′ (r)φ̂m
l (r′)

)

+l(l + 1)fl(r, r
′)Im

(
φ̂m∗

l′ (r)φ̂m
l (r′)

)]
r′2dr′ Pm

l′l (ϑ)/ sin ϑ

}
(D.2)
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D Components of ã in SOCA

ãϕr(r, ϑ) =
2

ηr

∑
l,l′ ; m>0

{
l′(l′ + 1)

∫ R

0

f̂l(r, r
′)Re
(
φm∗

l′ (r)φ̂m
l (r′)

)
r′2dr′ Qm

l′l(ϑ)
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ãϕϕ(r, ϑ) = − 1

ηr

∑
l,l′,l′′ ; m>0

(2l + 1)(l − |m|)!
l(l + 1)(l + |m|)!

×
{

ml′(l′ + 1)Pm
l′l (ϑ)/ sin ϑ

×
[

ml(l + 1)

∫ R

0

gl(r, r
′)Re
(
φm∗

l′ (r)ψm
l′′ (r

′)
)
r′dr′

∫ π

0

Pm
ll′′(ϑ

′)dϑ′

− l′′(l′′ + 1)

∫ R

0

g̃l(r, r
′)Im
(
φm∗

l′ (r)φm
l′′(r

′)
)
r′dr′

∫ π

0

Qm
l′′l(ϑ

′) sin ϑ′dϑ′

+ l(l + 1)

∫ R

0

gl(r, r
′)Im
(
φm∗

l′ (r)φ̂m
l′′(r

′)
)
r′dr′

∫ π

0

Qm
ll′′(ϑ

′) sin ϑ′dϑ′
]

+ ml′′(l′′ + 1)

∫ π

0

Pm
l′′l(ϑ

′)dϑ′

×
[
ml(l + 1)Pm

l′l (ϑ)/ sin ϑ

∫ R

0

fl(r, r
′)Re
(
ψm∗

l′ (r)φm
l′′(r

′)
)
r′dr′

+ l′(l′ + 1)Qm
l′l(ϑ)

∫ R

0

f̂l(r, r
′)Im
(
φm∗

l′ (r)φm
l′′(r

′)
)
r′dr′

− l(l + 1)Qm
ll′(ϑ)

∫ R

0

fl(r, r
′)Im
(
φ̂m∗

l′ (r)φm
l′′(r

′)
)
r′dr′

]}
(D.9)

93





E Comparison between approach (I)
and approach (II)

Figure E.1: Mean-field coefficients determined by method (I) for the example of magne-
toconvection, but with Pm = 0.1. Maxima and minima are given in units of ν/D.
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E Comparison between approach (I) and approach (II)

Figure E.2: Mean-field coefficients determined by method (II), otherwise corresponding
to those shown in Figure E.1.

Mean-field coefficients determined by approach (I) and approach (II) are displayed
in Figures E.1 and E.2. Since approach (II) is based on the second order correlation ap-
proximation, Rm has been scaled down until both sets of coefficients have come into
reasonable agreement. Slight differences which still exist might originate from numer-
ical errors which occur carrying out the numerical integrations over r′ and ϑ′ in (4.38)
and (D.1-D.9) for a limited spatial resolution. Standard library routines based on finite
difference formulas have been used for this purpose. The neglect of the mean flow for
the analytical determination of ãκλ has no noticeable effect at low magnetic Reynolds
numbers.
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F Mean-field coefficients for the
example of the benchmark dynamo

Figure F.1: β- and δ-components in the example of the benchmark dynamo. Maxima
and minima are given in units of ν. Carrying out the mean-field calculations, the small
negative patches in βϕϕ have been neglected for numerical reasons. Note that this has no
noticeable effect on the mean electromotive force.
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F Mean-field coefficients for the example of the benchmark dynamo

Figure F.2: κ-components in the example of the benchmark dynamo. Maxima and minima
are given in units of ν.
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